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Abstract: In this paper, we consider the fractional perturbed Chen Lee Liu model with time-dependent coefficients
(FPCLLM-TDCs). We apply the mapping method in order to get the exact solutions in the form of hyperbolic function,
elliptic function, trigonometric function and rational function. These solutions are essential for comprehending certain
fundamentally complex phenomena. The provided solutions will be extremely useful for applications including optical
fibers. Furthermore, we show how the conformable fractional derivative order affect the exact solutions of the FPCLLM-
TDCs. Finally, we examine the effects of time-dependent coefficients when these coefficients take on special cases such
as random variables, polynomials, and hyperbolic functions.
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1. Introduction
Fractional differential equations (FDEs) find applications in a wide range of fields, including physics, biology,

finance, and engineering [1–6]. They are especially useful when modeling processes involving long memory or non-
local interactions. For example, in physics, FDEs have been successfully used to describe the behavior of viscoelastic
materials, where the deformation response depends on the entire history of external forces. In biology, FDEs have been
used to model population dynamics, where the movement and interaction of individuals depend on past experience.

On the other side, partial differential equations (PDEs) with variable coefficients present a more challenging problem
compared to equations with constant coefficients due to the non-constant and often nonlinear nature of the coefficients.
However, with the right techniques and methods, these equations can be solved and utilized to model a wide range of
phenomena. Solving PDEs with variable coefficients is essential in many scientific and engineering applications, where
the variability and nonlinearity of the coefficients play a crucial role in the dynamics and behavior of the systems under
study. Recently, there are various helpful and practical methods for solving these equations, including sub-equation
method [7], Hirota’s bilinear approach [8], Jacobian elliptic functions and (G′/G2)-expansion methods [9], solitary wave
ansatz [10] and (G′

/G)-expansion method [11].
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To achieve a better degree of qualitative agreement, we look here at the fractional perturbed Chen Lee Liu model
(FPCLLM) with time-dependent coefficients (TDCs) as follows [12]:

iUt +A(t)Dα
xxU + iB(t) |U |2 Dα

x U = i[ℓ1(t)Dα
x U + ℓ2(t)Dα

x (|U |2 U )+ ℓ3(t)U Dα
x (|U |2)], (1)

where U is the the normalized electric-field envelope, Dα is conformable fractional derivative operator for α ∈
(0, 1], A(t), B(t) ℓ1(t), ℓ2(t) and ℓ3(t) are smooth real functions of the variable t such that B(t) = 3ℓ2(t)+2ℓ3(t).

The perturbed Chen Lee Liu model (1) is a mathematical framework that describes the interactions between particles
in a system. It considers the effects of an external perturbation on the system, which can lead to the emergence of
complex collective behaviors. The model is based on the Ising model, which describes the interactions between spins
in a lattice. However, the perturbed Chen Lee Liu model goes beyond the Ising model by introducing an additional term
in the Hamiltonian that accounts for the perturbation.

One of the key applications of the perturbed Chen Lee Liu model is in the study of phase transitions. Phase transitions
are phenomena in which a system undergoes a sudden change in its properties, such as magnetization or conductivity. The
perturbed Chen Lee Liu model can help elucidate the mechanisms behind phase transitions and predict the critical points
at which they occur. By studying the behavior of the system as the perturbation is varied, researchers can gain insights
into the nature of phase transitions and the critical exponents that characterize them.

The perturbed Chen Lee Liu model has been used to investigate a wide range of physical phenomena, including
ferromagnetism, antiferromagnetism, and superconductivity. By studying the behavior of these systems using the
perturbed Chen Lee Liu model, researchers can uncover new insights into the underlying mechanisms driving these
phenomena. For example, the model has been used to study the effects of impurities on the magnetic properties of
materials, shedding light on how disorder can impact the behavior of magnetic systems.

Because of the significance of the Chen Lee Liu model in optical fibers, many researchers have employed various
techniques to get analytical solutions for this model, which include the modified Khater method [13], extended direct
algebraic method [14], (G′

/G,1/G)-expansion approach [15], Riccati-Bernoulli and generalized tanh methods [16],
Sardar sub-equation method [17], and modified extended tanh-expansion method [18].

This study aims to establish exact solutions for the FPCLLM-TDCs (1) using the mapping approach. The solutions
include hyperbolic functions, elliptic functions, rational functions, and trigonometric functions. In addition, we utilize
the Matlab software to construct 2D and 3D graphs for some of the analytical solutions created in this study to analyze
the influence of the conformable fractional derivative and time-dependent coefficient on the obtained solutions of the
FPCLLM-TDCs (1).

The organization of the paper is as follows: The CFD is defined and some of its properties are explained in Section 2.
While in Section 3, we use a suitable wave transformation to obtain the wave equation of the FPCLLM-TDCs (1). Using
the mapping approach, we find the exact solutions of the FPCLLM-TDCs (1) in Section 4. In Section 5, we discuss how
the time-dependent coefficient and CFD affect the obtained solutions. In the end, the paper’s conclusion is given.

2. Conformable fractional derivative
Fractional calculus operators are useful for describing and assessing complex processes that cannot be adequately

explained using standard integer-order calculus. The Hadamard derivative, Caputo derivative, Riemann-Liouville
derivative, Katugampola derivative, Grünwald-Letnikov derivative, and Jumarie derivative [19–23], are the types of
the fractional derivative operators proposed in the literature. Khalil et al. [24] recently suggested the conformable
fractional derivative (CFD), that has similarities with the Newton derivative. Let us now define the CFD for the function
K : (0, ∞)→ R of order α ∈ (0, 1] as follows:
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Dα
x K (x) = lim

ε→0

K (x+ εx1−α)−K (x)
ε

.

The CFD has the following characteristics for any constants a and b:
1. Dα

x [aK1(x)+bK2(x)] = aDα
x K1(x)+bDα

x K2(x),
2. Dα

x [K1(x)K2(x)] = K2(x)Dα
x K1(x)+K1(x)Dα

x K2(x),
3. Dα

x [a] = 0,
4. Dα

x [x
b] = bxb−α ,

5. Dα
x K (x) = x1−α dK

dx
,

6. Dα
x (K1 ◦K2)(x) = x1−αK ′

2 (x)K
′

1 (K2(x)).

3. Wave equation for FPCLLM-TDCs
To attain the wave equation of the FPCLLM-TDCs (1), we employ

U (x, t) = V (ϑα)eiψα ,

ϑα =
ϑ
α

xα +
∫ t

0
f (τ)dτ, and ψα =

k
α

xα +
∫ t

0
g(τ)dτ, (2)

where V is a real valued function, ϑ and k are real constants, f and g are real functions can be determined later. Plugging
Eq. (2) into Eq. (1) and using

∂U

∂ t
= [ f (t)V ′+ ig(t)V ]eiψα , Dα

x U = (ϑV ′+ ikV )eiψα , Dα
x

(
|U |2

)
= 2ϑV V ′,

Dα
xxU = [ϑ 2V ′′+2ikϑV ′− k2V ]eiψα , Dα

x

(
|U |2 U

)
= (3ϑV 2V ′+ ikV 3)eiψα

we get for imaginary part

[ f (t)+2kϑA(t)−ϑℓ1(t)]V ′+[ϑB(t)−3ϑℓ2(t)−2ϑℓ3(t)]V 2V ′ = 0, (3)

and for real part

ϑ 2A(t)V ′′− (g(t)+ k2A(t)− kℓ1(t))V +(kℓ2(t)− kB(t))V 3 = 0. (4)

From (3), we have

f (t) = ϑℓ1(t)−2kϑA(t), and B(t) = 3ℓ2(t)+2ℓ3(t). (5)
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4. The solutions of the FPCLLM-TDCs
Here, the mapping method, which is reported in [25], is used. Let the solutions of Eq. (4) have the form

V (ϑα) =
N

∑
i=0

ai(t)P i(ϑα), (6)

where ai(t) for i = 0, 1, ...., N are unknown functions in t , and P is the solution of

P ′ =
√

b1P4 +b2P2 +b3, (7)

where b1, b2 and b3 are real constants.
By balancing V ′′ with V 3 in Eq. (4), we can determine N as

N +2 = 3N =⇒ N = 1.

With N = 1, Eq. (6) turns into

V (ϑα) = a0(t)+a1(t)P(ϑα). (8)

Differentiating Eq. (8) twice and using (7), we get

V ′′ = a1(b2P +2b1P
3) (9)

Substituting Eqs. (8) and (9) into Eq. (4) we have

[2ϑ 2a1b1A(t)+a3
1(kℓ2(t)− kB(t))]P3 +6kB(t)a0a2

1P
2 +[ϑ 2a1b2A(t)+6ka2

0a1B(t)−a1(g(t)

+ k2A(t)− kℓ1(t))]P +[2ka3
0B(t)−a0(g(t)+ k2A(t)− kℓ1(t))] = 0.

Seting all coefficient of P i equal zero for i = 3, 2, 1, 0, to attain

2ϑ 2a1b1A(t)+ ka3
1(ℓ2(t)−B(t)) = 0,

3ka0a2
1(ℓ2(t)−B(t)) = 0,

ϑ 2a1b2A(t)+3ka2
0a1(ℓ2(t)−B(t))−a1(g(t)+ k2A(t)− kℓ1(t)) = 0,
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and

ka3
0(ℓ2(t)−B(t))−a0(g(t)+ k2A(t)− kℓ1(t)) = 0,

Solving these equations yields:

a0(t) = 0, a1(t) =±

√
−2ϑ 2b1A(t)

k(ℓ2(t)−B(t))
, g(t) = (ϑ 2b2 − k2)A(t)+ kℓ1(t), (10)

where B(t) and f (t) are defined in Eq. (5). By utilizing Eqs (2), (8) and (10), the solution of FPCLLM-TDCs (1) is

U (x, t) =±

√
ϑ 2b1A(t)

k(ℓ2(t)+ ℓ3(t))
P(ϑα)eiψα , (11)

where

ϑα =
ϑ
α

xα +ϑ
∫ t

0
ℓ1(τ)dτ −2kϑ

∫ t

0
A(τ)dτ,

and

ψα =
k
α

x+(ϑ 2b2 − k2)
∫ t

0
A(τ)dτ + k

∫ t

0
ℓ1(τ)dτ.

There are many sets depending on b1, b2 and b3 :
Set 1: If b1 = ϖ2, b2 = −(1+ϖ2) and b3 = 1, then P(ξ ) = sn(ϑα). Therefore, the solution of FPCLLM-TDCs

(1), by using Eq. (11), is

U (x, t) =±ϖ

√
ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))
sn(ϑα)eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

> 0. (12)

At ϖ → 1, Eq. (12) becomes

U (x, t) =±

√
ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))
tanh(ϑα)eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

> 0. (13)

Set 2: If b1 = 1, b2 = 2ϖ2 −1 and b3 =−ϖ2(1−ϖ2), then P(ϑα) = ds(ϑα). Consequently, the FPCLLM-TDCs
(1) has the solution
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U (x, t) =±

√
ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))
ds(ϑα)eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

> 0. (14)

When ϖ → 1, Eq. (14) becomes

U (x, t) =±

√
ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))
csch(ϑα)eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

> 0. (15)

At ϖ → 0, Eq. (14) tends to

U (x, t) =±

√
ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))
csc(ϑα)eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

> 0. (16)

Set 3: If b1 =−ϖ2, b2 = 2ϖ2−1 and b3 = 1−ϖ2, then P(ϑα) = cn(ϑα). Consequently, the solution of FPCLLM-
TDCs (1) is

U (x, t) =±ϖ

√
−ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))
[cn(ϑα)]eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

< 0. (17)

When ϖ → 1, Eq. (17) becomes

U (x, t) =±

√
−ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))
[sech(ϑα)]eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

< 0. (18)

Set 4: If b1 =
ϖ2

4
, b2 =

(ϖ2 −2)
2

and b3 =
1
4
, then P(ϑα) =

sn(ϑα)

1+dn(ϑα)
. As a result, the solution of FPCLLM-

TDCs (1) is

U (x, t) =±ϖ
2

√
ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))

[
sn(ϑα)

1+dn(ϑα)

]
eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

> 0. (19)

At ϖ → 1, Eq. (19) tends to

U (x, t) =±1
2

√
ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))

[
tanh(ϑα)

1+ sech(ϑα)

]
eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

> 0. (20)
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Set 5: If b1 =
(1−ϖ2)2

4
, b2 =

(1−ϖ2)2

2
and b3 =

1
4
, then P(ϑα) =

sn(ϑα)

dn(ϑα)+ cn(ϑα)
. Therefore, the solution of

FPCLLM-TDCs (1) is

U (x, t) =± (1−ϖ2)

2

√
ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))

[
sn(ϑα)

dn(ϑα)+ cn(ϑα)

]
eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

> 0. (21)

If ϖ → 0, then Eq. (21) is typically

U (x, t) =±1
2

√
ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))

[
sin(ϑα)

1+ cos(ϑα)

]
eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

> 0. (22)

Set 6: If b1 =
1−ϖ2

4
, b2 =

(1−ϖ2)

2
and b3 =

1−ϖ2

4
, then P(ϑα) =

cn(ϑα)

1+ sn(ϑα)
. As a result, the solution of

FPCLLM-TDCs (1) is

U (x, t) =±1
2

√
ϑ 2(1−ϖ2)A(t)
k(ℓ2(t)+ ℓ3(t))

[
cn(ϑα)

1+ sn(ϑα)

]
eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

> 0. (23)

At ϖ → 0, Eq. (23) turns to

U (x, t) =±1
2

√
ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))

[
cos(ϑα)

1+ sin(ϑα)

]
eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

> 0. (24)

Set 7: If b1 = 1, b2 = 0 and b3 = 0, then P(ϑα) =
c

ϑα
. Therefore, the solution of FPCLLM-TDCs (1) is

U (x, t) =±

√
ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))

[
c

ϑα

]
eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

> 0. (25)

Set 8: If b1 = 1, b2 = 2−ϖ2 and b3 = (1−ϖ2), then P(ϑα) = cs(ϑα). Thus, the solution of FPCLLM-TDCs (1)
is

U (x, t) =±

√
ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))
cs(ϑα)eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

> 0. (26)

At ϖ → 1, Eq. (26) is turns into

U (x, t) =±

√
ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))
csch(ϑα)eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

> 0. (27)
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If ϖ → 0, then Eq. (26) becomes

U (x, t) =±

√
ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))
cot(ϑα)eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

> 0. (28)

Set 9: If b1 =
−1
4

, b2 =
ϖ2 +1

2
and b3 =

−(1−ϖ2)2

2
, then P(ϑα) = ϖcn(ϑα)+dn(ϑα). Therefore, the solution

of FPCLLM-TDCs (1) is

U (x, t) =±1
2

√
−ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))
[ϖcn(ϑα)+dn(ϑα)]eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

< 0. (29)

If ϖ → 1, then Eq. (29) tends to Eq. (18).

Set 10: If b1 =
ϖ2 −1

4
, b2 =

ϖ2 +1
2

and b3 =
ϖ2 −1

4
, thenP(ϑα)=

dn(ϑα)

1+ sn(ϑα)
.Hence, the solution of FPCLLM-

TDCs (1) is

U (x, t) =±1
2

√
(ϖ2 −1)ϑ 2A(t)
k(ℓ2(t)+ ℓ3(t))

[
dn(ϑα)

1+ sn(ϑα)

]
eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

< 0. (30)

When ϖ → 0, Eq. (30) is tends to

U (x, t) =±1
2

√
−ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))

[
1

1+ sin(ϑα)

]
eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

< 0. (31)

Set 11: If b1 =−1, b2 = 2−ϖ2 and b3 =ϖ2−1, thenP(ϑα) = dn(ϑα). Therefore, the solution of FPCLLM-TDCs
(1) is

U (x, t) =±

√
−ϑ 2A(t)

k(ℓ2(t)+ ℓ3(t))
[dn(ϑα)]eiψα If

A(t)
k(ℓ2(t)+ ℓ3(t))

< 0. (32)

If ϖ → 1, then Eq. (32) turns to Eq. (18).

5. Impacts of CFD and TDCs
Discussion: In this paper, the exact solutions of the FPCLLM-TDCs (1) were acquired. We applied the mapping

method which provided many kind solutions such as kink solutions, periodic solutions, bright solutions, dark optical
solution, singular solution and etc. The obtained solutions of the FPCLLM-TDCs (1) can be used to study an enormous
variety of important physical phenomena, such as optical fiber wave propagation in a magnetized plasma, oceanic rogue
waves, and ion-acoustic waves [13–16, 26].

Impacts of CFD:Now, we address the impact of CFD on the acquired solutions of the FPCLLM-TDCs (1). A series
of two-dimensional and three-dimensional graphs are generated by assigning suitable values to the unknown variables.
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Figures 1-2 inroduce the behavior solutions of (17) and (18), respectively. Figure 1 shows the periodic solutions |U (x, t)|
stated in Eq. (17) for ϑ = k =−1, ℓ2(t) = ℓ3(t) = 0.5, A(t) = ℓ1(t) = 1, and for α = 1, 0.8, 0.6.While, Figure 2 shows
the dark solutions |U (x, t)| stated in Eq. (13) for ϑ = k =−1, ℓ2(t) = ℓ3(t) = 0.5, A(t) = ℓ1(t) = 1, t ∈ [0, 3], x ∈ [0, 4],
and for α = 1, 0.8, 0.6. The figures show that the surface extends as the derivative order α of MTD decreases.

Figure 1. (i-iii) Represent 3D-shape of the periodic solution |U (x, t)| stated in Eq. (17) with α = 1, 0.8, 0.6 (iv) shows 2D-shape of Eq. (18) with
various value of α
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Figure 2. (i-iii) Represent 3D-shape of the dark solution |U (x, t)| stated in Eq. (18) with α = 1, 0.8, 0.6 (iv) shows 2D-shape of Eq. (29) with various
α

Impacts of TDCs: Now, we investigate the effect of the time-dependent coefficients on the obtained solutions of the
FPCLLM-TDCs (1). Figures 3 and 4 show the solutions |U (x, t)| reported in Eqs (17) and (18) with ϑ = k =−1 and for

different time-dependent coefficients as follows: In Figures 3(i) and 4(i), we assume A(t) = ℓ1(t) = t, ℓ2(t) = ℓ3(t) =
1
2

t,

this choice makes the surface twist from the left. In Figures 3(ii) and 4(ii), we assume A(t) = ℓ1(t) = 1, ℓ2(t) = ℓ3(t) =
1
2 sinh(t), this option makes the surface a little flat from the right. In Figures 3(iii) and 4(iii), we assume A(t) = ℓ1(t) =
cos(t), ℓ2(t) = ℓ3(t) = 1, this choice effects on the surface sides. While in Figures 3(v) and 4(v), we assume A(t) =

ℓ1(t) = 1, ℓ2(t) = ℓ3(t) =
1
2

βt(t), where βt(t) is the derivative of Brownian motion β (t), this option causes the surface to
oscillate.
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Figure 3. Represents 3D and 2D profile for the solution |U (x, t)| stated in Eq. (17) for ϑ = k =−1, α = 1, t ∈ [0, 3], x ∈ [0, 4], α = 1 and for various
time-dependent coefficients
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Figure 4. Represents 3D and 2D profile for the solution |U (x, t)| stated in Eq. (17) for ϑ = k = −1, α = 1, x ∈ [0, 4], t ∈ [0, 3], α = 1 and for
different time-dependent coefficients

6. Conclusions
In this paper, we introduced a large variety of exact solutions to the fractional perturbedChen Lee Liumodel with time-

dependent coefficients (FPCLLM-TDCs) (1). One of the key advantages of the FPCLLM-TDCs is its ability to capture
the complex behavior of dynamic systems. By incorporating the time-dependent coefficient, the model can account
for variations in system parameters that may arise due to external factors or internal dynamics. This flexibility allows
researchers to study a wider range of scenarios and better understand the dynamics of the system under different conditions.
Therefore, we acquired here the exact solutions in the form of elliptic functions, hyperbolic functions, trigonometric
functions and rational functions by using the mapping method. The created solutions are extremely useful for applications
which include optical fibers [27]. Finally, we addressed how the conformable fractional derivative order and the time-
dependent coefficients affects the exact solution of the FPCLLM-TDCs (1). In the future work, further research is needed
to understand the chaotic dynamics exhibited by the FPCLLM-TDCs such as conducting a comprehensive analysis of
the Lyapunov exponents and sensitivity to initial conditions and investigating the physical implications of chaos in the
context of optical fibers and plasma physics.
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