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spectrum of optical solitons has been thus recovered. The parameter constraints are also displayed for the existence of 
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1. Introduction
The concept of highly dispersive optical solitons was conceived slightly less than a decade ago when the chromatic 

dispersion ran low [1-5]. The low count of dispersion is replenished with higher order ones that would lead to the 
concept of highly dispersive optical solitons [6-10]. These additional dispersive effects stem from inter-modal dispersion 
(IMD), third-order dispersion (3OD), fourth-order dispersion (4OD), fifth-order dispersion (5OD) and finally the sixth-
order dispersion (6OD). One of the cons with this concept of highly dispersive optical solitons, as the title implies, is 
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that the solitons would be rendered to be dispersive and thus significant soliton radiation would ensue. Additionally, the 
solitons would also be drastically slow. From a mathematical standpoint, these effects are ignored and the integrability 
of the model is being focused on.

The model has been studied extensively for the scalar version [11-15]. The soliton solutions have been revealed 
and the conservation laws have been recovered [16-20]. The current paper turns the page. The model is studied with 
Kerr law of self-phase modulation (SPM) with differential group delay. The governing model is first written with 
polarization-mode dispersion and subsequently the Sardar sub-equation approach has been implemented to recover 
its soliton solutions. A full spectrum of soliton solutions has been thus recovered. The parameter constraints for the 
existence of such solitons that naturally emerge from the analysis are also presented. The numerical simulations also 
support the analysis.

2. Governing Model
The scalar form of the nonlinear Schrödinger equation (NLSE), which models the propagation of solitons through 

an optical fiber, is expressed as [1-5]:

( )2
1 2 3 4 5 6 | | 0,t x xx xxx xxxx xxxxx xxxxxxiq ia q a q ia q a q ia q a q F q q+ + + + + + + = (1)

where q(x, t) is a complex-valued function representing the wave profile. The independent variables x and t denote 
the spatial and temporal coordinates, respectively, and 1i = − . The real-valued coefficients aj for 1 ≤ j ≤ 6 represent 
intermodal dispersion (IMD), chromatic dispersion (CD), third-order dispersion (3OD), fourth-order dispersion (4OD), 
fifth-order dispersion (5OD), and sixth-order dispersion (6OD), respectively. Lastly, the functional F describes the 
nonlinear self-phase modulation (SPM) as:

( ) ( )2 2
m,n 1| | U ( ,  ) ( ,  );  .kF q q C n n m m R∞

=∈ − × −

The NLSE for highly dispersive optical solitons with the Kerr law of refractive index in a polarization-preserving 
optical fiber is expressed as:

2
1 2 3 4 5 6 | | 0,t x xx xxx xxxx xxxxx xxxxxxiq ia q a q ia q a q ia q a q c q q+ + + + + + + = (2)

where the constant c is the coefficient of the Kerr law nonlinearity. For birefringent fibers, this model separates into two 
components as follows:

( )

1 2 3 4 5

2 2
6 1 2| | | | 0,

t x xx xxx xxxx xxxxx

xxxxxx

iu ia u a u ia u a u ia u

a u c u c v u

+ + + + +

+ + + = (3)

and

(4)( )

1 2 3 4 5 6

2 2
1 2| | | | 0.

t x xx xxx xxxx xxxxx xxxxxxiv ib v b v ib v b v ib v b v

d v d u v

+ + + + + +

+ + =
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3. Travelling wave solution
To address the coupled system (3), we assume the following solution structure:

( , )
1

( , )
2

( ,  ) ( )

( ,  ) ( )

,

,

i x t

i x t

u x t U e

v x t U e

φ

φ

ξ

ξ

=

=

(5)

(6)

where ξ = x – γt and the real-valued phase component is 0( ,  )x t kx tφ ω φ= − + + , while 1( )U ζ  and 2 ( )U ζ  are the real-
valued amplitude components of the wave. Here, γ is the soliton velocity, ω is the soliton frequency, k is the soliton 
wavenumber, and 0φ  is the phase constant. Utilizing Eqs. (5, 6) and their derivatives, Eq. (3) transforms to:

2 (3) 2 3
1 1 1 1 1 2 1 1 1 3 1 1 1 1

(4) (3) 2 3 4 (5) (4) 2 (3) 3 4 5
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a U ikU
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 ′′ ′ ′ ′
 

+ −



− ( )2 (4) 3 (3) 4 5 6 2 2
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 (7)

In the case of Eq. (4), it changes to:
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=


(8)

Eq. (7) separates into real and imaginary parts, which are:

( ) ( )

( ) ( )

2 3 4 5 6 2 3 4
1 2 3 4 5 6 1 2 3 4 5 6 1

2 (4) (6) 3 2
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5 15 0,

a k a k a k a k a k a k U a a k a k a k a k U

a a k a k U a U c U c U U
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+ + − + + + = (9)

and
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The real and imaginary parts of Eq. (8) are derived as:
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(11)

( ) ( )

( ) ( )

2 3 4 5 6 2 3 4
1 2 3 4 5 6 2 2 3 4 5 6 2

2 (4) (6) 3 2
4 5 6 2 6 2 1 2 2 2 1

3 6 10 15
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and
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{ } { }
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2 3 4 5 2 3 (3)
1 2 3 4 5 6 2 3 4 5 6 2

(5)
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6 0.
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′

Deriving from Eq. (10), the soliton velocity is:

(13)2 3 4 5
1 2 3 4 5 62 3 4 .5 6a a k a k a k a k a kγ = − − + + −

The soliton velocity is obtained from Eq. (12), as presented below

(14)2 3 4 5
1 2 3 4 5 62 3 4 5 6 .b b k b k b k b k b kγ = − − + + −

The parameter constraint arises from equating the soliton velocities γ in both (13) and (14) as follows:

(15)2 3 4 5 2 3 4 5
1 2 3 4 5 6 1 2 3 4 5 62 3 4 5 6 2 3 4 5 6 ,a a k a k a k a k a k b b k b k b k b k b k− − + + − = − − + + −

where
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Thus, we arrive at:

(20)

(21)

(22)
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The coupled system of equations (4) can be simply uncoupled under the assumption

2 1,U Uα= (23)
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where α is a real number. Consequently, Equations (9) and (11) can be expressed as:

( ) ( )

( ) ( )
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4. Sardar sub-equation method (SSEM)
An important feature of the SSEM is its capability to generate a wide range of soliton solutions, including dark, 

bright, and singular forms, as well as complex configurations such as mixed dark-bright, dark-singular, bright-singular, 
and mixed singular solutions. Moreover, it provides solutions in rational, periodic, trigonometric, and various other 
formats.

In this method of solving Eq. (24), we proceed by assuming the solution is structured as [24]

N
1 N0
( ) ( ), 0,n

nn
U ξ λ ξ λ

=
= Ψ ≠∑ (26)

where nλ  (n = 0, 1, ..., N) are constants to be determined later. The positive integer N is determined by applying the 
homogeneous balance method principle to Eq. (24), balancing the nonlinear term with the highest-order derivative. 
Additionally, the function ( )ξΨ  in Eq. (26) must satisfy the following equation

4 2
2 1 0( ) ( ) ( ) ,ξ η ξ η ξ η′Ψ = Ψ + Ψ + (27)

where ( 0,  1, , )l l Nη =   are real constants and 2 0η ≠ . In accordance with the parameters lη , Eq. (25) exhibits various 
established solutions, outlined below:

Case I Under the conditions where 0 1 20,   0 and  0,η η η= > ≠  the solutions correspond to bright and singular 
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solitons, respectively:

( )1
1 2

2
( ) sech ,  0,

1 pqpq ηξ η ξ ηη
±  Ψ = ± − < 

 
(28)

and

( )1
2 1 2

2
( ) csch ,  0,pqpq ηξ η ξ ηη
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pe qe pe qeη ξ η ξ η ξ η ξ
η ξ η ξ

− −
= =
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(30)

Case II When 2 2
0 1 2 2 1

1  and 0,  0,
4

η η η η η= > <  we acquire the dark and singular soliton solutions, respectively:

11
3

2
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(31)
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11
4

2
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where
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= =
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(33)

5. Application of the modified sardar sub-equation method
Starting with the application of the homogeneous balance method principle between the nonlinear term U1

(6) and 
the linear term U1

3 from Eqs. (24) and (25), our analysis leads to N + 6 = 3N. From this, we derive N = 3, thereby 
transforming Eq. (26) to:

(34)

(35)

(36)

(37)

( ) ( )

( ) ( )( )

( ) ( )( ) ( )

2 3
1 0 1 2 3

2 4 2
1 1 2 3 2 1 0
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U

U

U

ξ λ λ λ λ

ξ λ λ λ η η η

λ η λ η λη λ η λ η λη λ η λ η

λ η λ η λη λ η λ η λη λ η η η η

= + Ψ + Ψ + Ψ

′ = + Ψ + Ψ Ψ + Ψ +

′′ = Ψ + Ψ + + Ψ + Ψ + + Ψ +

= Ψ + Ψ + + Ψ + Ψ + + Ψ + Ψ +
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( )(

( ) ( )

) )(

(4) 2 7 2 6 5 4
1 3 2 2 2 2 1 2 3 1 2 1 2

2 3 2
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2
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= Ψ + Ψ + + Ψ + Ψ
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Eq. (24) can be written as:

(41)( )(4) (6) 2 3
1 1 2 1 3 1 6 1 1 2 1 0,M U M U M U a U c c Uλ+ + + +′ =′ +

where:

(42)

(43)

( )
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2 2 3 4 5 6

,

3 6 10 15 ,
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( )2
3 4 5 65 15 .M a a k a k= + − (44)

Substituting Eqs. (36), (38), and (40) into Eq. (41) and taking into consideration Eq. (27), we get:

( ) ( )(

( ) ) ((

) ( ) (

)

2 3 5 4 3
1 0 1 2 3 2 3 2 2 2 1 2 3 1

2 2 7 2 6
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+ Ψ + Ψ + + + Ψ +

+ Ψ + + + +( ) ) {
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( ) ( ) (

) ( )
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1440
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λ η ηη
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+

 + + Ψ + + + + 

+ + Ψ + + + + + Ψ + Ψ + Ψ = (45)

Upon collecting and equating the coefficients of the independent functions ( )j ξΨ  to zero, we obtain the following 
outcomes:

Case I With 0 0 10,  0,  0,η λ λ= = =  Eq. (45) reduces to the following equation:
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( ) ( ) (
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To find the coefficients of jΨ  for j = 2, 3, 4, 5, 6, 7, 8, 9, we set up the system of algebraic equations by equating 
them to zero:

(47)
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The solution to the system of algebraic equations (47) provides us with the soliton wavenumber

2 3 4 5 6
1 2 3 4 5 6 ,a k a k a k a k a k a kω = − − + + − (48)

and the corresponding bright and singular soliton solutions, respectively:
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2 2

0 2
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− + + <   (49)
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(50)

(51)

(52)

where the parametric constraints are defined as follows:
Family 1
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Case II Under the condition 
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(61)

We formulate a system of algebraic equations to find the coefficients of jΨ  for j = 1, 2, 3, 4, 5, 6, 7, 8, 9, equating 
them to zero:
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Solving the system of algebraic equations (62) yields the soliton wavenumber

(63)( )3 5
1 2 4 63 35 ,k a a k a k a kω = − − −

as well as the dark and singular soliton solutions, respectively:
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where the parameters are constrained by:
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Figure 4. Profile of singular soliton solutions; (a) Surface plot; (b) Surface plot; (c) Contour plot; (d) Contour plot; (e) 2D plot; (f) 2D plot

6. Results and discussion
Figure 1 illustrates the behavior of bright soliton solutions u(x, t) and v(x, t) through various visualizations, 

including surface plots, contour plots, and 2D plots. The bright soliton solutions are derived from the complex-valued 
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expressions (49) and (51) along with (53). The parameters are set as t = 1.3, 1.4, 1.5, 1.6, 1.7 and α = 2, 4, 6, with 
specific values for other parameters: a1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 1, a6 = –1, b1 = 1, b1 = 1, b2 = 1, b3 = 1, b4 = 1, b5 = 1, 
b6 = –1, c1 = 1, c2 = 1, 1λ = , k = 1, p = 1, q = 1 and 2 1η = − . Figures 1(a) and 1(b) depict the evolution of bright solitons 
in three-dimensional space. The solitons maintain their shape and peak intensity over time, characteristic of bright 
solitons which are localized pulses that do not disperse. The surface plots clearly show the stability and persistence of 
these solitons as t increases. Figures 1(c) and 1(d) provide a two-dimensional view of the soliton intensity distribution 
over the x and t plane. The bright soliton contours display high-intensity regions, corresponding to the soliton peaks, 
surrounded by lower-intensity areas. These plots emphasize the localized nature of bright solitons. Figure 1(e) shows 
the soliton profiles at different time instances, demonstrating how the solitons maintain their peak amplitude and shape. 
Figure 1(f) explores the effect of varying the parameter α, revealing that changes in α alter the width and amplitude 
of the solitons. Higher values of α result in narrower and taller solitons, indicating a direct relationship between α 
and the soliton’s properties. Figure 2 presents the dark soliton solutions u(x, t) and v(x, t), derived from the complex-
valued expressions (64) and (66) along with (68). The dark soliton solutions are characterized by a localized dip in an 
otherwise continuous wave background. Figures 2(a) and 2(b) illustrate the evolution of dark solitons over time. Unlike 
bright solitons, dark solitons appear as depressions or dips in the wave profile. These plots show the stability of the 
dark solitons and their persistence over time. Figures 2(c) and 2(d) highlight the intensity distribution of dark solitons. 
The dark solitons are represented by low-intensity regions within a continuous background, emphasizing their nature as 
dips in the wave amplitude. Figure 2(e) shows the soliton profiles at different time instances, indicating that the depth 
and width of the solitons remain consistent over time. Figure 2(f) examines the effect of varying α, showing that higher 
values of α increase the depth and decrease the width of the solitons. This relationship highlights how α influences 
the properties of dark solitons. Figures 3 and 4 display the singular soliton solutions u(x, t) and v(x, t), derived from 
the complex-valued expressions (50) and (52) via (53) for Figure 3, and (65) and (67) via (68) for Figure 4. Singular 
solitons are characterized by their unique profiles which may include singularities or infinite peaks. Figures 3(a), 3(b), 
4(a), and 4(b) demonstrate the evolution of singular solitons. These solitons exhibit sharp peaks or singularities that 
remain stable over time. The plots highlight the distinct nature of singular solitons compared to bright and dark solitons. 
Figures 3(c), 3(d), 4(c), and 4(d) for singular solitons show regions of very high intensity, corresponding to the singular 
peaks. These plots emphasize the unique characteristics of singular solitons, with contours sharply focusing around 
the singularities. Figure 3(e) and 4(e) show the soliton profiles over time, illustrating the persistence of the singularity. 
Figure 3(f) and 4(f) explore the effect of α, revealing that changes in α significantly impact the shape and intensity of 
the singularities. Higher α values result in more pronounced singularities, indicating a strong dependence of singular 
soliton properties on α. The figures collectively highlight the distinct characteristics of bright, dark, and singular soliton 
solutions. Bright solitons are localized peaks that maintain their shape over time, while dark solitons are localized dips 
in a continuous wave background. Singular solitons exhibit unique profiles with singularities or infinite peaks. The effect 
of the parameter α is significant across all types of solitons, influencing their width, amplitude, and overall shape. These 
visualizations provide valuable insights into the dynamics and stability of different soliton solutions under varying 
conditions.

7. Conclusion
The paper recovered highly dispersive optical soliton solutions for the NLSE with Kerr law of SPM with 

polarization-mode dispersion. The integration scheme, Sardar’s sub-equation method, was implemented. Thus a 
complete picture of soliton solutions is obtained. The results are interesting in the sense that future holds strong for 
the model. Later the model will be studied after extending it to dispersion-flattened fibers. This would give a complete 
picture with highly dispersive optical solitons. The results of such research activities are awaited at the current moment 
and will be made available and aligned with the pre-existing works [21-29].
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