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Abstract: In new technological applications, it is important to use vortex distributions in the area for obtaining large
velocity fields. Analogous to electromagnetic and fluid mechanics inductions, vortices are described by the same
relationship: the Biot-Savart law. When vortex threads form a vortex track due to fluid mechanics, they induce, analogous
to electrical coils on an iron core, a core flow that can be faster than the wind that generates it. In this publication, the
velocity field induced in a cylinder using the axially symmetric system of vortex rings and screw vortices and the
hydrodynamic flow function in the ideal incompressible fluid are calculated. Also similar problem for mathematical
modelling of the heat generation in fluids with alternating current using vortexes is considered. In this paper, it was
calculated the distribution of the velocity field and distribution of stream function for ideal incompressible fluid, induced
by a different system of finite number of vortex threads: (1) circular vortex lines in a finite cylinder, positioned on its
inner, (2) spiral vortex threads, positioned on the inner surface of the finite cylinder or cone, (3) linear vortex lines in
the plane channel, positioned on its boundary. An original method was used to calculate the components of the velocity
vectors. Such kind of procedure allows calculating the velocity fields inside the domain depending on the arrangement, the
intensity, and the radii of vortex lines. In this paper, we have developed amathematical model for the process in the element
of Hurricane Energy Transformer. This element is a central figure in the so-called RKA (ReaktionsKraftAnlage) used on
the cars’ roofs.

Keywords: channel, circular vortexes, finite cylinder, finite cone, incompressible fluid, spiral vortex threads, velocity
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1. Introduction
In traditional heating systems for dwelling houses fuel is used to warm up the water, which flows through the heating

system. The offered mathematical model describes the function of such heating devices in which the water of the heating
system is warmed up with the help of alternating current in one mode. The conclusion is that it helps to increase the
efficiency of the device (there is no excess loss of heat) and that the device is extremely compact.
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The heating of buildings by ecologically clean and compact local devices is interesting and actual problem. One of
the modern areas of applications is the effective use of electrical energy produced by alternating current in production
of heat energy. This process is ecologically clean, there is no environmental pollution. Though, on the other hand, the
aspect of energy is very important: the transformation process is to be organized in such a way that electric energy
should be effectively transformed into heat energy. It can be achieved by reducing the amount of elements in the energy
transformation process.

For example, if the medium, where heat energy is produced, is at the same time a transmitter in a heating system, then
there will be no losses. One such media is undistilled water. It is ecologically harmless and easily available. Water (with
a small amount of nonaggressive salts added, if needed) must be a weakly electrically conducting medium (electrolyte).
In the last ten years, devices based on this principle have been developed. Compared to the classical devices with heating
elements, they are more compact and do not calcify.

Figure 1. The heat generator

In [1] 2010 presents the mathematical model of one of such devices (see Figure 1). It is an infinite cylinder with metal
conductors -electrodes of the forms of bars placed parallel to the cylinder axis in the liquid. For those conductors, the
alternating current is connected. Modelled cylinders form electrical heat generators with six circular conductors-electrodes.
If this cylinder is placed, for example, in a house heating system together with a small electromotor which rotates water
in the entry of cylinder and pumps water through it, we obtain an effective, compact and ecologically clean house heating
device. The distribution of electromagnetic fields, forces and temperature has been calculated. The average axially-
symmetric motion of electrolyte and temperature distribution in a cylinder has been obtained in dependence on the values
of frequencies and arrangement of electrodes.

In new technological applications, it is important to use vortex distributions in the area for obtaining large velocity
fields [2]. The effective use of vortex energy in the production of strong velocity fields by different devices is one of
the modern areas of applications, developed in the first decade of the 21st. century. Such processes are ecologically
clean, there is no environmental pollution.

On the other hand, the aspect of energy is very important: the transformation process should be organized in such
way that vortex energy is effectively transformed into mechanical energy. It can be achieved by reducing the amount of
elements in the energy transformation process.

This paper, it was calculated the distribution of the velocity field and distribution of stream function for ideal
incompressible fluid, induced by a different system of the finite number of vortex threads:

(1) circular vortex lines in a finite cylinder, positioned on its inner,
(2) spiral vortex threads, positioned on the inner surface of the finite cylinder or cone,
(3) linear vortex lines in the plane channel, positioned on its boundary.
An original method was used to calculate the components of the velocity vectors. Such kind of procedure allows

calculating the velocity fields inside the domain depending on the arrangement, the intensity, and the radii of vortex lines.
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In this paper, we have developed a mathematical model for the process in the element of Hurricane Energy
Transformer. This element is a central figure in the so-called RKA (ReaktionsKraftAnlage) used on the cars’ roofs for
substations reducing the air’s drag [3, 4] (see Figure 2), in the area for obtaining large velocity fields [2, 5].

Figure 2. The cars’ roofs

People have been dealing with vortices for as long as we can look back. Analogous to electromagnetic and fluid
mechanics inductions, vortices are described by the same relationship: the Biot-Savart law. When vortex threads form
a vortex track due to fluid mechanics, they induce, analogous to electrical coils on an iron core, a core flow that can
be faster than the wind that generates it. In this publication, the velocity field induced in a cylinder using the axially
symmetric system of vortex rings and screw vortices and the hydrodynamic flow function in the ideal incompressible
fluid are calculated.

In 2004 Bertasius, Buikis and Verzbovicius formulated patent [6] of apparatus and methods for heat generation. Later
Buikis and Kalis constructed a mathematical model of this heat generator [7–9].

In this model, the viscous electrically conducting incompressible liquid is located between two infinite coaxial
cylinders (rings). The electromagnetic force drives magneto-hydrodynamic flow between the cylinders.

In 2009 is designed a similar generator to [10] and created a mathematical model for generator [1, 11]. In the
internal cylinder parallel to the axis are placed metal conductors-electrodes of the forms of bars. For those conductors, the
alternating current is connected. The water is a weakly electrically conducting liquid (electrolyte). This is the mathematical
model of one device for electrical energy produced by alternating current in the production of heat energy (see Figure 1).

The distribution of electromagnetic fields, forces, 2D magnetohydrodynamic flow, and temperature induced by the
system of the alternating electric current or external magnetic field in a conducting cylinder has been calculated using
finite difference methods for solving partial differential equations. An original method was used to calculate the mean
values of electromagnetic forces.

The second interesting way in the vortexes exploitation in devices was collaboration with inventor Schatz in Germany
[12, 13]. In new technological applications, it is important to use vortex distributions for obtaining large values of velocity.
The effective use of vortex energy in the production of strong velocity fields by different devices is one of the modern areas
of applications, developed during the last decade. Although, on the other hand, the aspect of energy is very important:
the transformation process should be organized in such a way that vortex energy is effectively transformed into heat or
mechanical energy. In our previous papers [7, 8, 14] we have mathematically modeled the process how transforming the
alternating electrical current into heat energy.

The practical aim of this investigation is to try to understand the process in the element of Hurricane Energy
Transformer. This element is a central figure in the so-called RKA (German: ReaktionsKraft Anlage, English: Reaction
Force Device) used on the cars’ roof for substation reducing the airs’ drag. On May 14, 2006, Schatz [13] conducted
the following experiment: with the passenger car “WW Passat”, driving a road section of 553.40 km with the above-
mentioned equipment RKA and without this equipment. The results were as follows-when driving with the device RKA
consumed an average of 7.33 litres of gasoline per 100 km, while without the device-8.50 litres of gasoline per 100 km.
This is all that’s done at the practical level in mathematical modeling.
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However, several practical and theoretical questions are left unanswered. Devices sometimes have worked with
effectiveness higher than 100 percent. Important is that in such a system there are strong vortices and electromagnetic
fields or high velocities.

For example, in [6, 10] the alternating electro currencywith voltage 380V is about 1 ampere on 1 cm. Theoretically, the
answer may be that we have a contradiction in the macro and micro processes in such devices [15].

Following Kim [16], we require a new paradigm beyond materialism including the information field on the theory of
Physical vacuum. It is easy to call such science as pseudoscience, but within its framework, it is possible to portray scalar
waves [17, 18]. In recent years, there have been several other new approaches: space-time as energy [18]. We should
discuss these approaches with an open mind, without a simple rejection.

In [19] 2014 the stability of circular vortices to normal mode perturbations is studied in a multi-layer geostrophic
model.

In [20] 2020 study as an oceanographic application the interaction mechanism of a large-scale surface vortex with a
smaller vortex/vortices in a 3-layer rotating fluid.

In [21] 2021 this article discusses the possibility of using the Lin-Sidorov-Aristov class of exact solutions and
its modification to describe the flows of a fluid with microstructure (with couple stresses). The article presents exact
solutions for the described layered, shear and 3-D flow of a micropolar viscous incompressible fluid, generalized classical
Couette, Stokes and Poiseuille flows.

The goal of this paper is to develop the mathematical models for a new type of ecologically clean and energetically
effective devices [12, 22–25].

Such a type of device firstly was developed by Rechenberg [3] (1988). Now the continuator of the work is one of
the authors Schatz. The devices of such type can be considered as the energy source of the new generation. The practical
aim of this investigation is to try to understand the process in the element of Hurricane Energy Transformer [12].

This work presents three mathematical models of such devices.
It is well known that the vortex theory begins from theDescartes papers. The three famousHelmholtz vortex theorems

are known:
(1) the circulation around different cross-sections in the translation of a vortex tube is constant,
(2) the vortex adheres to the matter, particles that have once formed a vortex line continue to do so,
(3) the circulation of a vortex tube remains constant over time.
First of all, it was investigated the behaviour of the discrete N linear vortex lines with equal intensity Γ, which are

in the vertices of the regular rectangle (authors are Helmholtz, Kelvin, and Kirchhoff, see [26–28]).
Helmholtz (1858) proves, that in ideal barotropic fluid, the vortex lines fulfil the conservation law and for the case

of two circular vortex lines:
(1) vortexes to approach one other with increasing radii, if the rotation of vortices is opposite,
(2) vortexes move in one direction with different behaviour of their radii, if the rotation is coincide (see [27, 29]).

Kirchhoff (1876) proved the equations of N vortexes motions and Kelvin (1867) gave the atom theory of vortexes.
The investigation of contemporary are write in the books [29, 30]: completely are investigated linear vortex

lines, vortex sheets, vortex wakes, and vortexes of Karman, but difficulties caused the curves of vortex lines.
Natural hurricanes are known to form over the world’s oceans when solar radiation concentrates large amounts of heat

on small areas, water vapour is created and a heat flow rises upwards into the atmosphere. Geostrophic winds can cause
rotations in this heat flow, which can develop into hurricanes under certain conditions. In hurricanes, nature concentrates
kinetic energy equivalent to about 100,000 Hiroshima bombs. The aim was to operate technical hurricanes in machines
and systems to generate usable energy.

The properties of air allow it to be regarded as an ideal incompressible fluid. In the late 1980s, Prof. Rechenberg
of TU Berlin discovered natural flow-mechanical inductions. This research laid the groundwork for the inventions of
Prof. Schatz in Berlin, particularly within the company “EUROVORTEX Energietechnik GmbH” in 2004. Prof. Schatz
demonstrated that vortex technologies can be used economically.
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The vortex coil concentrator cannot harvest more energy, but the wind influenced by a large, non-rotating surface
can be concentrated on a small surface. Therefore, the wind turbine arranged in the core can be built much smaller and
thus operated without problems with multiple concentration factors.

Electromagnetic systems, transformers, motors, and generators, as well as “Hurricane or Tornado Energy Trans-
formers”, are all described using the same connection: the Biot-Savart induction law. Instead of electrons in
electromagnetic systems, molecules in Newtonian fluids are moved. The circulation or intensity γ is analogous to the
electric current strength A. This allows the technical reproduction of natural energy concentrations in hurricanes.

The question was whether we could use our understanding of how kinetic energy moves in the atmosphere to
accumulate and store kinetic energy for work using similar methods. Ring vortices and screw vortices create a speed
parallel to their axis and move at a constant speed in space. This speed increases as the radius of the ring or core
decreases. We can manufacture vortex tubes and use them in different ways. These vortex tubes must be created as
tube vortices with large circulations Γ and high circumferential speeds. We can generate one or more vortex tubes using
technical processes, even in technical facilities. These vortex tubes are crucial for creating vortex engines (referred to as
WTW, which stands forWirbeltriebwerken in German and Vortex Force Device in English) with auxiliary drives requiring
strong circulation. Vortex tubes must be generated in vortex generators.

The vortex tubes generated by vortex generators wind up in a WTW to form multi-turn screw vortices that are
concentrated in space. High energy densities are created in the WTW. The frequency of the oscillation in a technically
formed screw vortex depends directly on the circumferential speed of the inducing vortex tubes. The molecules within the
multi-turn screw vortex experience vectorial forces at the centre of gravity. They move in the same direction parallel to
each other, and the flow-mechanical resistance decreases in the core flow area. The smaller the pitch angle of the vortex
tubes, the greater the induced additional speed. WTWs can also harness flow energy instead of using the rotors of modern
windmills.

The technical concept involves creating energetically usable vortex systems inside technical facilities, such as
potential vortices, vortex tubes, vortex coils, or screw vortices. These systems create large energy concentrations in
technical spaces and can interact with the atmosphere in time-related processes via induced jet flows, as long as the
rotations are maintained by an auxiliary energy supply. The first experimental vortex engine was built in Lübben/
Spreewald (1998).

In new technological applications, it is important to use vortex distributions to achieve high-velocity values.

2. Mathematical model
Let the cylindrical domain (conus)

Ωr, z(ε) = {(r, z, φ) : 0 < r < a− εz, 0 < z < Z, 0 < φ < 2π(M+1)} (0 ≤ εZ < a)

contain ideal incompressible fluid, where a, Z are the maximal radius and length of the cylinder, M is the number of
circulation periods, r, z, φ are the cylindrical coordinates, ε is the nonnegative constant.

If ε = 0, then we have the circular cylinder with the radius a.
Consider the situation when the N discrete circular vortex lines

Li = {(r, z), r = ai, z = zi}, 0 < zi < Z, 0 < ai < a, } i = 1, N,

with intensity Γi

(
m2

s

)
and radii ai(m) are placed in the cylinder.
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The vortex creates in the ideal compressible liquid the radial vr and axial vz components of the velocity field, which
rises to the liquid motion.

Similar can be consider N discreate spiral vortex threads

Si = {(r, z, φ), r = a− εt, z = bt, φ = t + iδ}, i = 1, N,

with parameters δ =
2π
N

, τ =
Z

2πaM
,

2π
N

≤ φ ≤ 2π(M+1), b = aτ, t ∈ [0, 2πM].

Here τ is the rise of the vortex threads, the spiral vortex with Z = 2π, a = 1, N = 6, M = 1, τ = 1, ε = 0.
In the Figure 3, we can see the circular vortex lines.

Figure 3. The surface of the cylinder with circular vortexes lines

The spiral vortexes creates in the ideal compressible liquid the radial vr, axial vz and azimuthal vφ components of the
velocity field.

The linear vortex lines create in the plane domain-channel

Ωx, y = {(x, y) : x ∈ [0, L], y ∈ [0, 2], z ∈ (−∞, ∞)}

the vx, vy components of the velocity field.
The main aim of this work is to analyze the diversity of connection schemes of vortex curves influence the maximal

value of velocity.

3. Calculation of the velocity field for the spiral vortexes
The vector potential A is determined from the equations of vortex motion of ideal incompressible fluid [22–28].

div v = 0, rot v = Ω,

in the following form:

∆A =−Ω,
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where v = rotA and v, Ω the vectors of velocity and vortex fields are, ∆ is the Laplace operator.
Applying the Biot-Savar law [27, 28], we receive the following form of the vector potential created by the vortex

threadWi (Wi = Si orWi = Li):

A(P)i =
Γi

4π

∫
Wi

dl
R(QP)i

where dl is an element of the curves, P = P(x, y, z) is the fixed point in the liquid, Q = Q(ξ , η , ζ ) is the changeable
point in the integral

R(QP)i =
√

((z−ζ )2 +(x−ξi)2 +(y−ηi)2).

From cylindrical coordinates x = r cosφ, y = r sinφ, for the spiral vortexes Si:

ξi = a∗(t)cos(t + iδ ), ηi = a∗(t)sin(t + iδ ), ζ = bt, (b = aτ),

t ∈ [0, 2πM] (a∗(t) = a− εt)

and we have the following components of the vector potential:

Ax, i =
Γi

4π

∫
Si

dξ
Ri

, Ay, i =
Γi

4π

∫
Si

dη
Ri

,

Az, i =
Γi

4π

∫
Si

dζ
Ri

,

where Ri = R(QP)i (see Figure 4).

Figure 4. Spiral vortices on the cone with ε = 0.1, Z = 2π

Therefore
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dξ = (−a∗(t)sin(t + iδ )− ε cos(t + iδ ))dt, dη = (a∗(t)cos(t + iδ )− ε sin(t + iδ ))dt, dζ = bdt,

Ri =
√

r2 +a∗(t)2 −2a∗(t)r cos(φ − t − iδ )+(z−bt)2

and

Ax, i =− Γi

4π

∫ 2πM

0

(a∗(t)sin(t + iδ )+ ε cos(t + iδ ))dt
Ri

,

Ay, i =
Γi

4π

∫ 2πM

0

(a∗(t)cos(t + iδ )− ε sin(t + iδ ))dt
Ri

,

Az, i =
Γib
4π

∫ 2πM

0

dt
Ri
.

The vector components of the velocity field (radial, axial, azimuthal) induced by the spiral vortex curves are in the
form



vr, i =−
∂Aφ, i

∂ z
+

∂Az, i

r∂φ
,

vz, i =
1
r

∂
∂ r

(rAφ, i)−
1
r

∂Ar, i

∂φ
,

vφ, i =
∂Ar, i

∂ z
−

∂Az, i

∂ r
,

(1)

where

Ar, i = Ax, i cos(φ)+Ay, i sin(φ) =
Γi

4π

∫ 2πM

0

(a∗(t)sin(ψ(t))− ε cos(ψ(t)))dt
Ri

,

Aφ, i =−Ax, i sin(φ)+Ay, i cos(φ) =
Γi

4π

∫ 2πM

0

(a∗(t)cos(ψ(t))+ ε sin(ψ(t)))dt
Ri

,

(ψ = φ − t − iδ ) are the radial and azimuthal components of vector potentials.
Then from the partial derivatives

∂Ri

∂ r
=

r−a∗(t)cos(ψ(t))
Ri

,
∂Ri

∂ z
=

z−bt
Ri

,
∂Ri

∂φ
=

a∗(t)r sin(ψ(t))
Ri

,
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follows

vr, i =
Γi

4π

∫ 2πM

0

1
R3

i
[(z−bt)(a∗(t)cos(ψ(t))+ ε sin(ψ(t)))−ba∗(t)sin(ψ(t))]dt, (2)

vz, i =
Γi

4π

∫ 2πM

0

1
R3

i
[a∗(t)(a∗(t)− r cos(ψ(t)))− εr sin(ψ(t))]dt, (3)

vφ, i =
Γi

4π

∫ 2πM

0

1
R3

i
[b(r−a∗(t)cos(ψ(t)))− (z−bt)(a∗(t)sin(ψ(t))+ ε cos(ψ(t)))]dt.

For ε = 0 and for the symmetrical properties respect to z = Z/2 follows that for the all components of velocity
vi(r, Z/2− z, φ) = vi(r, Z/2+ z, φ).

If r = 0, then

vz, i(0, z) =
Γi

4π

∫ 2πM

0

a∗(t)2dt
(a∗(t)2 +(z−bt)2)1.5 (4)

or

vz, i(0, z) =
Γiε2

4π

∫ a

a−2πMε

q2dq
R(q)3 ,

where

R(q) =
√

a1 +b1q+ c1q2, a1 = b2z2
0, b1 =−2b2z0, c1 = ε2 +b2, z0 = a− zε

b
.

Therefore, from [26]:



vz, i(0, z) =
Γi

4c1π

[
d2a2 −2a1b1

d1R(a2)
− d2a−2a1b1

d1R(a)
−

ε2√
(c1)

ln

√
(c1)R(a2)+ c1a2 +b1/2√
(c1)R(a)+ c1a+b1/2

]
,

(5)

where

a2 = a−2πεM, d1 = 4b2z2
0, d2 = d1(ε2 −b2).

If ε = 0, then
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vz, i(0, z) =
ΓiM
2Z

[
z√

a2 + z2
+

Z − z√
a2 +(Z − z)2

]
, (6)

and the maximal value of velocity is

vz, i(0, Z/2) =
ΓiM

2a
√

1+(Z/(2a))2
(7)

by z = Z/2.
The minimal value we have in the form

vz, i(0, 0) = vz, i(0, Z) =
ΓiM

2a
√

1+(Z/a)2
(8)

by z = 0 and z = Z.
The averaged value of the axial component of velocity field in the axes of the cylinder (r = 0) is

vav, i =
1
Z

∫ Z

0
vz, i(0, z)dz. (9)

The averaged value for ε = 0, r = 0 is

vav, i =
ΓiM
2a

2

1+
√

1+(Z/a)2
. (10)

From Rechenberg [3] (ε = 0) in the middle point of finite vortex spool (z = Z/2) with the length Z the axial
component of one vortex thread is

vmax =
Γi

πD
ctg(β )sin

(
arctan

(
Z
D

))
, (11)

where β is the rise of vortex thread angles (β = arctan(τ)) and D = 2a is the diameter of the vortex spool.
For the minimal value of velocty (in the points z = 0 und z = Z) [3]:

vmin =
Γi

2πD
ctg(β )sin

(
arctan

(
Z

a
))

. (12)

We have equal values of vmax from (11) and from (7) using

Contemporary Mathematics 50 | I. Kangro, et al.



sin(arctan(y)) =
y√

1+ y2
, y =

Z
D
, ctg(β ) = τ−1 =

πDM
Z

.

The averaged value (10) for ε = 0 is in the following form

vav =
Γi

πD
ctg(β )

α
αa/Z +1

, (13)

where α = sin
(

arctan
(

Z
a
))

.

In the formulas parameters M and Z are depending:

M =
Z

τπD
, τ = tan(β ).

Therefore from (4)-(13) for the velocity components (vr, vz, vφ) and for azimuthal component of vector potential
Aφ induced by N discrete vortex are

vr =
N

∑
i=1

vr, i, vz =
N

∑
i=1

vz, i, vφ =
N

∑
i=1

vφ, i, Aφ =
N

∑
i=1

Aφ, i. (14)

Integrals are with the trapezoid formulas calculated.
If the intensity Γi of N-spiral vortex Si is equal Γ, than from (6)-(12) follows:

vz(0, Z/2) =
ΓNM

D
1√

1+(Z/D)2
, (15)

vz(0, 0) = vz(0, Z) =
ΓNM

D
1√

1+(Z/a)2
, (16)

vmax =
ΓN
πD

ctg(β )sin(arctan
(

H
D
)), (17)

vmin =
ΓN

2πD
ctg(β )sin(arctan

(
H
a
)), (18)

where N-number of vortex threads, H = Z-the height of the vortex spool (in building synonym of the length) are.
For averaged value of velocity (ε = 0) we have the formula

vav =
ΓNM

D
2

1+
√

1+(Z/a)2
, (19)
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or

vav =
ΓN
πD

α
αa/H +1

ctg(β ), (20)

where α = sin
(

arctan
(

H
a
))

.

If the averaged value vav is known, then can be calculated from (19) also the dimensionless length y =
Z
a
in following

form

y =
2δ

δ 2 −1
,

where

δ = ΓNctg(β )/(πDvav).

An example, if Γ = 6.0319
(

m2

s

)
, β = 100(C), D = 0.25(m), N = 1, vav = 30

(
m
s

)
, then δ = 1.452 and y =

2.62, Z = 0.3275(m).

The corresponding formulas (15)-(20) are identical, but from (15), (16) and (19) follows, that the velocity depends
on the parameter M ∗N, where M =

H
τπD

.

From (15), (16) and (19) we can the corresponding multiplicators by
ΓNM

D
calculated (see Table 1).

R1 =
1√

1+(Z/D)2
, R2 =

1√
1+(Z/a)2

,

and

R3 =
2

1+
√

1+(Z/a)2
.

4. Calculation of the velocity field for the circular vortex lines
For the circular one vortex lines:

ξ = ai cosα, η = ai sinα, ζ = zi, dξ =−ai sinαdα,

dη = ai cosαdα, dζ = 0

and from the axially-symmetric condition follows that by φ = 0 is Ax, i = Az, i = 0 and
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Ay, i = Aφ, i = Ai(r, z) =
Γiai

4π
Ii,

where

Ii =
∫ 2π

0

cosαdα√
(z− zi)2 +a2

i + r2 −2air cosα
.

The integral Ii is equal [28]

Ii =
∫ π/2

0

(1−2sin2 t)dt√
((z− zi)2 +(r+ai)2)

√
1− k2

i sin2 t
=

2
√

rai

[(
2
ki
− ki

)
K(ki)−

2
ki

E(ki)

]
,

where

t = (α −π)/2, ki = 2
√

ar/ci, ci =
√
(ai + r)2 +(z− zi)2,

K(k) =
∫ π/2

0

dt√
1− k2 sin2 t

is the total elliptical integral of first kind,

E(k) =
∫ π/2

0

√
1− k2 sin2 tdt

is the total elliptical integral of the second kind.
Therefore the azimuthal component of vector potential Ai induced by a circular vortex line Li with intensity Γi and

with radius ai is

Ai(r, z) =
Γi

2π

√
ai

r

[(
2
ki
− ki

)
K(ki)−

2
ki

E(ki)

]
.

The vectorial components of the velocity field (the radial and axial components) induced by vortex line Li are

vr, i =−∂Ai

∂ z
, vz, i =

1
r

∂
∂ r

(rAi). (21)

or
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vr, i(r, z) =
Γi

2πr
z− zi

ci

[
E(ki)

a2
i + r2 +(z− zi)

2

(ai − r)2 +(z− zi)2 −K(ki)

]
, (22)

vz, i(r, z) =
Γi

2πci

[
K(ki)+

a2
i − r2 − (z− zi)

2

(ai − r)2 +(z− zi)2 E(ki)

]
. (23)

If r = 0 then

vz, i(0, z) =
Γi

2
a2

i

(a2
i +(z− zi)2)1.5 . (24)

This component of vectors have the maximal value vz, i =
Γi

2a
by z = zi, ai = a.

By z = zi +Z/2 we have

vz, i =
Γi

2
√

a2 +Z2/4

a2

a2 +Z2/4
<

Γi

2
√

a2 +Z2/4
−

this is the value of the component of velocity induced by spiral vortex (ε = 0).
If z = Z/2, ai = a, then from (24) follows

vz, i(0, Z/2) =
Γi

D
1

(1+((Z/2− zi)/a)2)1.5 . (25)

For the averaged value of the velocity we have

vav, i =
Γi

D
a
Z

(
(Z − zi)/a√

1+((Z − zi)/a)2
+

zi/a√
1+(zi/a)2

)
. (26)

If zi = Z/2, then

vav, i =
Γi

D
1√

1+(Z/D)2
.

The summary velocity field (vr, vz) and the vector potential Aφ induced by N discrete vortex lines we obtain in the

form (14). The hydrodynamic stream function ψ = ψ(r, z) for velocity components vr =−1
r

∂ψ
∂ z

, vr =
1
r

∂ψ
∂ r

, from (21)
is ψ(r, z) = rAφ(r, z).

The amount of flow through cross-section [z = z0, 0 < r < a0] is

Q(a0, z0) =
∫ a0

0

∫ 2π

0
vz(r, z0)rdr dφ = 2πa0Aφ(a0, z0) = 2πψ(a0, z0).
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The total amount of flow through cross cylindrical domain [0 < z < Z, 0 < r < a0] is

Qt(a0) =
∫ Z

0
Q(a0, z)dz = 2π

∫ Z

0
ψ(a0, z)dz.

For the circular vortex line, if zi/a = 0.2i, i = 1, N, N ≤ 6 , we can calculated following multiplicators by the factor
Γ
D

:

R4(Z) =
N

∑
i=1

(1+((Z/2− zi)/a)2)−1.5

for (25),

R5 =
a
Z

N

∑
i=1

(
(Z − zi)/a

√
1+((Z − zi)/a)2 +

zi/a√
1+(zi/a)2

)

for (26).
An example, if Z/a = 1.4 then we can the multiplicators R4((0), R4(Z/2), R4(Z), R5 for the circular vortex lines

and R1, R2, R3 for the spiral vortexes by the factor
ΓM
D

in the form R1 ∗N, R2 ∗N, R3 ∗N calculated (see Table 1).

Table 1. Multiplicators of the velocity for vortexes by
Z
a
= 1.4

N R4(0) R4(Z/2) R4(Z) R5 R1 R2 R3

1 0.94 0.71 0.26 0.69 0.82 0.58 0.74
2 1.74 1.59 0.62 1.46 1.64 1.16 1.47
3 2.37 2.58 1.09 2.27 2.46 1.74 2.21
4 2.85 3.56 1.72 3.09 3.28 2.32 2.94
5 3.20 4.44 2.52 3.85 4.10 2.91 3.68
6 3.47 5.16 3.47 4.55 4.92 3.48 4.41

In the following calculations, we use the dimensionless form scaling all the lengths to r0 = a (the inlet radius of the
tube), the axial vz and radial vr velocity to v0 =

Γ0

2πr0
, the azimuthal components of vector potential Aφ to A0 =

Γ0

2π
, the

stream function ψ to ψ0 = A0r0 and the total amount of flow Qt to Q0 = ψ0r0. Here Γ0 is dimensional scaling of vortex
intensity Γi, i = 1, N.

5. The flows field induced by linear vortex lines in a channel
Unlike our previous papers [22, 23] here we additionally consider the chain of linear vortexes lines in the plane

channel. For symmetry-conditions
∂vx

∂y
|y=1 we consider half the plane channel y ∈ [0, 1].

In the plane y = 0 we have the slip-conditions vx = vy = 0 for the velocity vectors of viscous incompressible liquid.
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The flow in the the channel is given by a fixed amount of flow through a cross-section of the half channel Q =∫ 1
0 vx|x=0dy.

If L = ∞, then vx = u(y), vy = 0 and we have the Poiseuille flow u = Q(3y−1.5y2) the solution of Navier-Stokes
equation in the channel Ωx, y.

The wall y = 0 of the channel is placed in a linear chain of vortexes with the axis transfer of the (x, y) plane. The
one linear vortex line in the point (xk, yk) create the following components of velocity:

vx =− Γk

2π
y− yk

R2 , vy =
Γk

2π
x− xk

R2 , (27)

where R2 = (x− xk)
2 +(y− yk)

2.

In the centre of this point-wise vortex, the velocity field is infinite therefore we consider the vortex line with finite
cross section the circle with radius a. In this case the expressions (27) are valid when R ≥ a, but for R = a we have

vx =− Γk

2πa2 (y− yk), vy =
Γk

2πa2 (x− xk). (28)

6. Some numerical results and discussion
6.1 The flow in the channel

We consider the channel with finite length L = 2.5, the Poiseuille flow with Q = 3 and three wise of the chain of
vortexes:

(1) the main chain with coordinates and radius of the linear vortex

xk = 0.2+(k−1)0.4, yk = 2a, k = 1, 2, 3, 4, 5, 6, a = 0.05, (29)

rotate clockwise with the intensity Γ1,

(2) the second chain with coordinates and radius of the linear vortex

xk = 0.4+(k−1)0.4, yk = 2a1, k = 1, 2, 3, 4, 5, a1 = 0.025, (30)

rotate opposite clockwise with the intensity Γ2,

(3) the thread chain with coordinates and radius of the linear vortex

xk = 0.3+(k−1)0.4, yk = 2a+a1, k = 1, 2, 3, 4, 5, a = 0.05, a1 = 0.025, (31)

rotate opposite clockwise with the intensity Γ3.

For the pointwise vortexes line (29) outside the channel (yk = −0.025) with Γ1 = −6 we have following results:
mV = 5.9895, mX = 1.00, mY = 0.

For the Karman chain [28] of vortexes (preliminary vortexes line and (30) with yk =−0.05, Γ2 = 6) we have mV =

3.9790, mX = 0.20, mY = 0.
In following Table 2 can see the amount (Q), maximal value of velocity u, (mV ) with the coordinates (mX , mY )

depending of the vortex intensity Γ1, Γ2, Γ3.
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Table 2. The dependence of flow velocity from the intensity of the vortexes

Γ1 Γ2 Γ3 Q mV mX mY

0 0 0 3.00 4.500 0.00 1.00
-6 3 3 3.97 18.19 2.20 0.15
-6 4 4 3.46 22.90 0.30 0.10
-6 3 0 4.62 18.36 0.20 0.15
-6 2 2 4.49 18.63 2.20 0.15
-6 1 1 5.00 19.08 2.20 o.15
-6 1 0 5.22 19.14 0.20 0.15
-6 0 1 5.30 19.47 2.20 0.15
-6 0 0 5.52 19.86 1.00 0.15

6.2 The circular vortexes lines
As the basis for the calculations of N circular vortex lines Li, i = 1, N are N ≤ 6 chosen, which are arranged in the

axial direction at the points with the following dimensionless coordinates (zi = 0.2i, ri = ai), i = 1, N.

The dimensionless radius of the circular vortex lines ai is considered in three forms (the sequence a= [a1, a2, a3, a4,

a5, a6]) :
(1) the constant sequence(radius of the cylinder) ac = [1, 1, 1, 1, 1, 1],
(2) the monotonous increasing sequence ain = [0.75, 0.80, 0.85, 0.90, 0.95, 1.0],
(3) the monotonous decreasing sequence ad = [1.0, 0.95, 0.90, 0.85, 0.80, 0.75].
All results of numerical experiments to solve this problemwere obtained at the Institute ofMathematics andComputer

Science of the University of Latvia, using the MAPLE, and MATLAB software packages.
The results of numerical experiments for dimensionless values vr, vz, ψ, Qt was obtained of different dimensionless

intensity of vortex lines Γ̃i =
Γi

2πΓ0
=± 6; ± 3; ± 2; 1; 0.5, and l = Z/r0 = 2, a0 = 0.7.

The summary intensity of absolute values is equal to 6. The velocity field is calculated in the uniform grid (nr ×nz)

by the steps h1 = h2 = 0.1 in the r, z directions.
The numerical results show that the velocity field is induced by circular vortex lines is concentrated inside the cylinder.

The results depend on the arrangement and the radius of vortex lines ai.

Typical results of calculations are: the dimensionless velocity field and the distribution of stream function in
the cylinder. We can see the velocity formation depends on the arrangement of vortices lines with coordinates z j =
[z1, z2, z3, z4, z5, z6], and of the radii ai.

If Γ̃i > 0 then all vortices move in the positive direction of Oz axis (vz > 0), but the radii of vortex lines to stay a
different way (for vr < 0 the radius is decreasing and for vr > 0 the radius is increasing).

We obtain for the dimensionless values of vr ∈ [vr.min, vr.max], vzmax, ψmax, Qt for z j = [0.2, 0.4, 0.6, 0.8, 1.0, 1.2]
and for different radius of vortex lines ai and sequence of intensity g j = [g1, g2, g3, g4, g5, g6] the following results:

1. The radii are constant ac = [1, 1, 1, 1, 1, 1]
(1) The intensity of the one vortex lines L3 is Γ̃3 = 6, N = 1 : vr ∈ (−5.9, 5.9), vzmax = 18.85, ψmax = 3.25, vr = 0

if z = z3 = 0.6 and vr > 0 if z > z3, therefore the radius of vortex increased [27];
(2) The intensity of the one vortex line L3 is Γ̃3 = −6, N = 1 (the opposite direction): vr ∈ (−5.9, 5.9), vzmin =

−18.85, ψmin =−3.25, the vortex move in the negative direction of Oz axes (vz < 0), vr = 0 if z = z3 = 0.6 and vr > 0
if z < z3, therefore the radius of vortex also increased [27];

(3) The intensity of the two vortex lines L3, L4 are Γ̃3 = 3, Γ̃4 = 3, N = 2 : vr ∈ (−5.7, 5.7), vzmax = 18.57,
ψmax = 3.17, the vortexes move in the positive direction of Oz axes (vz > 0), vr = 0 if z = (z3 + z4)/2 = 0.7 and
vr(a0, z3) = −2.46, vr(a0, z4) = 4.37, therefore the radius of the first vortex lines L3 decreased, but for the second
vortex lines L4 increased and the first vortex can be moved through the second vortex [27];
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(4) The intensity of the two vortex lines L3, L4 are Γ̃3 =−3, Γ̃4 = 3, N = 2 : vr ∈ (−2.9, 0.64), vz ∈ (−3.0, 3.0),
ψ ∈ (−0.32, 0.32), vz = 0 if z = 0.7 and vz(a0, z3) =−1.72, vz(a0, z4) = 2.76, therefore the first vortex moves in the
negative direction, but the second to the positive direction of Oz axes and the radii of the vortexes decreased (this case is
not in [27] considered);

(5) The intensity of the two vortex lines L3, L4 are Γ̃3 = 3, Γ̃4 =−3, N = 2 : vr ∈ (−0.64, 2.9), vz ∈ (−3.0, 3.0),
ψ ∈ (−0.32, 0.32), vz = 0 if z = 0.7 and vz(a0, z3) = 1.72, vz(a0, z4) = −2.76, the first vortex move to the positive
direction, but the second to the negative direction of Oz axes and the radii of the vortexes increased [27];

(6) The intensity of the three vortex lines L1, L3, L5 are Γ̃1 = 2, Γ̃3 = 2, Γ̃5 = 2, N = 3 : vr ∈ (−4.1, 4.1),
vzmax = 16.34, ψmax = 2.63, vr = 0 if z = z3 = 0.6 and vz(a0, z1) = 15.92, vz(a0, z3) = 16.16, vz(a0, z5) = 15.92,
vr(a0, z1) =−3.8, vr(a0, z5) = 1.6, the vortexes move in the positive direction of the Oz axis and the radius of the first
vortex decreased, but of the third vortex increased;

(7) The intensity of the three vortex lines L1, L3, L5 are Γ̃1 = −2, Γ̃3 = 2, Γ̃5 = −2, N = 3 : vr ∈ (−1.6, 1.6),
vzmin = −5.83, ψmin = −0.74, vr = 0 if z = z3 = 0.6, z = 0.1, z = 1.1 and vz(a0, z1) = −5.67, vz(a0, z3) = −2.42,
vz(a0, z5) = −3.56, vr(a0, z1) = −0.77, vr(a0, z5) = 0.77, the vortexes move in the negative direction of the Oz axis
and the radius of the first vortex decreased, but of the third vortex increased;

(8) The intensity of the three vortex lines L1, L3, L5 are Γ̃1 = 2, Γ̃3 =−2, Γ̃5 = 2, N = 3 : vr ∈ (−1.6, 1.6), vz.max =

5.83, ψmax = 0.74, vr = 0 if z = z3 = 0.6 and vz(a0, z1) = 5.67, vz(a0, z3) = 1.97, vz(a0, z5) = 5.67, vr(a0, z1) = 0.77,
vr(a0, z5) =−0.77, the vortexes move in the positive direction of Oz axis and the radius of the first vortex increased, but
of the third vortex decreased;

(9) The intensity of the three vortex lines L1, L3, L5 are Γ̃1 = −2, Γ̃3 = 2, Γ̃5 = 2, N = 3 : vr ∈ (−4.9, 2.6),
vz ∈ (−1.75, 11.1), ψ ∈ (−0.10, 1.45), vr = 0 if z = 0.9 and vz(a0, z1) =−0.64, vz(a0, z3) = 8.28, vz(a0, z5) = 10.89,
vr(a0, z1) =−3.17, vr(a0, z3) =−3.95, vr(a0, z5) = 0.77, the two vortexes L3, L5 move in the positive direction, but
the first in the negative direction of the Oz axis and the radii of the two vortexes L1, L3 are decreased, but of the third
vortex increased;

(10) The intensity of the three vortex lines L1, L3, L5 are Γ̃1 = 2, Γ̃3 = 2, Γ̃5 = −2, N = 3 : vr ∈ (−2.6, 4.9),
vz ∈ (−1.75, 11.1), ψ ∈ (−0.10, 1.45), vr = 0 if z = 0.3 and vz(a0, z1) = 10.89, vz(a0, z3) = 8.28, vz(a0, z5) =−0.64,
vr(a0, z1) =−0.77, vr(a0, z3) = 3.95, vr(a0, z5) = 3.17, the two vortexes L1, L3 move in the positive direction, but the
vortex L5 in the negative direction of the Oz axis and the radii of the two vortexes L3, L5 are increased, but of the third
vortex L1 decreased;

(11) The intensity of the three vortex lines L1, L3, L5 are Γ̃1 = −2, Γ̃3 = −2, Γ̃5 = 2, N = 3 : vr ∈ (−4.9, 2.6),
vz ∈ (−11.1, 1.75), ψ ∈ (−1.45, 0.10), vr = 0 if z= 0.3 and vz(a0, z1)=−10.89, vz(a0, z3)=−8.28, vz(a0, z5)= 0.64,
vr(a0, z1) = 0.77, vr(a0, z3) =−3.95, vr(a0, z5) =−3.17, the two vortexes L1, L3 move in the negative direction, but
the third in the positive direction of the Oz axis and the radii of the two vortexes L3, L5 are decreased, but of the first
vortex increased.

2. The radii are increasing ain

(1) The non-uniform distribution of intensity g j = [2, 2, 1, 0.5, 0.5, 0], N = 5 : vr ∈ (−12.7, 7.4), vz.max = 21.15,
ψmax = 4.6, Qt = 28.34, vr = 0 if z = 0.3, the radius of the first vortex decreased but increased the radii of the last four
vortexes;

(2) The distribution of intensity g j = [2, 2, 2, 0, 0, 0], N = 3 : vr ∈ (−13.3, 10.02), vz.max = 22.23, ψmax =

4.8, Qt = 28.69, vr = 0 if z = 0.3, the radius of the first vortex decreased but increased the radii of the last vortex;
(3) The distribution of intensity g j = [0, 0, 3, 3, 0, 0], N = 2 : vr ∈ (−10.2, 9.4), vz.max = 21.14, ψmax = 4.64, Qt =

29.20, vr = 0 if z = 0.7, the radius of the first vortex decreased but increased the radii of the last vortex;
(4) The intensity of first vortex lines g j = [6, 0, 0, 0, 0, 0], N = 1 : vr ∈ (−19.2, 19.2), vz.max = 25.13, ψmax =

6.47, Qt = 27.10, vr = 0 if z = 0.2, the radius of the vortex increased;
(5) The intensity of second vortex lines g j = [0, 6, 0, 0, 0, 0], N = 1 : vr ∈ (−15.0, 15.0), vz.max = 23.56,

ψmax = 5.69, Qt = 29.28, vr = 0 if z = 0.4, the radius of the vortex increased;
(6) The intensity of third vortex lines g j = [0, 0, 6, 0, 0, 0], N = 1 : vr ∈ (−11.8, 11.8), vz.max = 22.18, ψmax =

5.11, Qt = 29.69, vr = 0 if z = 0.3, the radius of the vortex increased;
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(7) The intensity of fourth vortex lines g j = [0, 0, 0, 6, 0, 0], N = 1 : vr ∈ (−9.6, 9.6), vz.max = 20.94, ψmax =

4.66, Qt = 28.72, vr = 0 if z = 0.3, the radius of the vortex increased.
3. The uniform distribution of intensity g j = [1, 1, 1, 1, 1, 1]
(1) Radii of vortex lines are constant (the sequence ac : vr ∈ (−4.5, 4.5), vz.max = 16.21, ψmax = 3.14, Qt = 25.12,

vr = 0 if z = 0.7, the radii of the first three vortexes decreased, but of the last three vortexes increased;
(2) Radii of vortex lines are ain : vr ∈ (−8.4, 4.9), vz.max = 17.98, ψmax = 3.52, Qt = 27.36, vr = 0 if z = 0.8, the

radii of the first three vortexes decreased but of the last three vortexes increased;
(3) Radii of vortex lines are ad : vr ∈ (−4.9, 8.4), vz.max = 17.98, ψmax = 3.52, Qt = 27.36, vr = 0 if z = 0.5, the

radii of the first two vortexes decreased but increased the radii of the last four vortexes.
4. The distribution of intensity g j = [2, 2, 0.5, 0.5, 0.5, 0.5]
(1) Radii of vortex lines are ain : vr ∈ (−12.3, 6.9), vz.max = 20.19, ψmax = 4.4, Qt = 27.77, vr = 0 if z = 0.3, the

radius of the first vortex decreased but increased the radii of the last five vortexes;
(2) Radii of vortex lines are ad : vr ∈ (−5.7, 5.6), vz.max = 17.30, ψmax = 3.4, Qt = 26.01, vr = 0 if z = 0.4, the

radius of the first vortex decreased but increased the radii of the last five vortexes.
5. The distribution of intensity g j = [0.5, 0.5, 0.5, 0.5, 2, 2]
(1) Radii of vortex lines are ain : vr ∈ (−5.6, 5.8), vz.max = 17.30, ψmax = 3.4, Qt = 26.01, vr = 0 if z = 1.0, the

radii of the first four vortexes decreased but increased the radius of the last vortex;
(2) Radii of vortex lines are ad : vr ∈ (−6.8, 12.3), vz.max = 20.19, ψmax = 4.4, Qt = 27.77, vr = 0 if z = 1.1, the

radii of the first five vortexes decreased, but those of the last vortex increased.
6. The distribution of intensity g j = [0.5, 0.5, 2, 2, 0.5, 0.5]
(1) Radii vortex lines are ain : vr ∈ (−7.4, 6.6), vz.max = 19.47, ψmax = 4.0, Qt = 28.28, vr = 0 if z = 0.7, the radii

of the first two vortexes decreased but increased the radii of the last four vortexes;
(2) Radii of vortex lines are ad : vr ∈ (−6.6, 7.4), vz.max = 19.47, ψmax = 4.0, Qt = 28.28, vr = 0 if z = 0.7, the

radii of the first two vortexes decreased but increased the radii of the last four vortexes.

6.3 The spiral vortexes in the cylinder (ε = 0)
We consider N ≤ 6 spiral vortexes Si, i = 1, N, where started from the points (a, 0, i2π/N) at the cylinder. The

dimensionless radius of the cylinder a is equal to 1.
All results of the numerical experiments are for the dimensionless values Aφ(a0, z, φ), vz(0, z), Q(z), Qt and

parametern l = Z/a = 0.5; 1; 1.5; 2; 3, a0 = 0.7 obtain. The summary intensity of absolute values is equal to 6.
The azimuthal components of the vector potential are in the uniform grid (Nz ×Nφ) by the steps hz = l/Nz, hφ =

2π/Nφ , (Nz = Nφ = 30) in the r, φ direction calculed. The component Aφ(z, φ), (r = a0) using the trapezoid formula is
calculated. We obtain typical results of calculations: the dimensionless velocity field and the distribution of the azimuthal
component of the velocity (r = a0) in the cylinder. The velocity formation depends on the length l of the cylinder. The
maximum of the azimuthal components of vector potentialsAmax is depending of the intensity parameter gi = Γ̃i.Weobtain
the dimensionless values of vz.max, Qmax, Amax, Qt depends on different sequence of intensity g j = [g1, g2, g3, g4, g5, g6].

In the following Table 3 can see the maximum of the azimuthal components of vector potentials Amax depending
of the vortex intensity g j = [g1, g2, g3, g4, g5, g6] for the length l = 1.5 of the cylinder, by vz.max = 15.08, Qmax =

24.98, Qt = 33.20.
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Table 3. The dependence of the maximum of the azimuthal components of vector potentials Amax from the intensity of the vortexes by l = 1.5

g1 g2 g3 g4 g5 g6 Amax Aφ form

1 1 1 1 1 1 5.68 uniform
2 2 1 0.5 0.5 0 5.68 nonuniform
2 2 2 0 0 0 5.75 oscillate
2 1 1 1 1 0 6.14 nonuniform
1.5 1.5 1.5 1.5 0 0 5.68 oscillate
3 3 0 0 08 0 5.83 nonuniform
6 0 0 0 0 0 8.54 nonuniform

For the length l = 1.5, the distribution of the intensity g j = [6, 0, 0, 0, 0, 0], N = 1, b = 0, Amax = 8.40, vz.max =

18.85, Qmax = 36.95, Qt = 24.54, the distribution Aφ is uniform in the φ direction (this is the velocity field induced by
the circular vortex line (zi = 0)).

In following Table 4 can see the dimensionless values of vz.max, Qmax, Amax, Qt depending on the vortex intensity
g j = [g1, g2, g3, g4, g5, g6] and on the length l of the cylinder.

If Nφ = Nz = M = 50, then for g j = [2, 2, 1, 0.5, 0.5, 0], l = 2, then Amax = 6.0388, vz.max = 13.3286, Qmax =

21.4262, Qt = 37.6017.

Table 4. The dependence of the dimensionless values of vz.max, Qmax, Amax, Qt from the intensity of the vortexes by different lengths

g1 g2 g3 g4 g5 g6 l Amax vz.max Qmax Qt

6 0 0 0 0 0 1 8.42 18.29 34.25 16.28
2 2 1 0.5 0.5 0 3 5.11 10.46 16.36 43.03
2 2 1 0.5 0.5 0 2 6.04 13.33 21.43 37.60
2 2 1 0.5 0.5 0 1 7.35 16.86 29.39 26.65
2 2 1 0.5 0.5 0 0.5 8.11 18.29 34.25 16.28

6.4 The spiral vortexes in the cones (ε ≠ 0)
In this case, we have some results for the behaviour of spiral vortexes.
1. If Γ = 6.0319 (m2/s), N = 1, β = 100 (C) (τ = tg (β ) = 0.1763), a = 0.125 (m), Z ∈ [0.1, 1.0] (m), then from

the formulas (14, 18) can be the values M; V1 (ε = 0); V2(ε = 0.001); V3(ε = 0.002); V4(ε =−0.002) (m/s) calculated
(see the Table 5).

Table 5. The velocity vav by a = 0.125

Z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M 0.72 1.44 2.17 2.89 3.61 4.33 5.06 5.78 6.50 7.22
V1 15.3 24.1 29.0 32.0 34.0 35.4 36.5 37.3 37.9 38.5
V2 15.5 24.6 29.7 32.7 34.8 36.2 37.3 38.2 38.8 39.4
V3 15.7 25.1 30.3 33.5 35.6 37.1 38.2 39.1 39.8 40.4
V4 14.9 23.3 27.9 30.7 32.6 33.9 34.9 35.7 36.3 36.8

For V2 and V3 the radii by Z = 1 decreased from a = 0.125 (m) with 0.080 (m) and 0.034 (m), but for V4 the radius
increased with 0.216 (m).
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2. If a = 0.25 (m), then similar from the formulas (19, 20) can be the values M; V1(ε = 0); V2(ε = 0.004); V3(ε =

0.008); V4(ε =−0.008) (m/s) calculated (see the Table 6).

Table 6. The velocity vav by a = 0.25

Z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M 0.36 0.72 1.08 1.44 1.80 2.17 2.53 2.89 3.25 3.61
V1 4.19 7.64 10.2 12.1 13.5 14.5 15.4 16.0 16.6 17.0
V2 4.27 7.86 10.6 12.6 14.0 15.2 16.0 16.7 17.3 17.8
V3 4.34 8.10 11.0 13.1 14.6 15.9 16.8 17.6 18.2 18.7
V4 4.06 7.23 9.54 11.2 12.4 13.4 14.1 14.7 15.2 15.6

For V2 and V3 the radii by Z = 1 decreased from a = 0.25 (m) with 0.16 (m) and 0.07 (m), but for V4 the radius
increased with 0.43 (m).

7. Conclusions
• Velocity fields of ideal compressible fluid influenced by a curved vortex field in a finite cylinder, finite cone and

channel are investigated.
• Numerical results show that the maximum axial velocity and the total amount of flow depends on the connection

method of producers of vortex energy.
• The maximal velocity is developed in the case of non-uniform distribution of vortex intensity and smaller radius of

vortex lines.
• The maximal value of the velocity induced by the spiral vortexes is in the middle of the cylinder.
• The behaviour of vortex lines in the ideal incompressible flow depends on the number and the orientation of the

vortex.
• The realization of circular vortices inside the pipe at the surface accelerates the flow speed inside the pipe if they

rotate clockwise the flow depends on the values of parameters Re, Γ, A and the inflow mode in the pipe.
• The calculations are related to specific applications for velocity field in energy, induced by vortex curves.
• The numerical investigation made it possible to determine many specific vortex properties without expensive

physical experiments.
• In the future, using the created mathematical models, wind and sea wave energy should be used to create different

types of vortex related to specific applications for velocity fields and transform them into practical devices.
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