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Abstract: In this paper, we can study about Markovian single-server queue with servers in distinct phases of disaster
and repair. The server can stay in full-active Phase or passive Phase randomly and alternately. The server is set to serve in
two Phases, such as the full active Phase and passive Phase. When the server operates in full active Phase, the customers
arrive and served in First Come: First Serve (FCFS) queue discipline. However, when the server switches from full active
to passive Phase, it can only offer to provide service at a rate lower than that of the server in full active Phase. During
passive Phase, customers are not allowed to join the system. The server moves to repair Phase immediately after the last
customer is served, irrespective of the Phase. The customers will be restricted from joining the queue in repair Phase.
After the repair Phase, the server will enter the full active Phase. The server remains in the system for a random period
of time. In the event of a disaster, in full active and passive Phases, all customers in system aredropped out, and system
moves to repair Phase. The expressions for the steady state probabilities and some key performance metrics are obtained.
A numerical illustration is made to study the effects of server shifting from full active phase to passive phase that affects
the customers in the system and the occurrence of disaster which has an adverse effect on the customers in that phase.
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1. Introduction
Queueing theory is a branch of applied mathematics that provides methods to predict the performance of systems

(Queueing Systems) which keep servers (one or many) for providing service to randomly arriving customers. These
methods are aimed at attempting ways to avoid delays in service/customer loss. In the early stages of its development,
it emerged as a result of tireless attempts by several investigators to provide mathematical models (later called queueing
Models) to find solutions to problems confronted with the operation of telephone systems where calls arrive at a
switchboard to get connected for conversation. A. K. Erlang, a Danish mathematician was the pioneer investigator who
formulated and solved the first queueing problem of telephone traffic congestion.
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Kendall [1] introduced the notation P/Q/R/S/V to represent a queueing model, considering the basic characteristics
(P: Arrival patterns of customers, Q: Service patterns, R: Number of service channels, S: System capacity and V : Queue
discipline) of a queueing system. For example, if a queueingmodel isM/M/1/N/FCFS, then it indicates that the customer’s
arrival is governed by a Poisson process, the service times of customers are modelled to follow an exponential distribution,
there are one server to do customer service, the system capacity is N and the discipline of the queue is First-Come: First-
Served. Instead of FCFS, some researchers use FIFO to mean equivalently First-In: First-Out.

Applications of queuing theory are numerous but are not limited to, forecasting network congestion and blocking in
computer networks, telecommunication, data distribution, high-speed network, production engineering. However, these
systems are not reliable and disaster may occur within them due to certain unavoidable circumstances. When there is
catastrophe, the system stops operating, and the customers who are waiting in the buffer with the server’s activity are
lost. Many authors have made a detailed analysis on queueing system. In order to explore the steady-state behaviour, Jain
and Sigman [2] analysed non-Markovian queueing systems. It studies on preemptive LIFO queue discipline and disaster
occurs due to negative arrivals by adopting the idea of a disaster, they were able to get Pollaczek-Khintchine results for
Poisson input and general service queue.

Several authors [3–14] have researched queueing systems that are vulnerable to accidents that happen randomly. Paz
andYechiali [15] investigated the steady-state behaviour of anM/M/1 queue operatingwithin a random environment that is
subjecting to random disasters. This environment is characterized by an n-phase continuous-timeMarkov chain. Building
upon the queueing model introduced by Paz and Yechiali [15], Udayabaskaran and Dora Pravina [5] have furthered the
research by obtaining time-dependent probabilities, providing a dynamic behaviour of the system. Ammar et al. [3]
considered queue system with single server and also studied impatient behavior of the customer in multi-phase random
environment.

In the literature of queueing theory, certain research works on steady-state analysis of disaster situations in different
contexts. The size distribution of queue with geometric arrival and general service process queue with disaster was
determined using the queue-theoretic approach by Lee et al. [4]. Ammar and Rajadurai [10] utilised a technique of
supplementary variable to find the function generating probability for the queue length of a non-Markovian queue with
working breakdown, retrial policy, and disaster. Jain and Singh [16] investigated Markovian feedback queue having
disaster and customer impatience in it.

Jain et al. [6] studied M/M/1 queuing model with disaster failure with multiple vacation policy. Performance
measures are also computed. Perel and Yechiali [14] analysed single and multiple server queues in a two-phaseMarkovian
random environment having impatient customers. Ammar [17] analysed a single server queue with vacations in a multi-
phase random environment.

Ramesh and Udayabaskaran [18] analysed a single server queueing system in a doubly stochastic environment makes
transitions among N levels controlled by a Random Switch. Demircioglu et al. [7] examined how the occurrence of
disaster affects the queuing behaviour in a discrete time single server queuing system with generally independent arrival
and service times. The chance of customer loss as result of disaster is derived. Sudhesh et al. [8] considered discrete
time Geo/Geo/1 queue with system disaster. Steady-state probabilities of number of customer present in the system are
calculated.

Suranga Sampath et al. [19] studied repairable single-server queue that is resilient to system failures and working
vacations. The performance metrics such as mean and variance of total number of jobs are found. Gupta et al. [20]
analyzed an infinite buffer single server queuing model with exponentially distributed service times and negative arrivals.
The model also studied how the negative arrivals affect the system performance. Seenivasan et al. [21] considered
M/M/1/N model with disaster, restoration and breakdown. Also taken into account of partial breakdown of servers.

In all the multi-phase models, customer can arrive in all the phases, but in the present work, customers arrive only
when the servers are in the full active phase. Upon completion of repair phase, the server is restricted to move to full
active phase. After some time, due to power consumption, the server changes to passive phase, and no customers are
allowed to join during the passive or repair phases. On the other hand, the disasters in server switching to multiple phases
and customers being allowed only in one phase are not discussed; this gap motivates the development of this model. It
examines how a system behaves when disaster occurs within the multi-phase, and how it recovers and continues to operate.
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When a server changes its phase from time to time, it may enter into a passive or repair phase, where it loses
contact with the customers for a random time during which the server shuts down all its activity by switching to power
saving mode. Paz and Yechiali [15], Udayabaskaran and Dora Pravina [5], Ammar et al. [3], Ammar [17], Ramesh and
Udayabaskaran [18] have taken into account random environmental influences on single server queueing systems and
analysed the behaviour of the system. There is another piquant situation arising in the operation of a single server at
different phases (Active or Passive or Repair), where disasters can occur randomly in the server. This aspect has not been
considered so far in literature. In this paper, we remove this pitfall by proposing a queueing model which studies the
single server performing in multiple phases subject to disaster, recovery and repair.

The novelty of this work presents a conception of single server queueing models in the presence of self switching
server. The result of these queueing models provides a scope for application to mobile communication networks, which
has different applications in detecting and transmitting data to the localized node with energy effectiveness.

This paper is planned to be organizedin the following way: 2nd Section has the model. 3rd Section contains governing
equations for time-independent probabilities of the system. 4th Section obtains explicit expressions for the steady-state
probabilities. 5th Section has the performance measures. The numerical illustrations are in 6th Section.

2. Model description
Considering a single server in two phases such as the full active phase and passive phase. Customers arrives based

on a Poisson process at the rate of λ to full active phase. Service rates for full active and passive phases are µ1 and µ2

such that µ2 < µ1. In full active phase, the server offers service to the available customers on FCFS discipline, and if there
is no new customer for service, the server moves to the repair phase with the rate of α . At the maintenance (repair) phase,
customers are not allowed to join the system. A random amount of time is spent in maintenance phase, which is distributed
exponentially at the mean of 1/β . After the maintenance, the server moves to full active phase and gets ready to serve
the arriving customers. When the server is in full active phase, if there is a posibility of being diseased, immediately the
server switches to passive phase at the rate of γ and the customers already waiting for service are served with a lesser rate
of µ2. During passive phase, customers are not allowed to join the system, and after serving last customer in the system, it
enters the repair phase. The system experiences disasters in both the phases at the rate of 1/η1 and 1/η2 respectively. In
the event of a disaster in both phases (full active and passive), all customers in system are dropped out and server moves
to repair phase.

2.1 Notations
1. Pr(A): event A’s Probability.
2. p(i, n, t): Transient Probability of server in state ‘i’ and ‘n’ customers in the system.
3. πi, n = limt→∞ p(i, n, t): Steady state probability in state ‘i’ and ‘n’ customers in the system.
4.

∫ t
0 f (u)g(t −u)du : f (t)©g(t) Convolution of f (t) and g(t) in Laplace Transform.

5.
∫ ∞

0 e−st f (t)dt = f ∗ (s): Laplace transform of f (t).
6. limt→∞ f (t) = lims→0 f ∗ (s): Final value theorem in Laplace transform.

3. Governing equations
U(t) describes the phase of server, and X(t) denotes the total customers in the queueing system at time t. Then the

joint process (U(t), X(t)|t ≥ 0) defines a continuous time Markov process. We defined conditional probability function
as,

p(i, n, t) = Pr [U(t) = i, X(t) = n|U(0) = 0, X(0) = 0] , i = 0, 1, 2; n = 0, 1, 2, . . .
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Figure 1. Transition rates diagram

Following notation are used for the convolution of two functions

f (t)©g(t) =
∫ t

0
f (u)g(t −u)du

By using probabilistic laws to obtain the following governing equations (in Figure 1).

p(0, 0, t) = e−β t +

[
p(1, 0, t)α +µ2 p(2, 1, t)+η1 ∑∞

n=0 p(1, n, t)
+η2 ∑∞

n=1 p(2, n, t)

]
©e−β t (1)

p(1, 0, t) = [β p(0, 0, t)+µ1 p(1, 1, t)]©e−(α+λ+η1)t (2)

p(1, n, t) = [λ p(1, n−1, t)+µ1 p(1, n+1, t)]©e−(λ+µ1+η1+γ)t , n = 1, 2, · · · (3)

p(2, n, t) = [γ p(1, n, t)+µ2 p(2, n+1, t)]©e−(µ2+η2)t (4)

Denoting the Laplace transform of p(i, n, t) by

p∗(i, n, s) =
∫ ∞

0
p(i, n, t)e−stdt (5)

And Equations (1)-(4) yields

(s+β )p∗(0, 0, s) = 1+α p∗(1, 0, s)+µ2 p∗(2, 1, s)+η1

∞

∑
n=0

p∗(1, n, s)+η2

∞

∑
n=1

p∗(2, n, s) (6)
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(s+α +λ +η1) p∗(1, 0, s) = β p∗(0, 0, s)+µ1 p∗(1, 1, s) (7)

(s+λ +µ1 +η1 + γ) p∗(1, n, s) = λ p∗(1, n−1, s)+µ1 p∗(1, n+1, s), n = 1, 2, . . . (8)

(s+µ2 +η2) p∗(2, n, s) = γ p∗(1, n, s)+µ2 p∗(2, n+1, s), n = 1, 2, · · · (9)

4. Steady state solutions
The steady state equations are written by using F.V.T of Laplace transform

πi, n = lim
t→∞

p(i, n, t) = lim
s→0

p∗(i, n, s)i = 1, 2; n = 0, 1, 2, · · ·

π0, 0 = lim
t→∞

p(0, 0, t) = lim
s→0

p∗(0, 0, s)

From Equations (6)-(9) yields

βπ0, 0 = απ1, 0 +µ2π2, 1 +η1

∞

∑
n=0

π1, n +η2

∞

∑
n=1

π2, n (10)

(λ +α +η1)π1, 0 = βπ0, 0 +µ1π1, 1 (11)

(λ +µ1 +η1 + γ)π1, n = λπ1, n−1 +µ1π1, n+1, n = 1, 2, · · · (12)

(µ2 +η2)π2, n = γπ1, n +µ2π2, n+1, n = 1, 2, · · · (13)

To solve from (10)-(13), we define Probability Generating Function as

G1(u) =
∞

∑
n=0

π(1, n)un (14)

G2(u) =
∞

∑
n=1

π(2, n)un (15)

In Equation (12), multiply both sides by un and summing up from 1 to ∞, we get

(λ +µ1 +η1 + γ)
∞

∑
n=1

π1, nun = λ
∞

∑
n=1

π1, n−1un +µ1

∞

∑
n=1

π1, n+1un
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By using (11), (14) and (15), after simplifying we get

G1(u) =
βuπ0, 0 − [(α −µ1 − γ)u+µ1]π1, 0

(λ +µ1 +η1 + γ)u−λu2 −µ1
(16)

For |u|< 1, the function G1(u) converges and hence the right hand side’s numerator of Equation (16) should be null
at all zeros in |u|< 1 of the denominator of Equation (16). The zeros of the denominator are given by

r1 =
(λ +µ1 +η1 + γ)−

√
(λ +µ1 +η1 + γ)2 −4λ µ1

2λ
(17)

r2 =
(λ +µ1 +η1 + γ)+

√
(λ +µ1 +η1 + γ)2 −4λ µ1

2λ
(18)

Since the roots r1 and r2 are real and distinct. For stability, we assume µ1 +µ2 > λ :
Some of the properties of r1 and r2 are

0 < r1 < 1 < r2, r1 + r2 =
λ +µ1 +η1 + γ

λ
, r1r2 =

µ1

λ

(λ +µ1 +η1 + γ)u−λu2 −µ1 = λ (u− r1)(r2 −u)

There is exactly one zero, namely r1 lying in |u| < 1. So the numerator of the right hand Equation (16) vanishes at
r1 ant it cannot vanish at r2. Consequently, we get

π1, 0 =
β r1π0, 0

(α −µ1 − γ)r1 +µ1
(19)

Replacing u by 1 in Equation (16) can be rewritten as

G1(u) =
r2π1, 0

r2 −u
(20)

Expanding G1(u) in the region of convergence |u|< 1, we get

∞

∑
n=0

π1, nun = π1, 0

∞

∑
n=0

un

rn
2
= π1, 0

∞

∑
n=0

1
rn

2
un (21)

Equating coefficient of un on both sides of (21), we get

π1, n =
1
rn

2
π1, 0 = r−n

2 π1, 0, n = 0, 1, 2, · · · (22)
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π1, n =
r2

r2 −1
π1, 0

Now, multiplying both sides of Equation (13) by un, summing up from 1 to ∞, we get

G2(u) =
γuG1(u)− γuπ1, 0 −µ2uπ2, 1

(µ2 +η2)u−µ2
(23)

The function G2(u) converges and hence the right hand side’s numerator of Equation (23) should be null at the zero
in |u|< 1 of the denominator of Equation (23). The zero of the denominator is given by

u1 =
µ2

µ2 +η2

There is exactly one zero, namely u1 lying in |u|< 1. So the numerator of the right hand Equation (23) vanishes at
u1, we get

µ2π2, 1 = γG1 (u1)− γπ1, 0 (24)

Equation (24) is substituted in Equation (23) and on simplifying,

G2(u) =
γu [G1(u)−G1 (u1)]

(µ2 +η2)(u−u1)
(25)

G2(u) =
γ

µ2 +η2

∞

∑
n=1

∞

∑
j=n

π1, ju
j−n
1 un (26)

Equating Coefficient of un on both sides, we get

π2, n =
γ

µ2 +η2

∞

∑
j=n

π1, ju
j−n
1 , n = 1, 2, · · · (27)

By putting u = 1 in Equation (25), we get

G2(1) =
γ

η2
[G1(1)−G1(u1)] (28)

where u1 =
µ2

µ2 +η2
.

Substituting and simplifying we get (28) as
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G2(1) =
γ

η2

∞

∑
n=0

π1, n (1−un
1) (29)

By total probability law, we have

π0, 0 +G1(1)+G2(1) = 1 (30)

Equations (20) and (29) are substituted in Equation (30), on simplifying we get

π0, 0 =

[
1+

r2

r2 −1
β r1

(α −µ1 − γ)r1 +µ1

[
1+

γ
η2

∞

∑
n=0

(1−un
1)

]]−1

(31)

explicitly we get all the steady state probabilities in Equations (22), (27), (31).

5. Performance measures
Few important measures of system performance such as average of customers in fully active phase and passive phase,

average number of customers, number of times the server switches from full active phase to passive Phase, from repair
phase to passive phase and effective arrival rate are derived.

5.1 Average number of customers in fully active phase

Let average number of customers in full active Phase is denoted by EF .

EF =
∞

∑
n=0

nπ1, n = π1, 0

∞

∑
n=0

nr−n
2

EF = π1, 0
1
r2

(
r2

r2 −1

)2

(32)

5.2 Average number of customers in passive phase

Let EP denote average number of customers in passive phase.

EP =
∞

∑
n=1

nπ2, n =
∞

∑
n=1

n
γ

µ2 +η2

∞

∑
j=n

π1, ju
j−n
1

EP =
γ

µ2 +η2

∞

∑
n=1

∞

∑
j=n

nπ1, ju
j−n
1 (33)
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5.3 Average number of customers in the system

Let ES denote average customers in the system.

ES = EF +EP = π1, 0
1
r2

(
r2

r2 −1

)2

+
γ

µ2 +η2

∞

∑
n=1

∞

∑
j=n

nπ1, ju
j−n
1 (34)

5.4 Average number of times the server switches from full active phase to passive phase

Let EFP denotes expected number of times the server switching from full active to passive phase.

EFP = γ
∞

∑
n=1

π1, n = γ
∞

∑
n=1

r−n
2 π1, 0 (35)

5.5 Average number of times the server switches from repair phase to full active phase

Let ERF denotes expected number of times the server switching from Repair phase to full active phase per unit time.

ERF = βπ0, 0 = β

[
1+

r2

r2 −1
β r1

(α −µ1 − γ)r1 +µ1

[
1+

γ
η2

∞

∑
n=0

(1−un
1)

]]−1

(36)

5.6 Effective arrival rate
Let EA be effective arrival rate, it is defined as total arrival when server is available. The server is available either in

full active or Passive phase but here customers are allowed to join only in full active phase.
Therefore,

π0, 0 +
∞

∑
n=0

π1, n +
∞

∑
n=1

π2, n = 1

∞

∑
n=0

π1, n = 1−π0, 0 −
∞

∑
n=1

π2, n

EA =

[
1−π0, 0 −

∞

∑
n=1

π2, n

]
λ

EA =

1−

[
1+

r2

r2 −1
β r1

(α −µ1 − γ)r1 +µ1

[
1+

γ
η2

∞

∑
n=0

(1−un
1)

]]−1

− γ
µ2 +η2

∞

∑
j=n

π1, ju
j−n
1

λ (37)

6. Numerical illustration
6.1 Stationary probabilities

Assuming N = 5 and the parameters of the system with the following values:
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Such as λ = 1; α = 0.5; β = 0.8; γ = 1.1; µ1 = 2; µ2 = 1; η1 = 0.4; η2 = 0.2. Arrived the steady-state probabilities
by using (19), (22), (27) and (31), probability distribution is given in Table 1.

Table 1. Steady state probability distribution

(i, j) π(i, j) (i, j) π(i, j)

(0, 0) 0.097 (2, 1) 0.0160
(1, 0) 0.0554 (2, 2) 0.0040
(1, 1) 0.0138 (2, 3) 0.0010
(1, 2) 0.0034 (2, 4) 0.0002
(1, 3) 0.0008 (2, 5) 0.0000
(1, 4) 0.0002
(1, 5) 0.0000

6.2 Stationary mean number of times the server switches from full active phase to passive phase
against γ

On fixing λ = 1; α = 0.5; β = 0.8; µ1 = 2; µ2 = 1; η1 = 0.4; η2 = 0.2; and varying γ from 0.1 to 3.0. The average
number of customers in Full active Phase to passive Phase is listed out in Table 2 and shown in Figure 2.

Figure 2. EFP and EP as a function γ

From Table 2 and Figure 2, mean number of times the server changing from full active to passive phase increases as
rate of server switching to passive phase (γ) increases and the average number of customers in passive phase increases as
the rate of server switching to passive phase (γ) increases.

Volume 5 Issue 4|2024| 5021 Contemporary Mathematics



Table 2. Variation of average number of times the server switches from full active phase to passive phase and variation of average number of customers
in passive phase against γ

γ EFP EP γ EFP EP γ EFP EP

0.1 0.00182 0.0020 1.1 0.02002 0.0277 2.1 0.03822 0.0539

0.2 0.00364 0.0046 1.2 0.02184 0.0303 2.2 0.04004 0.0560

0.3 0.00546 0.0069 1.3 0.02366 0.0328 2.3 0.04186 0.0589

0.4 0.00728 0.0095 1.4 0.02548 0.0356 2.4 0.04368 0.0615

0.5 0.0091 0.0124 1.5 0.0273 0.0381 2.5 0.0455 0.0638

0.6 0.01092 0.0148 1.6 0.02912 0.0407 2.6 0.04732 0.0664

0.7 0.01274 0.0173 1.7 0.03094 0.0430 2.7 0.04914 0.0696

0.8 0.01456 0.0199 1.8 0.03276 0.0465 2.8 0.05096 0.0722

0.9 0.01638 0.0231 1.9 0.03458 0.0488 2.9 0.05278 0.0747

1.0 0.0182 0.0257 2.0 0.03640 0.0514 3.0 0.0546 0.0761

6.3 Average number of times the server switches from repair phase to full active phase against β

On fixing λ = 1; α = 0.5; γ = 1.1; µ1 = 2; µ2 = 1; η1 = 0.4; η2 = 0.2 and varying β from 0.1 to 3.0. The average
customers in the repair phase to full active phase is listed out in Table 3 and shown in Figure 3.

Figure 3. ERF as a function of β

From Table 3 and Figure 3, mean number of times server changing from repair phase to full active phase increases
as rate of server switching to full active mode after the repairing phase (β ) increases.
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Table 3. Variation of average number of times the server switches from repair phase to full active phase against β

β ERF β ERF β ERF

0.1 0.0097 1.1 0.1067 2.1 0.2037

0.2 0.0194 1.2 0.1164 2.2 0.2134

0.3 0.0291 1.3 0.1261 2.3 0.2231

0.4 0.0388 1.4 0.1358 2.4 0.2328

0.5 0.0485 1.5 0.1455 2.5 0.2425

0.6 0.0582 1.6 0.1552 2.6 0.2522

0.7 0.0679 1.7 0.1649 2.7 0.2619

0.8 0.0776 1.8 0.1746 2.8 0.2716

0.9 0.0873 1.9 0.1843 2.9 0.2813

1.0 0.0970 2.0 0.1940 3.0 0.2910

6.4 Mean number of customers in full active phase against η1

On fixing λ = 1; α = 0.5; β = 0.8; γ = 1.1; µ1 = 2; µ2 = 1; η2 = 0.2; and varying η1 from 0.1 to 3.0. The average
customers in full active phase is shown in the following Table 4 and shown in Figure 4.

Figure 4. EF as a function of η1

From Table 4 and Figure 4, average number of customers in full active phase grows as rate of disaster occurring in
that phase (η1) lowers.
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Table 4. Variation of average number of customers in full active phase against η1

η1 EF η1 EF η1 EF

0.1 0.0283 1.1 0.0185 2.1 0.0137

0.2 0.0267 1.2 0.0178 2.2 0.0134

0.3 0.0251 1.3 0.0173 2.3 0.0130

0.4 0.0246 1.4 0.0167 2.4 0.0127

0.5 0.0232 1.5 0.0162 2.5 0.0124

0.6 0.0218 1.6 0.0157 2.6 0.0121

0.7 0.0215 1.7 0.0153 2.7 0.0119

0.8 0.0202 1.8 0.0145 2.8 0.0116

0.9 0.019 1.9 0.0144 2.9 0.0114

1.0 0.0191 2.0 0.0141 3.0 0.0111

6.5 Mean number of customers in passive phase against η2

We next fix λ = 1; α = 0.5; β = 0.8; γ = 1.1; µ1 = 2; µ2 = 1; η1 = 0.4; and varying η2 from 0.1 to 3.0. The
average number of customers in passive phase is in Table 5 and shown in Figure 5.

Figure 5. EP as a function of η2

From Table 5 and Figure 5, as the rate of disasters happening in that phase (η2) lowers, the typical amount of
customers in the passive phase grows.
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Table 5. Variation of average number of customers in passive phase against η2

η2 EP η2 EP η2 EP

0.1 0.037 1.1 0.0154 2.1 0.01

0.2 0.0272 1.2 0.0148 2.2 0.0096

0.3 0.0254 1.3 0.0142 2.3 0.0095

0.4 0.0236 1.4 0.0133 2.4 0.0093

0.5 0.0214 1.5 0.013 2.5 0.0089

0.6 0.0202 1.6 0.0125 2.6 0.0088

0.7 0.0193 1.7 0.012 2.7 0.0084

0.8 0.018 1.8 0.0118 2.8 0.0083

0.9 0.0172 1.9 0.0114 2.9 0.0082

1.0 0.016 2.0 0.0102 3.0 0.0075

7. Conclusions
Here, a steady-state analysis for a single server queue having servers in distinct phases of disaster, repair and recovery

were performed. The server serving the customers in different phases, and if there is a disaster in any phase and if the
customers are dropped out the system, the server will immediately relocate to repair phase. Some performance matrices
are obtained related to the server and customers. The numerical illustration shows the effects of server shifting from full
active phase to passive phase, effects on its customers and the occurrence of disaster which has an adverse effect on the
customers in that phase. In future, this model can be studied by assuming that the server begins to work in a different
environment with a different service rate, when the server returns to work after repair phase.
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