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Abstract: The nonlocal operators have found applications in various areas of contemporary science. The anomalous
diffusion phenomena have been modeled by the fractional Poisson boundary-value problem. Electromagnetic fluids
have been described by fractional differential equations. The fractional differential operators have found applications
in material sciences, planar and space elasticity, probabilistic theory, harmonic analysis, and even in finance. The
inverse inequality plays an important role in Numerical Analysis. The well-known results on inverse inequalities have
been obtained in bounded domains and finite-dimensional spaces. Naturally, a new challenge arises to obtain inverse
inequalities in the fractional Sobolev spaces. This paper is devoted to differential inequalities between fractional Sobolev
norms. We expand the notion of a monotone function into a new notion supermonotone function and rigorously prove an
inverse inequality for a class of differentiable functions in unbounded domains. Examples that demonstrate the theory are
presented.
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1. Introduction
The nonlocal operators defined in fractional Sobolev spaces are basic tools for solving real-life problems in various

applied areas:
• electromagnetic fluids;
• image processing;
• material sciences;
• planar and space elasticity;
• probabilistic theory;
• harmonic analysis [1, 2];
• the anomalous diffusion phenomena.
Fractional boundary-value problems have been an object of great interest in the last decades [3–7]. The fractional

Poisson boundary-value problem emerges as a pivotal mathematical framework, combining the principles of fractional
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calculus and the classical Poisson equation. This mathematical confluence not only presents intriguing theoretical
challenges but also finds profound applications across various scientific and engineering areas [8]. The fractional Poisson
boundary-value problem finds applications in modeling anomalous diffusion processes. Traditional diffusion models
assume a constant rate, while fractional derivatives allow for the inclusion of memory effects, enabling the accurate
portrayal of phenomena such as subdiffusion and superdiffusion. These features have implications for understanding the
transport of particles in porous media, biological systems, and other intricate environments [9]. The Poisson problem have
found applications in environmental science, aiding in the modeling of pollutant dispersion and contaminant transport in
heterogeneous media. In biology, the problem contributes to understanding processes with memory, such as the diffusion
of substances within living tissues [10, 11].

Except in some rare cases the fractional boundary-value problems have been solved numerically [3]. Such problems
have been presented in weak forms by nonlocal fractional differential operators. The fractional embedding theorems
declare estimating of given Sobolev norms by norms from higher Sobolev spaces [12]. The theory of Numerical Analysis
requires plenty of results on various kinds of differential inequalities in bounded [13–15] and unbounded domains [16, 17].

A relation between Sobolev norms is called an inverse inequality if a given Sobolev norm (seminorm) is estimated by
a lower-order Sobolev norm (seminorm). Fractional Sobolev embedding inequalities [18, 19], Poincaré-type inequalities
[20, 21], and fractional inverse inequalities [22] have been widely used to prove optimal error estimates for finite element
approximations of weak solutions of elliptic boundary value problems. However, there is a significant difference between
Poincaré inequalities and the inverse inequalities for fractional Sobolev norms. The Poincaré inequalities have been proved
in fractional Sobolev spaces but all known inverse inequalities have been validated in finite-dimensional spaces [22, 23].
Traditionally, inverse inequalities have been applied in finite element spaces [24], which involve piecewise polynomial
functions. The inverse inequalities in finite-dimensional spaces [14, 15] are true due to the fact that all norms in these
spaces are equivalent. The real problem of inverse inequality in finite element spaces is with the corresponding constant.
This constant is independent of the estimating function. Still, it depends on the measure of the supporting domain and
tends to infinity when the measure of the domain approaches zero [15].

This paper is devoted to differential inequalities in unbounded domains. The inverse inequalities play an important
role in obtaining the asymptotic rate of convergence of the approximate solutions [25]. We emphasize that the classical
inverse inequalities are regarding norms in finite-dimensional spaces and bounded subdomains of n-dimensional Euclidean
spaces [23]. Our goal in this investigation is to obtain an inverse inequality between fractional Sobolev norms in
unbounded domains. The paper is organized as follows. Preliminary definitions and denotations are described in Section
2. Estimates between Sobolev norms and the inverse inequality are proved in Section 3. In this section, a new notion
of supermonotone function is introduced. Examples of supermonotone functions are considered in Section 4. Section 5
deals with some concluding results.

2. Preliminary definitions and denotations
We denote the set of the real positive numbers by R+. The harmonic number Hσ for an arbitrary real σ is defined by

Hσ =
∫ 1

0

1− xσ

1− x
dx.

We define a list of special functions as follows:
• the gamma function of a real-valued argument

Γ(x) =
∫ ∞

0
tx−1e−tdt,
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• the beta function

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt,

• and the incomplete beta function

B(x, y, z) =
∫ x

0
ty−1(1− t)z−1dt.

Additionally, we use the generalized hypergeometric function

kFl(p, q, x), p ∈ Rk, q ∈ Rl , x ∈ R, k, l ∈ N,

which is determined by:

kFl(p, q, x) =
∞

∑
i=0

∏k
j=1(p j)i

∏l
j=1(q j)i

xi

i!
,

where

(x)i =
Γ(x+ i)

Γ(x)
(the Pochhammer symbol).

Let Ωt be a simply connected domain in Rn with Lipschitz continuous boundary. The Lebesgue measure of Ωt

depends on the real parameter t that could tend to infinity. The set Ω⊥
t is determined so that

Rn = Ωt ∪Ω⊥
t and Ωt ∩Ω⊥

t = /0.

The fractional Sobolev space W s
p(Ωt) for whatever positive real t is defined by:

W s
p(Ωt) =

{
v ∈ Lp(Ωt) | |v|s, p, Ωt <+∞, s ∈ (0, 1), p ∈ [1, +∞)

}
,

where

|v|s, p, Ωt
=

(∫
Ωt

∫
Ωt

|v(y)− v(x)|p

|y− x|n+ps dxdy
) 1

p

. (1)

The integral in (1) is well-known as the Gagliardo seminorm [12]. The norm in W s
p(Ωt ) is defined by

Volume 5 Issue 4|2024| 5993 Contemporary Mathematics



||v||s, p, Ωt =

(∫
Ωt

|v(x)|pdx+
∫

Ωt

∫
Ωt

|v(y)− v(x)|p

|y− x|n+ps dxdy
) 1

p

.

For more details regarding fractional Sobolev norms and embedding theorems, we refer the reader to [12].
We concentrate our considerations on the case p = 2. That is why we write Hs(Ωt) instead of W s

2 (Ωt) and |v|s, Ωt ,
instead of |v|s, 2, Ωt . The norm || · ||s, Ωt and the seminorm | · |s, Ωt in the Sobolev space Hs(Ωt) are related [4] by:

|| · ||2s, Ωt
= || · ||20, Ωt

+ | · |2s, Ωt
.

We define the Hilbert space

Vt =
{

v ∈ Hs(Rn) | v = 0 in Ω⊥
t

}
.

3. Estimates between fractional Sobolev norms
In this section we suppose that Ωt is a simply connected subset of R. So, the norm (1) is reduced to

|v|s, Ωt
=

(∫
Ωt

∫
Ωt

|v(y)− v(x)|2

|y− x|1+2s dxdy
) 1

2

. (2)

For the sake of simplicity, we assume that

Ωt = {x ∈ (1, t) | t > 1}

but all results for

Ωt = {x ∈ (a, t) | a ∈ R+, t > a}

can be obtained in the same way. The set Hs(Ωt) is a Hilbert space with the scalar product

⟨u, v⟩s, Ωt
=

∫
Xt

(u(x)−u(y))(v(x)− v(y))
|x− y|1+2s dxdy,

where Xt = Ωt ×Ωt . Additionally, we denote by

X+
t = {(x, y) ∈ Xt | x > y} .
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The application of the finite element method for solving fractional boundary problems requires a weak representation
of the original problem. The operator Lu in weak form is called the weak fractional Laplacian [6]. We define the operator
Lu related to the space Hs(Ωt) by

(Lu)(v) =
c(s)

2

∫
R

∫
R

(u(x)−u(y))(v(x)− v(y))
|x− y|1+2s dxdy

=
c(s)

2

(∫
Ωt

∫
Ωt

(u(y)−u(x))(v(y)− v(x))
|y− x|1+2s dxdy

+2
∫

Ωt

∫
Ω⊥

t

(u(y)−u(x))(v(y)− v(x))
|y− x|1+2s dxdy, u, v ∈ Vt .

The constant

c(s) =
4sΓ

(
s+

1
2

)
√

πΓ(1− s)

depends only on the index of the fractional Sobolev space. The operator L should be considered in the sense of distribution.
The theoretical properties of (Lv)(v), v ∈ Vt , t →+ ∞ are of considerable practical importance. That is why the main goal
of this investigation is to present a sufficient condition for the existence of the fractional Sobolev norms in unbounded
domains.

The lack of monotonicity for specific classes of functions provokes various researchers to find weak versions of this
notion. We emphasize that the property quasi-monotonicity has been independently defined by Shi and Xiao [18], and
Tantardini and Verfürth [26] in two different ways.

Definition 1 Let the function v : R → R have a finite support Ωt and satisfy:
• v is strictly increasing, square summable, and positive in Ωt ;
• v fulfills

v(x)− v(y)
|x− y|

≤ β
v(x)
|y|

, y < x, ∀x, y ∈ Ωt , β ∈ R+. (3)

Then we say that v is superincreasing.
Analogously.
Definition 2 Suppose that the function v : R → R has a finite support Ωt and satisfy:
• v is strictly decreasing, square summable, and positive in Ωt ;
• v fulfills

v(y)− v(x)
|x− y|

≤ β
v(y)
|y|

, y < x, ∀x, y ∈ Ωt , β ∈ R+. (4)

Then v is called superdecreasing.
Definition 3 A function v is called supermonotone if it is superincreasing or superdecreasing.
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Remark 1 The notion supermonotone requires the function v to be bounded from below, i.e. there is a positive
constant v0 so that

0 < v0 ≤ v(x), ∀x ∈ Ωt .

The next theorem declares conditions for the supermonotone functions to belong to the fractional Sobolev spaces in
unbounded domains. This theorem is a crucial point for proving the inverse inequality between fractional Sobolev norms.

Theorem 1 Let the function v ∈ Vt , t ∈ R+ with a finite support Ωt be supermonotone, and normed by

v̂ =
v

||v||0, Ωt

.

Then v̂ ∈ V+∞ for all s ∈
[

1
2
, 1

)
.

Proof. For the sake of simplicity, we prove the theorem when β = 1. First, we assume that v is superincreasing. We
estimate the limit

Λ = lim
t→+∞

∫
Ωt

∫
Ωt

(v̂(x)− v̂(y))2

|x− y|1+2s dxdy

from above. Having in mind the definition of v̂(x), we obtain

Λ = lim
t→+∞

1
||v||20, Ωt

∫
Xt

(v(x)− v(y))2

|x− y|1+2s dxdy

= lim
t→+∞

2
||v||20, Ωt

∫
X+

t

(v(x)− v(y))2

|x− y|1+2s dxdy

=2 lim
t→+∞

1
||v||20, Ωt

∫ t

1

∫ x

1

(v(x)− v(y))2

|x− y|1+2s dxdy.

By applying (3) and L’Hospital’s rule, we continue with

Λ ≤ 2 lim
t→+∞

∫ t
1

v2(t)(t−y)1−2s

y2 dy

v2(t)
= 2 lim

t→+∞

∫ t

1

(t − y)1−2s

y2 dy. (5)

We consider two cases to calculate the right-hand side of (5).
The first one is when s =

1
2
. Then

Λ ≤ 2 lim
t→+∞

∫ t

1

1
y2 dy = 2.
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In the second case, we assume that s ∈ (0, 1)\
{

1
2

}
. By direct straight forward computations, we obtain

Λ ≤ 2 lim
t→+∞

1
t1+2s

[
t(t −1+2s)+(1−2s)

(
tH−2s + 3F2

(
(1, 1, 1+2s), (2, 3),

1
t

)
s− t ln t

)]

= 2 lim
t→+∞

1
t1+2s [t(t −1+2s)+(2s−1)t ln t] .

The limit Λ is finite if s ∈
[

1
2
, 1

)
, i.e. the first part of the theorem is proved.

On the other hand, let v be superdecreasing. Then by applying (4) and L’Hospital’s rule, we have

Λ = 2 lim
t→+∞

1
||v||20, Ωt

∫ t

1

∫ x

1

(v(x)− v(y))2

|x− y|1+2s dydx

≤ 2 lim
t→+∞

∫ t
1

v2(y)(t−y)1−2s

y2 dy

v2(t)
≤ 2 lim

t→+∞

(
v(1)
v(t)

)2 ∫ t

1

(t − y)1−2s

y2 dy.

Since the function v is supermonotone there exists a constant µ > 0 so that
v(1)
v(t)

< µ . Then

Λ ≤ 2µ2 lim
t→+∞

∫ t

1
(t − y)1−2sy−2dy.

As in the previous case, this integral converges if s ∈
[

1
2
, 1

)
.

Theorem 2 Let the function v ∈ Vt have a finite support Ωt and it is monotone and positive in Ωt . We suppose also
that v satisfies:

α
v(y)

x
≤ v(x)− v(y)

x− y
, (x, y) ∈ X+

t if v is increasing in Ωt (6)

or

α
v(x)

x
≤ v(y)− v(x)

x− y
, (x, y) ∈ X+

t if v is decreasing

with α > 0. Then we assert that v /∈ V+∞ if

v(x)≥ xs− 1
2 , ∀x ∈ Ωt , s ∈ (0, 1). (7)
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Proof. We present a proof when α = 1 and in the case when v is increasing. The proof when v is decreasing can be
made in the same way. Let the estimates (6) and (7) be true. Then by applying (6), we obtain

Λ = lim
t→+∞

∫
Ωt

∫
Ωt

(v(x)− v(y))2

|x− y|1+2s dxdy = 2 lim
t→+∞

∫
X+

t

(v(x)− v(y))2

|x− y|1+2s dxdy

= 2 lim
t→+∞

∫ t

1

∫ x

1

(v(x)− v(y))2

|x− y|1+2s dydx ≥ 2 lim
t→+∞

∫ t

1

∫ x

1

v2(y)
x2(x− y)2s−1 dydx

≥ 2 lim
t→+∞

∫ t

1

1
x2

∫ x

1

y2s−1

(x− y)2s−1 dydx.

We denote

I(x) =
∫ x

1

y2s−1

(x− y)2s−1 dy.

We change the variables in I(x) by p =
x
y
and obtain

I(x) = x
∫ x

1

d p
p2(p−1)2s−1 .

Then

Λ ≥ 2 lim
t→+∞

∫ t

1

I(x)
x2 dx = 2 lim

t→+∞

∫ t

1

1
x

∫ x

1

d p
p2(p−1)2s−1 dx

= 2 lim
t→+∞

∫ t

1

1
x

(
π(1−2s)

sin2πs
−B

(
1
x
, 2s, 2−2s

))
dx

= 2 lim
t→+∞

π(1−2s)
sin2πs

∫ t

1

dx
x
−2 lim

t→+∞

∫ t

1

1
x

B
(

1
x
, 2s, 2−2s

)
dx.

(8)

We explain that the limit

Λ1 = lim
t→+∞

∫ t

1

1
x

B
(

1
x
, 2s, 2−2s

)
dx <+∞. (9)

To this end, we estimate the incomplete beta function B
(

1
x
, 2s, 2(1− s)

)
from above. We consider three different

cases: s ∈
(

0,
1
2

)
, s =

1
2
and s ∈

(
1
2
, 1

)
.
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If s ∈
(

0,
1
2

)
, then 1−2s > 0 and

B
(

1
x
, 2s, 2−2s

)
=

∫ 1
x

0

(1− p)1−2s

p1−2s d p <
∫ 1

x

0

d p
p1−2s =

1
2sx2s .

Therefore

0 < Λ1 ≤ lim
t→+∞

1
2s

∫ t

1

dx
x1+2s =

1
4s2 <+∞.

Thus, for any fixed s ∈
(

0,
1
2

)
, we have Λ =+∞.

In the second case s =
1
2
. Then

B
(

1
x
, 1, 1

)
=

∫ 1
x

0
d p =

1
x

and

Λ1 = lim
t→+∞

∫ t

1

1
x2 dx = 1.

Again, it fallows that Λ =+∞.

In the third case, we have s ∈
(

1
2
, 1

)
and 2s−1 > 0. We again estimate the incomplete beta function

B
(

1
x
, 2s, 2(1− s)

)
=

∫ 1
x

0
p2s−1(1− p)1−2sd p

=
∫ 1

x

0

p2s−1

(1− p)2s−1 d p =
∫ 1

x

0

1(
1
p −1

)2s−1 d p <
∫ 1

x

0

1
(x−1)2s−1 d p

=
1

(x−1)2s−1 .
1
x

(
0 < p <

1
x
=> 1 < x <

1
p

)
.
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Then

Λ1 = 2 lim
t→+∞

∫ t

1

1
x

B
(

1
x
, 2s, 2(1− s)

)
dx

≤ 2 lim
t→+∞

∫ t

1

1
x2 .

1
(x−1)2s−1 dx

= 2 lim
t→+∞

(
π(1−2s)

sin2πs
−B

(
1
t
, 2s, 2(1− s)

))
=

π(1−2s)
sin2πs

<+∞.

So, we conclude that (9) is true for all s ∈ (0, 1). Since the first limit in (8) is infinity but the second one is a finite
number, we conclude that v /∈ V+∞.

We denote the set of superincreasing functions with a finite support Ωt by Qt . Definition 1 can be extended in Rn.
Let x, y ∈ Rn. We say that y < x if |y|< |x|.

Definition 4 The function v : Rn → R is said to be increasing in Ωt ⊂ Rn if v(y)≤ v(x), ∀x, y ∈ Ωt that y < x.
The decreasing function in Ωt is defined in the same way.
Definition 5 Let the function v : Rn → R be with a finite support Ωt ⊂ Rn and satisfy:
··· v is strictly monotone, square summable, and positive in Ωt ,
··· v fulfills


v(x)− v(y)
|x− y|

≤ β
v(x)
|y|

, y < x, ∀x, y ∈ Ωt , β ∈ R+

if v is increasing

or


v(y)− v(x)
|x− y|

≤ β
v(y)
|y|

, y < x, ∀x, y ∈ Ωt , β ∈ R+

if v is decreasing.

Then we say that v is a supermonotone function.
Obviously, the results in Theorem 1 can be extended in the n-dimensional case but this is beyond our considerations.

Definition 3 can be strengthened so that the estimating terms do not depend on the estimated function.
Definition 6 Let the function v : Rn → R, supp(v) = Ωt be strictly monotone, square summable, and positive in Ωt .

If v fulfills:


v(x)− v(y)
|x− y|

≤ β
|y|

, y < x, ∀x, y ∈ Ωt , β ∈ R+

when v is increasing
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or


v(y)− v(x)
|x− y|

≤ β
|y|

, y < x, ∀x, y ∈ Ωt , β ∈ R+

when v is decreasing

then we call this function strongly supermonotone.

Theorem 3 If the function v : R → R belongs to Qt then v̂ ∈ V+∞, ∀s ∈
[

1
2
, 1

)
and the following inverse inequality

holds

||v||s, Ω∞ ≤C||v||0, Ω∞ , ∀s ∈
[

1
2
, 1

)
.

Proof. This theorem is a direct consequence of Theorem 1.

4. Examples of supermonotone functions
In this section, we consider functions that satisfy the inverse inequality.
Example 1 The function of interest is v(x) = 1+ lnx. We prove that v is strong superincreasing.
Proof. Two-sided estimates can be obtained for this function. By applying the classical two-sided inequality

x
x+1

≤ lnx ≤ x, ∀x > 0,

we estimate the quotient

Ev =
v(x)− v(y)

x− y
, 1 ≤ y < x, x, y ∈ Ωt

as follows:

Ev =
lnx− lny

x− y
=

ln
x
y

x− y
=

ln
(

1+
x− y

y

)
x− y

≥

x− y
y

(x− y)
(

1+
x− y

y

) =
1
x
,

Ev =
ln
(

1+
x− y

y

)
x− y

≤ x− y
y(x− y)

=
1
y
.
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So, we have

1
x
≤ Ev ≤ 1

y
.

Having in mind that v is strictly increasing, square summable, and positive in Ωt , we conclude that v is strongly
superincreasing.

Example 2We choose the second function to be

v(x) = 1+ arcsin
2x

1+ x2 .

We prove that this function is strongly superdecreasing.

Proof. Obviously, v(x) is differentiable, strictly decreasing, and positive in Ωt . It remains to prove that −Ev ≤ β
y
.

By applying Lagrange’s theorem, we have

v(y)− v(x) =− 2
1+ξ 2 (y− x), y < ξ < x, ∀x, y ∈ Ωt .

Therefore

0 <−Ev =
2

1+ξ 2 ≤ 1
ξ
<

1
y
,

which indicates that v is strongly superdecreasing.

5. Conclusion
Inequalities between fractional Sobolev norms in unbounded domains are the object of interest in this paper. A

new notion of supermonotone function is introduced. An inverse inequality between fractional Sobolev norms is proved
for a class of supermonotone functions. This result can be directly applied to numerical methods for solving fractional
elliptic boundary-value problems. All analyses are done in the one-dimensional case generating double integrals in the
nonlocal operators but the presented results can be extended in the n-dimensional case. By estimating the quotient |Ev|
we demonstrate two examples of supermonotone functions that support the theoretical results.
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