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Abstract: The paper reports highly dispersive optical soliton solutions that are recovered with differential group delay
with Kerr law of self-phase modulation. The Sardar’s sub-equation approach is implemented for this retrieval. A full
spectrum of optical solitons has been thus recovered. The parameter constraints are also displayed for the existence of
such solitons.
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1. Introduction

The concept of highly dispersive optical solitons was conceived slightly less than a decade ago when the chromatic
dispersion ran low [1-5]. The low count of dispersion is replenished with higher order ones that would lead to the
concept of highly dispersive optical solitons [6-10]. These additional dispersive effects stem from inter-modal dispersion
(IMD), third-order dispersion (30D), fourth-order dispersion (40D), fifth-order dispersion (50D) and finally the sixth-
order dispersion (60D). One of the cons with this concept of highly dispersive optical solitons, as the title implies, is
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that the solitons would be rendered to be dispersive and thus significant soliton radiation would ensue. Additionally, the
solitons would also be drastically slow. From a mathematical standpoint, these effects are ignored and the integrability
of the model is being focused on.

The model has been studied extensively for the scalar version [11-15]. The soliton solutions have been revealed
and the conservation laws have been recovered [16-20]. The current paper turns the page. The model is studied with
Kerr law of self-phase modulation (SPM) with differential group delay. The governing model is first written with
polarization-mode dispersion and subsequently the Sardar sub-equation approach has been implemented to recover
its soliton solutions. A full spectrum of soliton solutions has been thus recovered. The parameter constraints for the
existence of such solitons that naturally emerge from the analysis are also presented. The numerical simulations also
support the analysis.

2. Governing Model
The scalar form of the nonlinear Schrodinger equation (NLSE), which models the propagation of solitons through
an optical fiber, is expressed as [1-5]:

iqt +iaqu +a2qxx +ia3qxxx +a4q)ocxx +ia5q.\:xxxx +a6qchxxx +F(| q |2 )q = 05 (1)

where ¢g(x, ) is a complex-valued function representing the wave profile. The independent variables x and ¢ denote

the spatial and temporal coordinates, respectively, and i = J-1. The real-valued coefficients a; for 1 <j < 6 represent
intermodal dispersion (IMD), chromatic dispersion (CD), third-order dispersion (30D), fourth-order dispersion (40D),

fifth-order dispersion (50D), and sixth-order dispersion (60D), respectively. Lastly, the functional /' describes the
nonlinear self-phase modulation (SPM) as:

F(|q|2)q eU” _c* ((—n, n)x(—m, m), RZ).

m,n=1

The NLSE for highly dispersive optical solitons with the Kerr law of refractive index in a polarization-preserving
optical fiber is expressed as:

. . . . 2
lqt + laqu + an)oc + la3qxxx + a4qxxxx + laqux)ocx + a6qxxxxxx tc | q | q = 07 (2)

where the constant ¢ is the coefficient of the Kerr law nonlinearity. For birefringent fibers, this model separates into two
components as follows:

iu, Hiau, +au, +iau  +au +iasu

+agu +(c1 lul* +c, |v |2)u =0, 3)

XXXXXX
and

iv, +ibyv_+b,v_+ibyv__ +b,v

XXXX

+ibyv . +bv

XXXXXX

+(d, |v[* +d, [u )v=0. (4)
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3. Travelling wave solution

To address the coupled system (3), we assume the following solution structure:
u(x, 1) =U,(&)e"™, (&)

v(x, 1) =U,(&)e"™", (6)

where ¢ = x — yt and the real-valued phase component is ¢(x, ¢) = —kx + ot + ¢, while U,(¢) and U, () are the real-
valued amplitude components of the wave. Here, y is the soliton velocity, @ is the soliton frequency, & is the soliton
wavenumber, and ¢, is the phase constant. Utilizing Egs. (5, 6) and their derivatives, Eq. (3) transforms to:

[—i;/Ul' — U, J tia, [U{ kiU, J ta, [Ul" _2ikU; —k2U1]+ ia, [Uﬁ” _3ikU, —3K°U, + ik3U1J
ta, [Uﬁ‘” _4ikU® —6kU," +4ik°U, + k4U1]+ ia, [U;” _SikU —10k°U,® +10i°U; +5k°U; —iksul}
+a [Uﬁ‘” —6ikUS ~15K°U P +20ik°U® +15k°U," — 6ik°U;’ —k°U, J (U} +eU;)U, =0 %)
In the case of Eq. (4), it changes to:
[—i;/Uz' — U, } i, [Uz' — kiU, } tb, [Uz" _2ikU, — KU, } +ib, [U;” _3ikU, 3K, + ik3U2J
+b, [U;‘” _4ikU,® —6kU," +4ik°U, + k“UZJ +ib, [Uﬁ _SikUL —10k2U, +10ik°U, +5k*U, — ikSUz}
b, [U;@ —6ikU,S —15k2U,“ +20ik°U, +15k*U," — 6ik°U, —kGUz}r(dlez +d,U2)U, =0, )
Eq. (7) separates into real and imaginary parts, which are:
(—a) +ak-ak’ —ak’ +ak* +ak’ —ak® )U1 + (az +3a.k —6a,k* —10a.k’ +15a,k* ) U,/
+(a, +5ak=15a> \ U +a,U® +(cU; +c,U U3 ) =0, )
and
{—7/ +a,—2a,k-3a,k’ +4a,k’ +5ak* —6a.k’ } U/ + {a3 —4a,k—10a.k” +20a.k’ } uv
+{a;—6a.k} U =0. (10)

The real and imaginary parts of Eq. (8) are derived as:
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(~@+bk—b,k* = by +bk" + b ~bk® )U, + (b, + 3bsk — 6b,k* =10b.k* +15bc* )U,"
+(b, +5bsk —15b k> \US" + b UL +(d,U3 +d,U,U} ) =0,
and
{3 +b,=2b,k = 3b,k> +4b,k> + 5byJc* — 6b | U, +{b, - 4b,kc ~10bsk* +20b,k* } U,
+{b; —6bk} U," =0.
Deriving from Eq. (10), the soliton velocity is:
7 =a,—2a,k —3a,k’ +4a,k’ +5a.k* —6ak’.
The soliton velocity is obtained from Eq. (12), as presented below
y =b —2bk—3bk’* +4b,k’ +5bk* —6b k.
The parameter constraint arises from equating the soliton velocities y in both (13) and (14) as follows:
a, —2a,k —3a,k’ +4a,k’ +Sa.k* —6ak’ = b —2b,k —3bk* +4b,k’ +5bk* —6b K,
where
a, =4a,k—10ak’ +20a.k’,
b, = 4b,k —10b,k* +20b,k°,
as = 6agk,
b, = 6b.k.
Thus, we arrive at:
a, —2a,k—8a,k’ +144a k> = b, — 2b,k —8b,k’* +144b,k’,
a, = 41((614 ~10ak’ ),
by = 4k (b, —10b.k* ).
The coupled system of equations (4) can be simply uncoupled under the assumption

U,=al,,

(11)

(12)

(13)

(14)

(15)

(16)

(17

(18)

(19)

(20)

2

(22)

(23)
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where a is a real number. Consequently, Equations (9) and (11) can be expressed as:

(-o+ak—ak’ —ak’ +ak’ +ak’ —ak U, +(a, +3ak —6a,k> ~10a.k’ +15a k" )U,’

+(a, +5ask —15ak> U +a UL + (¢, +¢,A° U} =0, (24)
and

(—@+ bk —byk* =bJ* +bk" + bk’ — bk ) AU, +(b, +3byk — 6b,k> —10bk* +15b.k* ) AU,"

+(by +5bk —15b> ) AU + Ab U +(d, 4> +d, ) aU,’ =0, (25)
where

(—a)+a1k—a2k2 —ak’ +akt +ak’ —aﬁk(’)

(-w+bk—b,k* —byj +bk" + b bk

(a, +3a,k —6a,k> ~10ak’ +15a.k")

(b, +3b,k — 6b,k> ~10bk° +15b,k" )

(a4 +5a,k —15a6k2)

a, _ (c] +czﬂz)
(b +5bk—15bk) b (dA?+d,)

=Q.

4. Sardar sub-equation method (SSEM)

An important feature of the SSEM is its capability to generate a wide range of soliton solutions, including dark,
bright, and singular forms, as well as complex configurations such as mixed dark-bright, dark-singular, bright-singular,
and mixed singular solutions. Moreover, it provides solutions in rational, periodic, trigonometric, and various other
formats.

In this method of solving Eq. (24), we proceed by assuming the solution is structured as [24]

U =Y. 29" (&), Ay #0, (26)

where 4, (n =0, 1, ..., N) are constants to be determined later. The positive integer N is determined by applying the
homogeneous balance method principle to Eq. (24), balancing the nonlinear term with the highest-order derivative.
Additionally, the function W (&) in Eq. (26) must satisfy the following equation

WI(E) =\ P(©) + P (E) +1,, @7)

where 77,(/ =0, 1, ..., N) are real constants and 77, # 0. In accordance with the parameters 77, Eq. (25) exhibits various
established solutions, outlined below:
Case I Under the conditions where 77, =0, 7, > 0 and 7, # 0, the solutions correspond to bright and singular
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solitons, respectively:

‘P%(é): —pq(/jsech (V&) n, <0, (28)

and

(&) =+, |pg (/)csch (J;Tlg) n, >0, 29)

where

sech, (\/77715) ff—

= and csch, (\/77715) W (30)

1 . . . . .
Case II When 7, = nyfr]f and 7, >0, 7, <0, we acquire the dark and singular soliton solutions, respectively:

PI(E) =+ _(%nz) tanh { —%g], G1)

and

W) =+ —(%ﬂzjcothw( —%g], (32)

where

_geIn¢ s
tanh (\/77_15) #and coth (\/77_15) %. (33)

5. Application of the modified sardar sub-equation method

Starting with the application of the homogeneous balance method principle between the nonlinear term U, and
the linear term U,’ from Egs. (24) and (25), our analysis leads to N + 6 = 3N. From this, we derive N = 3, thereby
transforming Eq. (26) to:

Ul(f):/10+21\1’+/12‘{’2+/13\}’3, (34)
U/ (&)= (4 +2,% +309%) (09" +7,9 +11,). (35)
U = (1227, + 64,0, + (2477, + 94, ) W* +42,7,%° + (An, +647,) ¥ + 24,1, ), (36)

U = (6027, +242,m,%° +3(22m, + 94, ) W2 + 82,0 + (A1, +62,)) [ (¥ +1,92 +1,).  (37)
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U® = (3604797 +1204,7;9° + 617, (44, + 68451, ) W° +120 4,7,
+(2522,70, + 204,77, + 81257 )P + (16,3, + 722,577, ) W
+ (A + 6040, +12m, 2, )W + 8410, (38)
U = (2520/13772211’6 +7204,1,° +30n, (44,m, + 6824, ) V" +4804,m,,¥°

+3(2522,70, + 20477, +8125m,7 ) ¥7 +2(16 7y, + 724,57, ) W

+ (/1‘7712 +604,n,n, ++12n,An, )) \/(772‘}’4 +1,¥° +1n, ), 39)

U ={201604,,"¥° +50404,,"¥" +180n; (4417, +1520, ) ¥7 +2520,,7,” %

+67204,7,7,2W° + [6772 (27722,n,m, + 204 mm, + 814507 )+ 30m,77, (42,77, + 684,77, )

61, (2522571,7, + 204377, + 8147 )+ 120, (42, +6821,) |¥° +| 2, (736277

#7251, )+ i1, (16 200, + 7220471, )+ 480 4,177, + 3600 4,77 |W* +| 2, (A}

+ 6041, + 121,240, ) + 61, (252,770, + 204,77, + 81451, ) + 317, (25245151,

+20Am,n, +814,n] ) +120m,7, (44,7, + 6841, )] ¥4 [2771 (16/1277177l +722,1,11,)

144027, +2(164,m; + T2 0,mgn0m, ) W2 + [y (A + 6041y, + 127, 27, )

+ 611, (2522, + 202, + 8127 ) |9 + 2, (162,m; + 72201, )} (40)

Eq. (24) can be written as:

MU, + MU + MUY +aU +(c, +c,4° U, =0, (41)

where:
M, =(—w+a1k—a2k2 —ak’ +ak* +ak’ —a6k6), (42)
M, =(a, +3ak—6a,k* —10a.k’ +15ak"), (43)
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M, =(a, +5ak —15a.k" ). (44)
Substituting Eqgs. (36), (38), and (40) into Eq. (41) and taking into consideration Eq. (27), we get:

M, (A + AW + W7 + 97 )+ M, (124,79 +64,m, %" + (2477, +94, ) ¥°
+42,nY? +(Am, +64,1,) ¥ +2/12770)+M3 (360/137722‘1’7 +1204,1m;¥° + 61, (44,1,
+682,1, )W +1204,m,, " +(2524,m,1m, + 204, + 8147 )W + (16 4,m,m,

KT22001,) ¥ + (A + 6020, ++127, 477, ) ¥ + 84,0, )+ a {20160 4,77

+50404,17, " +180n; (44,m, +15217, ) ¥ +2520 43,1, ¥ + 67204,17,17, ¥°

+[6772 (27722,m,m, + 204 mm, + 814507 )+ 30m,77, (42,77, + 684,77, ) + 617, (252 4577,
+20A1,1, + 814y ) +120m,17, (4477, + 68 4,7, )J P 4 [2772 (7364, + 722,171,
4, (162,77, + 22,710, ) + 480,77, +3600 4,73 |W* +| 20, (g +60As77,m, +
+120,4m, ) + 61, (2524051, +20Amm, + 812,177 ) + 30, (25245700, + 204,17,

+8 1/137712 ) +120m,7, (4/11772 + 6841, )J ¥4 [277l (16&2771771 +72,1,1, ) +14404,m,n,1,
+2(164,1, + 722,01, )] w2y [m (A2 + 604y, + 12,4, ) + 61, (2522101,

+20A,,17, + 812,17} )]‘1/ +217, (162,77 + 722,141, )} +(e+ 6,20 ) (A + AY + LW + AW )3 =0. (45)

Upon collecting and equating the coefficients of the independent functions W’ (&) to zero, we obtain the following
outcomes:
Case I Withn, =0, 4, =0, 4 =0, Eq. (45) reduces to the following equation:
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M (L2 + 49 )+ M, (12450, 9° + 64,0, 9" + 94, P° + 42,09 )+ M, (360 4,7, %

+1204,7;W° +408 4,1, +1204,m,7,¥* + 814,/ ¥° +16/1277|2‘P2)

+a,{201604,7,"F° +50404,7," " + 29880 4,7, + 6720 2,17, ¥

1722577, ° + 2016 4,777, W + 7292, W + 640, | + (¢, +¢, 47 )

(A WO +3L AT 350,90 + 4P°) =0, (46)

To find the coefficients of W/ for j = 2, 3, 4, 5, 6, 7, 8, 9, we set up the system of algebraic equations by equating
them to zero:

P°:20160a,7; +(c, +c, A7) A7 =0,

P* :1680ag; +(c, +¢, A7) 4] =0,

W7 :120M,77; +9960ag,m; +(c, +c, A% ) A3 =0,

W 1207, M, +a,6720n77; +(c, +¢,A7 ) 43 =0,

W* M, +34M .1, +931an} =0,

WM, +20Mn, +336an =0,

WM, +M,9, + M, 81n] +a,7297; =0,

W2 M, +M,4n, + M,16n, +a,64n, = 0. 47)

The solution to the system of algebraic equations (47) provides us with the soliton wavenumber

o=ak—ak’—ak’+ak*+ak’—ak®, (48)

and the corresponding bright and singular soliton solutions, respectively:

u,(x, )= [—qu—IJl% sech’ p, (\f (x=70)) + 4, [—pqz—‘j sech’,, (yfn (- 71))}

2 2

exp [i(—/(x+a)t+¢90)], n, <0, (49)
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w ,(x, 1) = (—pqgj{ﬂz esch’ , (v (x=r0))+ 4 [ Zl J eseh’, (i, (x- 70)]

2

exp[i(—/(x+a)t+¢90)], n, <0, (50)

2 2

V(X 1) = a[_pqijl:lz SeChZM (\/U_l(x_}/t))+ A [_pq%j Sechqu (\/ﬂ_l(x—)/t))]

exp[i(—xx—i—wt—i—@o)], n, <0, (&2))

Vi (%, t) = a(pqﬂ
n

2

jl eseh?,, (i (x= 7))+ 4, [pqzljcsch3 (Vi (x- 7t))]

exp [i(—/(x+a)t+6’0)], 1, <0, (52)

where the parametric constraints are defined as follows:

Family 1
7 = 646M, ~20160a,1, 53
' 13q, ¢ +c, A’ (c1 +e, A’
Family 2
M, / 646M, 1680a,7,
n=- 5 = 7,5 =
! 13a,” \j(cl +c?2/12) 25 (cl +c?2/12) (54)
Family 3
M, ’ 397M, _ | 20160a,n,
n =- s Ay = | A =F |5
! 13a & (cl + czﬁ,z) 2 (cl + 62/12) ? (55)
Family 4
M, 397M, _ | 1680a,n,
77 = — . = - 77 Py =+ [ 77 .
' 13, & (cl + cz/lz) 2 A (cl + clez) ? (56)
Family 5

m=-

/ 20160@6772
T o A= o\
42. Sa6 c] + czﬂz Sk c1 + cz/lz) 57)
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Family 6

y = 77 1680a(,772 1680ag, s
. 5a6 c1 +c2 > c1 +c, A ) g %)

Family 7
214M, [ 2016041,
77 = — . = —]7 . =+ [~
| #25a, (c] +czﬂz) 2 (CI +Cz/12) 2 (59)
Family 8
214M, _ [ 1680,
77 = — , = | 77 5 =4+ [— 77 .
' 425, (e re)” 4 ret)"” (60)
.. 1
Case II Under the condition 77, = 277— =0, 4, =0, 4, =0, n, >0 Eq. (45) can be rewritten as:
2
2 3
MW+ M, [12772\1/5 +9p, 9 +%77—1‘I’J+M3 (3607722‘1‘7 + 40877, %° + 14457 W +15[’7—1jo
m m
4
t+a, {(20160773 + (e + @) A7) W7 +298807,75% 7 +157080,77%° +336677% +231’7—‘\P} =0. 61)
7,

We formulate a system of algebraic equations to find the coefficients of ¥/ forj =1, 2, 3, 4, 5, 6, 7, 8, 9, equating
them to zero:

W71 20160m; +(c, + e, ) A =0,
¥ : M, +83a.n, =0,
¥ M, +34M,n, +1309a,77 =0,
WP M, +9n,M, +144n’ M, +3366m;,a, =0,
¥: M, +10M,, +154an’ =0. (62)
Solving the system of algebraic equations (62) yields the soliton wavenumber
= k(a1 —a,k—3a,k’ —35a6k5), (63)

as well as the dark and singular soliton solutions, respectively:

Volume 5 Issue 3 |2024| 3849 Contemporary Mathematics



u, ,(x, 1) = ( 771 ) 2, tanh® [ —%(x—yt)]exp[i(—/(x+wt+6’0)], n, >0,
u, ,(x, t) = 771 2772 /?Gcoth3 ( —%(x—;/t)]exp[i(—icx+a)t+90)J, 17, >0,

v, )=a Aﬂz ﬂgtanh3 ( L(x- 7t)jexp[z Kx+a)t+t9] n, >0,

vy 4 (x, )= a4/ /lgcoth3 [ Lx— yt)jexp[z —Kx+ot+0, J 7, >0,

where the parameters are constrained by:

Family 1
17 -201607 M
’70:__1>/13: —22772:“67&0’ 771:__3'
47, (Cl +o,a ) 83a,
Family 2
2 201 —17M, F,/289M?% —(1309a, ) M
%:1m’%: 06m§%,%¢a,hz T2 6)2,2WM§>uw%JM;
47, (c1 +c,a ) 13094,
Family 3
17} —20160 —8M, F,/64M; —(374a, )M
77():_77_1’}‘32 —7722 b dg %0, 7, = : \/ - ( () 2’64M32>(374a6)M
47, (¢ +ca?) 374a,
Family 4
112 —20160 —5M, F.J25M; —(154a,) M
7, :_’7_', ﬂ3 = —22772, ag #0, n = 3 \/ 3 ( 6) 2 s 25M32 >(154a6)M2.
4 1, (cl +c,a ) 154&16

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)
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6. Results and discussion

Figure 1 illustrates the behavior of bright soliton solutions u(x, ¢) and v(x, ¢) through various visualizations,
including surface plots, contour plots, and 2D plots. The bright soliton solutions are derived from the complex-valued
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expressions (49) and (51) along with (53). The parameters are set as ¢t = 1.3, 1.4, 1.5, 1.6, 1.7 and a = 2, 4, 6, with
specific values for other parameters: @, =1, a,=1,a;=1,a,=1,as=1,a,=-1,b,=1,b,=1,b,=1,b;=1,b,=1,bs=1,
bg=-1,c,=1,c,=1,A=Lk=1,p=1,9g=1andn, =-1 Figures 1(a) and 1(b) depict the evolution of bright solitons
in three-dimensional space. The solitons maintain their shape and peak intensity over time, characteristic of bright
solitons which are localized pulses that do not disperse. The surface plots clearly show the stability and persistence of
these solitons as ¢ increases. Figures 1(c) and 1(d) provide a two-dimensional view of the soliton intensity distribution
over the x and ¢ plane. The bright soliton contours display high-intensity regions, corresponding to the soliton peaks,
surrounded by lower-intensity areas. These plots emphasize the localized nature of bright solitons. Figure 1(e) shows
the soliton profiles at different time instances, demonstrating how the solitons maintain their peak amplitude and shape.
Figure 1(f) explores the effect of varying the parameter a, revealing that changes in «a alter the width and amplitude
of the solitons. Higher values of a result in narrower and taller solitons, indicating a direct relationship between a
and the soliton’s properties. Figure 2 presents the dark soliton solutions u(x, 7) and v(x, ), derived from the complex-
valued expressions (64) and (66) along with (68). The dark soliton solutions are characterized by a localized dip in an
otherwise continuous wave background. Figures 2(a) and 2(b) illustrate the evolution of dark solitons over time. Unlike
bright solitons, dark solitons appear as depressions or dips in the wave profile. These plots show the stability of the
dark solitons and their persistence over time. Figures 2(c) and 2(d) highlight the intensity distribution of dark solitons.
The dark solitons are represented by low-intensity regions within a continuous background, emphasizing their nature as
dips in the wave amplitude. Figure 2(e) shows the soliton profiles at different time instances, indicating that the depth
and width of the solitons remain consistent over time. Figure 2(f) examines the effect of varying o, showing that higher
values of o increase the depth and decrease the width of the solitons. This relationship highlights how a influences
the properties of dark solitons. Figures 3 and 4 display the singular soliton solutions u(x, f) and v(x, ¢), derived from
the complex-valued expressions (50) and (52) via (53) for Figure 3, and (65) and (67) via (68) for Figure 4. Singular
solitons are characterized by their unique profiles which may include singularities or infinite peaks. Figures 3(a), 3(b),
4(a), and 4(b) demonstrate the evolution of singular solitons. These solitons exhibit sharp peaks or singularities that
remain stable over time. The plots highlight the distinct nature of singular solitons compared to bright and dark solitons.
Figures 3(c), 3(d), 4(c), and 4(d) for singular solitons show regions of very high intensity, corresponding to the singular
peaks. These plots emphasize the unique characteristics of singular solitons, with contours sharply focusing around
the singularities. Figure 3(e) and 4(e) show the soliton profiles over time, illustrating the persistence of the singularity.
Figure 3(f) and 4(f) explore the effect of a, revealing that changes in a significantly impact the shape and intensity of
the singularities. Higher o values result in more pronounced singularities, indicating a strong dependence of singular
soliton properties on a. The figures collectively highlight the distinct characteristics of bright, dark, and singular soliton
solutions. Bright solitons are localized peaks that maintain their shape over time, while dark solitons are localized dips
in a continuous wave background. Singular solitons exhibit unique profiles with singularities or infinite peaks. The effect
of the parameter « is significant across all types of solitons, influencing their width, amplitude, and overall shape. These
visualizations provide valuable insights into the dynamics and stability of different soliton solutions under varying
conditions.

7. Conclusion

The paper recovered highly dispersive optical soliton solutions for the NLSE with Kerr law of SPM with
polarization-mode dispersion. The integration scheme, Sardar’s sub-equation method, was implemented. Thus a
complete picture of soliton solutions is obtained. The results are interesting in the sense that future holds strong for
the model. Later the model will be studied after extending it to dispersion-flattened fibers. This would give a complete
picture with highly dispersive optical solitons. The results of such research activities are awaited at the current moment
and will be made available and aligned with the pre-existing works [21-29].
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