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Abstract: PM2.5 is an air pollutant primarily produced by human activities, including the combustion of fossil fuels,
industrial emissions, vehicle exhaust, and more. This issue has emerged as a substantial global concern, particularly in
Thailand, where the levels of PM2.5 during the summer season have reached hazardous levels. PM2.5 forecasting is a
widely discussed subject that raises awareness and safeguards individuals against pollution. The novelty of this paper is
to estimate the weight of linear and nonlinear hybrid models using a differential evolution algorithm. This approach is
used for the minimization of the objective function based on hybrid procedures. The data utilized in this study consists
of the daily mean PM2.5 concentration (micrograms per cubic meter) obtained from the Pollution Control Department,
Ministry of Natural Resources and Environment, Thailand. The data covers the period from January 2014 to June 2023,
encompassing a total of 3,468 observations. Three well-known machine learning approaches, namely the artificial neural
network, the long short-term memory, and the convolutional neural network, are employed. We then combined the
predicted PM2.5 obtained from the single machine learning model using linear and nonlinear hybrid procedures. The
differential evolution algorithm is utilized to estimate the weight of the hybrid techniques for both scenarios and compare
it with state-of-the-art weight approximation. The criteria for evaluating the performance of various hybrid approaches are
the performance metrics: the mean absolute error and the median absolute error. The findings of this paper indicate that
using a differential evolution algorithm for weight optimization in hybrid procedures outperforms state-of-the-art weight
approaches for both linear and nonlinear hybrid models in terms of performance metrics.
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1. Introduction
In the atmosphere, particulate matter (PM) is a mixture of liquid droplets and solid particles. PM2.5 denotes airborne

particles that have a size smaller than 2.5 microns. PM2.5 is a category of air pollution mainly generated by human
activities. It encompasses tiny particles emitted from several sources, including burning fossil fuels, building sites,
industrial pollutants, automobile emissions, and etc. PM2.5 pollution has been the subject of an increase in the number
of articles published over the past decade [1]. The researchers aimed to investigate the effects of PM2.5 dust pollution
on human health and anticipate harmful PM2.5 levels in society [2]. High levels of PM2.5 pollutants can raise the risk
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of health issues, particularly in the respiratory and cardiovascular systems, such as heart disease, asthma, and low birth
weight [3]. Dust pollution, which affects most of the globe, is primarily concentrated in Asia. Thailand experiences
one of the most severe levels of air pollution during the summer months of January through April. Thailand’s people,
particularly in larger cities like Chiang Mai, Khon Kaen, and Samut Sakhon, are experiencing respiratory problems.
Chiang Mai is located in the northern region. Khon Kaen is located in the Northeast, whereas Samut Sakhon is in
the Central region. To forecast PM2.5 concentration, both parametric and non-parametric statistical models were used.
The autoregressive integrated moving average (ARIMA), seasonal autoregressive integrated moving average (SARIMA),
and double exponential smoothing method (DES) are well-established parametric statistical methods commonly used for
single forecasting models [4–6]. Parametric statistical techniques are based on a linear model framework; however, the air
pollution time series measurements exhibit a nonlinear pattern [7]. Non-parametric statistical approaches, such as machine
learning (ML) techniques, have been used to address this issue of PM2.5 dust prediction. These approaches include
artificial neural network (ANN) [8], multilayer perceptron (MLP) [9], long short-term memory (LSTM), convolutional
neural networks (CNN) [10], bidirectional long short-termmemory (BiLSTM) [11], random forest (RF), gradient boosting
machine (GBM), and k-nearest neighbor (KNN) [12].

Amnuaylojaroen [13] predicted PM2.5 levels using a multivariate linear regression method. The work utilizes three
provinces in the Northern region: Chiang Mai, Lampang, and Nan. The criteria for choosing the suitable method are the
coefficient of determination (R2), rootmean square error (RMSE), and standard error (SE).Wongrin et al. [14] investigated
deep learning techniques and statistical methods to quantify the concentration of PM2.5 in Thailand. This study examines
16 stations in Thailand as case studies. The RMSE is the criterion to evaluate the performance of all models. The findings
confirm that ARIMA outperforms deep learning approaches in most stations. Saiohai et al. [15] examined the prediction
of PM2.5 using both multiple linear regression (MLR) and multilayer perceptron (MLP) models. The data utilized in this
study are obtained from the Microclimate and Air Pollutants Monitoring Tower station located at Kasetsart University in
Bangkok, Thailand. The authors found that MLR outperformed MLP in predicting PM2.5. Wanishsakpong et al. [16]
examined the architecture of the PM2.5 concentration model using the Deep Belief Network (DBN) technique. The data
included in this analysis were collected from the air quality monitoring station located at Yupparaj Wittayalai School in
Chiang Mai. The results indicate that the optimal DBN structure for PM2.5 concentration forecasting is composed of five
input nodes and twenty hidden neurons in the initial hidden layer, with an accuracy of 88.4 percent.

In addition, hybrid methods have become widespread in the forecasting area. The hybrid structure is composed of
parallel and series structures. The linear and nonlinear combination methods are part of a parallel framework, which
presents a challenge for researchers in their search for optimal weight optimization. Furthermore, the series structure
is a combination of linear and nonlinear models, such as ARIMA-LSTM [17], ARIMA-ANN, ARIMA-SVM [18], and
LSTM-AR [19]. The structure of the hybrid system is shown in Figure 1.

Figure 1. The hybrid framework
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In this work, we focus on parallel hybrid structures only because improving weight estimation based on the parallel
hybrid framework is still challenging for many scholars to search for the optimal weight. Linear hybrid approaches
were initially proposed by Bates and Granger [20]. The basic idea of the linear combination model is to combine the
predicted values obtained from two different techniques based on various weight approaches. Several studies have shown
that the hybrid forecast is more efficient than the individual technique [21]. For instance, AH Mohamed [22] compared
the performance of single and hybrid models for international trade in Egypt. The hybrid models used in this study
are linear and nonlinear combination methods. The findings suggest that the Altavilla and Ciccarelli method, a hybrid
technique, performs better than other combination methods for forecasting the value of imports and exports. It also
demonstrates greater accuracy compared to the best individual forecasting approaches for the international total trade in
Egypt dataset and the total exports and imports dataset. Hu et al. [23] investigate the relationship between combined and
single-model forecasts of the demand for China and Taiwan tourism demand. They proposed the nonadditive combination
method by using the fuzzy integral to integrate single-model forecasts obtained from individual grey prediction models for
tourism demand forecasting. The finding shows that the proposed NA-FCMperformed well. Furthermore, the accuracy of
combined forecasts obtained by the NA-FCMwith different model combinations was significantly superior to the average
accuracy of single-model forecasts. Li et al. [24] introduce a novel combination forecasting model using the MIDAS
regression model and the machine learning MIDAS models. The data utilized in this work are the rate of return growth
of weekly NBP natural gas and daily carbon prices, coal prices, crude oil prices, and FTSE-100 index in the European
market. It can be concluded that the novel Combination-MIDAS-ELM model outperforms another combination model in
forecasting.

As mentioned above, hybrid techniques are presented to improve the accuracy of the single method. The linear
and nonlinear hybrid procedures are employed to integrate the well-known ML methods. To our knowledge, there has
been limited research on weight estimation for both linear and nonlinear parallel hybrid procedures. This motivated
us to integrate two ML methods using different weight optimization techniques of the hybrid procedures. The primary
objectives of this paper are as follows:

• To improve weight optimization in linear and nonlinear hybrid models using a differential evolution algorithm
• To compare the linear and nonlinear weight optimization of the hybrid technique
• To develop a hybrid method using popular ML procedures
The remaining sections of this paper are organized as follows. In Section 2, the methodology is presented. The data

is shown in Section 3. Section 4 contains the empirical findings. The paper is finally concluded and discussed in Section
5.

2. Methodology
In this work, the linear and nonlinear hybrid procedures are examined using three well-known machine learning

techniques, including the artificial neural network (ANN), long short-term memory (LSTM), and convolution neural
network (CNN).

2.1 Machine learning (ML)

Machine learning (ML) is a specialized area within computer science and artificial intelligence (AI) that focuses on
utilizing data and algorithms to enable AI to emulate how humans learn, thereby enhancing its accuracy. The popularity
of machine learning has increased in comparison to parametric statistical models due to its capacity to address nonlinear
and multidimensional issues that are appropriate for real-world datasets [25].

2.1.1Artificial neural network (ANN)

A conventional artificial neural network (ANN) comprises three interconnected layers: the input, hidden, and output.
The number of units in the input and output layers is determined by the size of the input and output data. The input units
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in an artificial neural network (ANN) take raw data from the external environment and pass it on to the network without
performing any computational operations. Instead, these units transmit information to the hidden units. The hidden nodes
process data from input to output units [26]. The architecture of the ANN is depicted in Figure 2.

Figure 2. ANN diagram [27]

2.1.2Long short-term memory (LSTM)

The purpose of LSTM is to address the limitations of the current recurrent neural network (RNN). LSTM is a type
of neural network that produces its output by processing the input in a forward direction. An LSTM comprises three
main components: an input gate, a forget gate, and an output gate. The primary objective of these gates is to execute the
processing of information obtained from the memory units [28]. Figure 3 displays the interior cell of the LSTM.

Figure 3. LSTM cell [26]
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2.1.3Convolution neural network (CNN)

CNN is a form of neural network with several layers, including convolutional, max-pooling, and fully connected
MLP layers [28]. Figure 4 illustrates the architecture of CNN.

Figure 4. Architecture of CNN [5]

The process to obtain predicted PM2.5 pollution from each ML model is displayed in Figure 5.

Figure 5. The flowchart of ML procedure

This flowchart starts with obtaining the daily PM2.5 concentration from the Pollution Control Department, Ministry
of Natural Resources and Environment, Thailand. The data are cleaned up, and any missing values are filled in using
a splines interpolation process. After that, we separated the data into three categories: training, validation, and testing.
The Sherpa algorithm searches for the hyperparameters in machine learning procedures. Next, the data are trained and
validated using the hyperparameter from the previous step. To evaluate overfitting and underfitting, the performance
metrics of the loss function between the training and validation sets are compared. The hyperparameter of the ML model
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is stored if the data does not exhibit any overfitting or underfitting issues. Finally, the optimal hyperparameter of each
ML technique is employed to acquire the predicted PM2.5 values.

2.2 Hybrid techniques
This work investigates the linear and nonlinear combination forecasts using several weight estimations. The

differential evolution algorithm estimates the weight for two cases and compares it with the state-of-the-art weight
optimization. The eight hybrid techniques, including linear and nonlinear combinations, are listed below [7, 29].

2.2.1Simple average method (AVG)

ŷct = 0.5ŷ1t +0.5ŷ2t , (1)

where ŷct is the hybrid forecast at time t, ŷ1t and ŷ2t are the predicted PM2.5 pollution obtained from the first and the
second ML procedures, respectively.

2.2.2Variance No Covariance (VAR-NO-CORR)

ŷct = w1ŷ1t +w2ŷ2t , (2)

here w1 =
σ2

2
σ2

1+σ2
2
, w2 = 1−w1, σ2

1 , σ2
2 are the variances derived from the first and the second ML methods, respectively.

2.2.3Discount mean square forecast error (DMSFE)

ŷct = w1ŷ1t +w2ŷ2t , (3)

where wk =
[∑n

t=1 ϕn−t−1(yt−ŷkt )
2]
−1

∑2
t=1[∑

n
t=1 ϕn−t−1(yt−ŷkt )

2]−1 , k = 1, 2 and ϕ is a discount factor with 0 < ϕ ≤ 1.

2.2.4Simple average with differential evolution algorithm (AVG-DE)

ŷct = w′1ŷ1t +w′2ŷ2t , (4)

where w′1, w′2 are the weights obtained from the DE technique.

2.2.5Geometric mean (GM)

ŷct = [ŷ1t ]
w1 [ŷ2t ]

w2 , (5)

where w1 = w2 = 0.5.
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2.2.6Harmonic mean (HM)

ŷct =
ŷ1t ŷ2t

w1ŷ1t +w2ŷ2t
, (6)

here w1 = w2 = 0.5.

2.2.7Geometric mean with differential evolution algorithm (GM-DE)

ŷct = [ŷ1t ]
w′1 [ŷ2t ]

w′2 . (7)

2.2.8Harmonic mean with differential evolution algorithm (HM-DE)

ŷct =
ŷ1t ŷ2t

w′1ŷ1t +w′2ŷ2t
. (8)

2.3 Differential evolution algorithm
A population-based technique for resolving global optimization issues is the differential evolution algorithm. The

concept was initially proposed by Storn and Price in 1996 [30]. The pseudocode for the differential evolution algorithm
is presented in Algorithm 1.

Algorithm 1. DE algorithm

Input: NP (Population size), D (Dimension), F (Scaling factor), CR (Cross rate), MAXI (Maximum number
of iterations), I (Iteration),

Output: Xbest
i (Best solution)

I← 1

for i = 1: NP do

X I
i = X I

min + rand(0, 1) · (X I
max−X I

min), i = 1, 2, . . . , NP

end for

while (MAEmin > ε or I <MAXI) do

for i = 1: NP do

randomly select where R1 ̸= R2 ̸= R3 ̸= i

V I+1
i = X I

R1 +F · (X I
R2−X I

R3)

if rand(0, 1)≤CR then

U I+1
i ←V I+1

i
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else

U I+1
i ← X I

i

end if

import the actual (Yj) and predicted PM2.5 concentration obtained from ML model 1 and 2 (Ŷj
M1 , Ŷj

M2),
respectively where j = 1, 2 . . . , N

for j = 1: N do

FM
i ( j) =U I+1

i Ŷj
M1 +(1−U I+1

i )Ŷj
M2

Fi( j) = X I
i Ŷj

M1 +(1−X I
i )Ŷj

M2

EM( j) = |FM
i ( j)−Y ( j)|

E( j) = |Fi( j)−Y ( j)|

SUM(Em) = SUM(Em)+EM( j); SUM(E) = SUM(E)+E( j)

end for

MAE(m) = SUM(Em)/N; MAE = SUM(E)/N

if MAE(m)< MAE then

X I+1
i ←U I+1

i ; MAE(i)←MAE(m)

else

X I+1
i ← X I

i ; MAE(i)←MAE

end if

end for

MAEmin← min(MAE); Xbest
i ← X I

i ; I = I +1

end while

Algorithm 1 begins by inputting several parameters, including the population size (NP), crossover rate (CR), scaling
factor (F), and constant term (ε). Next, we create a population by randomly selecting values from a uniform distribution
between 0 and 1. The range of values is determined by the search space’s minimum and maximum values for the decision
parameter. The mutation process selects three individuals (XR1, XR2, XR3) from the population set of NP elements, which
R1 ̸= R2 ̸= R3 ̸= i. The scaling factor, F , is a user-defined constant with the value F ∈ [0, 1]. The mutant vectors (Vi)

are then obtained by applying all values. The trial vectors (Ui) are created by combining the parameters of the target
vectors (Xi) with the mutant vectors using a predetermined crossing probability (CR). The selection technique is used
in the DE algorithm for the next phase. The predicted PM2.5 of the test set is imported to determine the fitness of the
target and trial vectors. The fitness of the sample vectors is compared to the corresponding target vectors to determine
the optimal solution. Next, we compute the forecasted PM2.5 values (Fi) for each machine learning model. After that,
the differences between the observed and predicted PM2.5 are computed. The mean absolute error (MAE) determines the
optimum weight. The optimization procedure ends when the MAE falls below a specific constant term (ε) or the iteration
count reaches its limit. Finally, the best weight is determined and used in the hybrid forecasting model to get the predicted
values. The structure of the hybrid forecasting model is presented in Figure 6.
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Figure 6. The structure of the hybrid forecasting model using several weight estimations

3. Data
The primary data utilized in this paper consists of the mean daily PM2.5 concentration from January 2014 to June

2023. This dataset comprises a total of 3,468 data points collected from three monitoring stations located in Thailand.
The primary data are from the Pollution Control Department, Ministry of Natural Resources and Environment, Thailand
[31]. Next, we use a spline interpolation method to complete any missing observations. The data are then divided into
three separate sets: training, validation, and test. The initial 70% of the data, which serves as the training set from January
2014 to August 2020, comprises 2,428 observations. Subsequently, 15% of the data collected between September 2020
and January 2022 is employed to verify the network’s performance, resulting in 520 observations. The remaining 520
observations (15%) are utilized as the test set. Figure 7 illustrates the patterns of PM2.5 particulate pollution at three
stations in Thailand, which are separated by training, validation, and test sets.

According to Figure 7, the blue, pink, and red lines denote the original PM2.5 particles, as well as the training,
validation, and test sets. It is obvious that PM2.5 concentration for all three stations is non-stationary as they contain
seasonal effects. The augmented Dickey-Fuller test is applied to confirm that all observed PM2.5 pollution is non-
stationary, as shown in Table 1.

Table 1. Stationarity test (Augmented Dickey-Fuller test)

Station Province ADF Statistic P-value

36T Chiang Mai -2.3745 0.1491

46T Khon Kaen -1.9210 0.3222

27T Samut Sakhon -2.1579 0.2299
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Figure 7. The pattern of PM2.5 pollution in Thailand: (a) Station 36T, (b) Station 46T, and (c) Station 27T
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According to the stationarity test results, the p-value exceeds the significance level (p > 0.05). This suggests that the
initial PM2.5 from the three locations is non-stationary. Table 2 displays the descriptive statistics for the daily average of
PM2.5 dust pollution.

Table 2. Descriptive statistics of the daily average PM2.5 concentration (µg/m3)

Station Province n Missing Range Mean Median S.D.

36T Chiang Mai 3,468 151 262 29.35 20 27.35

46T Khon Kaen 3,468 436 116 25.54 16 18.88

27T Samut Sakhon 3,468 388 171 26.95 19 22.11

From Table 2, the maximum range of PM2.5 dust falls in the Northern part of Thailand (Chiang Mai). The daily
average PM2.5 concentration for all three provinces is between 25.54 and 29.35µg/m3. The lowest descriptive statistics
are found in Khon Kaen where the values of range, mean, median, and standard deviation are 116, 25.54, 16, and 18.88
µg/m3, respectively. Before applying our data to ML procedures, the MinMaxScaler method is utilized to transform data
between 0 and 1. The performance measure used in this work is scale-dependent because we compare numerous methods
with the same dataset [32]. Consequently, the performance metrics used in this work are the mean absolute error (MAE)
and the median absolute error (MdAE). The explicit formulas are as follows:

MAE =
1
n

n

∑
t=1
|et |, (9)

MdAE =median(|et |), (10)

where et is an error at time t, then et = yt − ŷt , yt is the observed PM2.5 dust, ŷt are the predicted PM2.5 concentration
obtained from ML models, and n is the number of observations.

The percentage improvement (PIM) is another criterion used as an evaluation indicator for comparing the predicted
results of hybrid and individual models. The PIM is formulated as[6]:

PIM =
MAEbest −MAEc

MAEbest
×100%, (11)

where MAEbest is the best single model in terms of MAE and MAEc is the MAE obtained from the combination method.

4. Experimental results
All experiments are carried out using Python programming on the Google Colaboratory (Google Colab) platform.

The input data are univariate PM2.5 time series with a time lag of 7 [33]. Following the completion of the data cleaning
process, the Sherpa algorithm is employed to search for the most optimal hyperparameters. Determining the parameter
search space is essential before implementing the Sherpa method in our model. The following parameters are established
for the entire experiment: stochastic gradient descent (SGD) is the optimizer, and mean square error (MSE) is the loss
function. We penalized weight parameters with a coefficient of 0.1 for L2 regularization to solve the overfitting problem.
The parameter search space activation functions for ML algorithms are sigmoid, tanh, relu, and softmax. The learning
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rates vary from 0.001 to 0.1, and the batch sizes are 32, 64, 128, 256, and 512. The optimal hyperparameters for all ML
procedures are presented in Table 3.

Table 3. The final hyperparameters of three ML procedures

Model Parameter Station 36T Station 46T Station 27T

ANN

Hidden unit 1 94 149 248

Hidden unit 2 213 195 120

Learning rate 0.039859 0.009217 0.001181

Activation function relu relu relu

LSTM

LSTM(layer 1) 121 122 119

Learning rate 0.002608 0.006018 0.003561

Activation function relu relu tanh

CNN

Conv1D 10 128 10

Kernel size 2 2 2

Hidden unit 1 74 78 59

Learning rate 0.042326 0.002597 0.008710

Activation function relu relu tanh

Next, we evaluate the performancemetrics on both the training and validation sets. Table 4 displays themean absolute
error (MAE) and median absolute error (MdAE) of three machine learning (ML) models.

Table 4. Comparison of the performance metrics between training and validation sets

Model Station
MAE MdAE

Training Validation Training Validation

ANN

36T 5.8679 3.9816 3.2301 2.3602

46T 5.7793 5.1602 3.5631 3.4331

27T 7.3059 7.0381 4.5875 4.8421

LSTM

36T 9.8989 8.3935 7.0118 7.3218

46T 7.5668 6.8929 5.1403 5.2875

27T 9.6160 8.7782 6.4260 5.6637

CNN

36T 6.9515 4.6911 3.8021 2.7066

46T 7.4774 6.7798 4.8757 4.8739

27T 8.4651 8.1693 5.0947 5.0147
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Table 5. Comparisons of the performance metrics between single and hybrid techniques

Model
Station 36T Station 46T Station 27T

MAE MdAE MAE MdAE MAE MdAE

ANN 6.0603 3.2957 5.1848 3.0824 6.3307 4.5640

LSTM 11.0429 8.4065 6.8436 4.8548 8.0350 6.0305

CNN 6.7029 3.5524 6.6781 4.6445 7.2285 4.6008

ANN+LSTM

•AVG 7.7202 4.9116 5.8252 4.0313 6.9910 5.1930

•VAR-NO-CORR 9.1423 6.3429 5.9531 4.0987 7.2402 5.5152

•DMSFE 6.1517 3.2258 5.5030 3.5194 6.7197 4.8015

•AVG-DE 6.1208 3.2151 5.0229 2.5315 6.2535 4.2003

• GM 7.5925 4.4898 5.7959 3.9335 6.9691 5.1430

•HM 7.5145 4.2987 5.7695 3.8717 6.9482 5.0270

• GM-DE 6.0556 3.1536 5.0330 2.7086 6.2356 4.1378

•HM-DE 6.0399 3.0811 5.0358 2.7856 6.2302 4.0777

ANN+CNN

•AVG 6.0709 3.1150 5.7402 3.7828 6.6780 4.5841

•VAR-NO-CORR 6.0875 3.0576 5.8043 3.8552 6.7236 4.5484

•DMSFE 6.0896 3.0622 5.5096 3.5238 6.7392 4.5676

•AVG-DE 6.0500 3.0999 5.0490 2.6347 6.2456 4.4281

• GM 6.0615 3.0334 5.7007 3.7260 6.6709 4.5847

•HM 6.0635 3.1216 5.6669 3.6767 6.6640 4.5751

• GM-DE 6.0447 3.0842 5.0527 2.7493 6.3145 4.4435

•HM-DE 6.0499 3.0788 5.0529 2.8073 6.4313 4.5278

LSTM+CNN

•AVG 8.1635 5.1037 6.2473 4.6672 7.5100 5.3932

•VAR-NO-CORR 9.2506 6.2715 6.7482 4.6491 7.5823 5.4940

•DMSFE 6.7000 3.4635 6.7364 4.6307 7.3617 5.0382

•AVG-DE 6.5957 3.5980 6.7289 4.6055 7.2183 4.3649

• GM 8.0208 4.6280 6.7392 4.6659 7.4874 5.3646

•HM 7.9104 4.1777 6.7362 4.6646 7.4656 5.3481

• GM-DE 6.5720 3.5977 6.7259 4.5937 7.2089 4.3351

•HM-DE 6.5592 3.5376 6.7230 4.5883 7.2082 4.3047

PIM (%) 0.34% 6.51% 3.12% 17.87% 1.59% 10.66%
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According to Table 4, theMAE andMdAE derived from the training and validation sets are nearly identical, providing
additional evidence that there is no overfitting issue. This suggests that the performance of eachMLmodel was satisfactory
on both the training and validation sets and that it can be employed to forecast PM2.5 particulate pollution. Next, we
integrate two machine learning techniques with different weight methods for linear and nonlinear models. The DE
algorithm estimates weight in hybrid approaches and compares it with the state-of-the-art weight estimation method. The
resulting PM2.5 pollution predictions are then computed using the weight approximations and compared to the individual
forecast for each technique. Table 5 presents the performance metrics for the test set acquired from individual and hybrid
techniques.

Table 5 presents the MAE and MdAE of each machine learning model and hybrid forecasting model for both linear
and nonlinear hybrid processes. These were calculated by applying the state-of-the-art and DE weights optimization
techniques. Regarding performance metrics, DE weight optimization yields superior results to the most recent weight
estimation methods for linear and nonlinear hybrid forecasting techniques. Focusing on the MAE values, the percentage
improvement of the best hybrid procedure using DE weight optimization over the best single model at stations 36T, 46T,
and 27T are 0.34%, 3.12%, and 1.59%, respectively. For MdAE values, the percentage improvements for all three stations
are 6.51%, 17.87%, and 10.66%, respectively. It was seen in Table 5, that the DE weight estimation of hybrid approaches
improves the accuracy of the individual and the state-of-the-art weight of hybrid techniques. Based on the results, Table
6 displays the prediction model on the test set derived using the appropriate hybrid models of three stations.

Table 6. The suitable prediction model for each station

Station Method Hybrid Model

36T HM-DE ŷct =
ŷ1t ŷ2t

1.1143ŷ1t−0.1143ŷ2t

46T AVG-DE ŷct = 1.236ŷ1t −0.236ŷ2t

27T HM-DE ŷct =
ŷ1t ŷ2t

1.6119ŷ1t−0.6119ŷ2t

Here, ŷ1t and ŷ2t are the predicted PM2.5 pollution obtained from the ANN and the LSTM models, respectively.

Figure 8. Predicted values of PM2.5 pollution obtained from the HM-DE model and its actual values at station 36T
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Figure 9. Predicted values of PM2.5 pollution obtained from the AVG-DE model and its actual values at station 46T

Figure 10. Predicted values of PM2.5 pollution obtained from the HM-DE model and its actual values at station 27T

A comparison of the predicted PM2.5 on the test set obtained from the suitable hybrid models and its observed PM2.5
between February 2022 and June 2023 are illustrated in Figures 8 to 10.

In each figure, the blue lines represent the original PM2.5, while the red dashed lines display the predicted PM2.5 that
was obtained from the most effective hybrid models on the test set between February 2022 and June 2023. According to
the appropriate hybrid models, the predicted PM2.5 concentration behaves similarly to the actual PM2.5.

5. Conclusion and discussion
This work aims to enhance the weight optimization of a hybrid machine learning model on the daily average of PM2.5

concentration in Thailand. Three stations, including 36T (ChiangMai), 46T (KonKaen), and 27T (Samut Sakhon), located
in the Northern, Northeastern, and Central parts of Thailand, are used in the case study of this work. We employ the ANN,
the LSTM, and the CNN,which are all well-knownmachine learningmodels. The Sherpa algorithm is applied to determine
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the hyperparameters for each machine learning approach. After receiving the predicted PM2.5 from each machine learning
technique, the hybrid methods, including the linear and nonlinear models, are presented. The eight hybrid procedures
include the simple average method (AVG), the variance no covariance method (VAR-NO-CORR), the discount mean
square forecast error method (DMSFE), the simple average method with differential evolution method (AVG-DE), the
geometric mean method (GM), the harmonic mean method (HM), geometric mean with differential evolution method
(GM-DE), and the harmonic mean with differential evolution method (HM-DE) are investigated. The mean absolute
error (MAE) and the median absolute error (MdAE) are the performance metrics employed to assess hybrid procedures.
The experimental results confirm that the differential evolution weight optimization is superior to the others for linear and
nonlinear hybrid techniques between ANN and LSTMmodels in most stations. The harmonic mean using the differential
evolution approach is appropriate for stations 36T and 27T. In addition, the simple average with differential evolution
method is considered adequate for predicting PM2.5 pollution at station 46T.

According to the results presented in Table 5, the performance metrics at station 36T (Chiang Mai) are slightly
greater than the other stations due to the high levels of PM2.5 concentration. As a result, it experiences fluctuations,
especially during the summer months. The data at stations 46T and 27T, which contain 436 and 388 missing values,
respectively, illustrate the impact of missing values on errors. Focusing on the percentage improvement, there is no
significant difference between the best hybrid model and the individual procedure at station 36T. This is due to insufficient
samples, which may not be conducive to learning. Nevertheless, the percentage improvement of the remaining stations
offers a notable enhancement compared to the individual techniques. The results of our study supported the findings of AH
Mohamed [22] and Hu et al. [23], indicating that hybrid procedures are more accurate than the individual forecast method.
The benefit of this work is that complex ML models are not required. Under our proposed technique, using only a simple
ML method on parallel hybrid techniques can reduce the performance metrics. This study can be expanded for future
work by investigating alternative imputation approaches to replace the incomplete data. In addition, other widely used
machine learning models, such as the bidirectional long short-term memory (BiLSTM) and the support vector machine
(SVM), can be utilized to predict the PM2.5 concentration.
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