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Abstract: In this study, we consider q-Sturm Liouville operator with periodic boundary conditions. An asymptotic
expression of the solution is obtained. With the help of this asymptotic representation, an asymptotic solution of the
characteristic equation is presented. An application of the Rouche theorem, asymptotic expressions of eigenvalues are
obtained.
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1. Introduction
In this paper, we shall consider the following q-analogue of the Sturm-Liouville problem involving q-differential

operator

l(y) :=
−1
q

Dq−1Dqy(x)+ r(x)y(x) = λy(x), x ∈ (0, b), (1)

subject to the periodic boundary conditions

V1(y) = y(b)− y(0) = 0, (2)

V2(y) = Dq−1y(b)−Dq−1y(0) = 0, (3)

where λ ∈ C is called an eigenvalue, r(x) ∈ C([0, b)) is real-valued function, 0 < q < 1 is real number, b > 0 and Dq

denotes the q-derivative of a function f given by
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Dq f (x) =
f (qx)− f (x)
(q−1)x

, x ∈ (0, b],

and q-derivative of function f at zero is defined by

Dq f (0) = lim
n→∞

f (qnx)− f (0)
qnx

, x ∈ (0, b].

The q-difference or quantum calculus was initially developed by Jackson in the early 20th century [1, 2]. Most
of the basic facts of quantum calculus such as q-derivative, q-Taylor formula, q-anti-derivative, Jackson integral and q-
trigonometric functions have been studied in [3]. q-difference equations have been widely used in various fields, such as
mathematical physics including heat and wave equations, dynamical systems, quantum models, sampling theory of signal
analysis [4–11].

In recent years, many researchers have focused on q-Sturm-Liouville equations within the framework of classical
Sturm-Liouville problems. In [12, 13], the authors studied the problem (1) with the separable boundary conditions

U1(y) = a11y(0)+a12Dq−1y(0) = 0,

U2(y) = b11y(a)+a12Dq−1y(a) = 0.

They have derived an asymptotic expression of eigenvalues and eigenfunctions. They found that m → ∞,

√
λm =



q−m+1/2

a(1−q)

(
1+O

(
qm/2

))
, a12 ̸= 0,

q−m+1

a(1−q)

(
1+O

(
qm/2

))
, a12 = 0.

In [14, 15], the authors studied the continuous spectrum of singular q-Sturm-Liouville operators, and they established
specific criteria for determining the limit-point character of the q-Sturm-Liouville equation at infinity. In [16], the authors
examined the q-Sturm-Liouville problem containing a discontinuity condition at an interior point of the domain. In
particular, q-difference equations have been frequently used in physics problems such as dynamical systems and quantum
models [17], for q-derivative versions of physics phenomenons such as heat and wave equations [18], and signal analysis
[19, 20]. For the detailed discussions, the reader can be referred to [21].

In [22], the author investigated the existence of positive solutions to the nonlinear q-fractional boundary value
problem. In [23], the author studied the existence of a singular Hahn difference equation of a q, ω-Sturm-Liouville
problem with transmission conditions.

In the present work we will focus on the q-Sturm-Liouville problem (1) endowed with the periodic boundary
conditions. Our boundary conditions are non-separable and we shall obtain an asymptotic expression of eigenvalues
of the problem (1)-(3).

This paper is organized as follows. In Section 2, we introduce the notations and some preliminaries. In Section 3, we
derive the asymptotic expansion of the solution and examine the eigenvalues of the problems. In Section 4, an example
has been given to validate the analysis. In Section 5, we close the paper with some conclusion remarks.
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2. Notations and preliminary definitions
In this section, we introduce some q-notations and symbols that will be utilized throughout the paper.
Definition 1 For ω ∈ C and m ∈ N, we define the q-shifted factorial (see, e.g., [24, 25])

(ω; q)0 = 1, (ω; q)m =
m−1

∏
i=0

(1−ωqi), (ω; q)∞ =
∞

∏
i=0

(1−ωqi).

Definition 2 [25] The generalized form of the q-shifted factorial is given as follows:

(ω; q)ν =
(ω; q)∞

(ωqν ; q)∞
, (ν ∈ R). (4)

Definition 3 [25] The θ -function is described as follows:

θ(ω; q) =
∞

∑
r=−∞

qr2
ωr, ω ∈ C. (5)

For ν >−1, the third type of q-Bessel functions is expressed as

Jν(ω; q) = ων (q
ν+1; q)∞

(q; q)∞

∞

∑
r=0

(−1)r qr(r+1)/ω

(q; q)r(qν+1; q)r
ω2r, ω ∈ C.

Definition 4 [25] The fundamental trigonometric functions cos(ω; q) and sin(ω; q) are specified on C

cos(ω, q) =
∞

∑
r=0

(−1)r q
r2
(1−q)2rω2r+1

(q, q)2r

=
(q2; q2)∞

(q; q2)∞
(ωq−1/2(1−q))1/2J−1/2(ω(1−q)/

√
q; q2),

sin(ω, q) =
∞

∑
r=0

(−1)r q
r(r+1)(1−q)2r+1ω2r+1

(q, q)2r+1

=
(q2; q2)∞

(q; q2)∞
(ωq1/2(1−q))1/2J−1/2(ω(1−q); q2).

Definition 5 [25] The Hilbert space L2
q(0, b) is defined by

L2
q(0, b) = { f : [0, b]→ C :

∫ b

0
| f (t)|2dqt < ∞}, (6)
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where the Jackson integration is given by [2]

∫ x

0
f (t)dqt = x(1−q)

∞

∑
r=0

qr f (qrx), x ≥ 0. (7)

Definition 6 [26] Assume that 0 < |q|< 1 and that η ∈ C, |η | ≥ 1. For r ∈ Z+, let Ar be the annulus given by

Ar =
{

η ∈ C : q−2r+2 ≤ |η | ≤ q−2r} . (8)

Thus, as r → ∞, the following inequality holds:

logθ(η ; q)≤ −(log(|η |2)
4logq

+ log |1+q2r−1η |+O(1). (9)

Definition 7 Let g(ω) = ∑∞
n=0 anωn be an entire function. denoted by of g, ρ(g) is given by

ρ(g) = lim
n→∞

sup
n logn

log |an|−1 . (10)

Definition 8 [26] The zeros of Jν(., q
2), with ν >−1 are real and has a countably infinite number of positive simple

zeros.

3. Asymptotic expression of solutions and eigenvalues
3.1 Asymptotic expression of solutions

In [13], the following asymptotic expression for the solution of (1) has been proved

ψ1(ω, µ) = cos(µω ; q)+O

e

−(log |µ|ω(1−q))2
√
q logq

|µ|

 , (11)

ψ2(ω, µ) =
sin(µω ; q)

µ
+O

e

−(log |µ|ω(1−q))2
√
q logq

|µ|2

 , (12)

Dq−1ψ1(ω, µ) =−
√
qsin(µ

√
qω; q)+O

e

−(log |µ|ω(1−q))2
√
q logq

 , (13)
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Dq−1ψ2(ω, µ) = cos(µ
√
qω; q)+O

e

−(log |µ|ω(1−q))2
√
q logq

|µ|

 , (14)

where µ is complex number with µ =
√

λ . Now we will give the following auxiliary lemma.
Lemma 9 Let q ∈ (0, 1) and x ∈ (0, b]. Then

√
qsin(bx; q)sin(

bx
√
q

; q)+ cos(bx; q)cos(
bx
√
q

; q) = 1.

Proof. Define the function f given by

f (x, q) =
√
qsin(bx; q)sin(

bx
√
q

; q)+ cos(bx; q)cos(
bx
√
q

; q).

Clearly, one has f (0, q) = 1. Let us prove that

Dq−1 f (x, q) = 0.

It is known from [3]

Dq−1(u(x)v(x)) = u(q−1x). Dq−1v(x)+Dq−1u(x). v(x).

Using Dq−1sin(bx; q) = bcos(b
√
qx) and Dq−1cos(bx; q) =

√
qbsin(b

√
qx), one can check that Dq−1 f (x, q) = 0.

This implies that f (q−1x, q) = f (x, q). In addition, f (x, q) has formal power series, then we have qncn = cn for each
n, where cn is the coefficient of xn. This is possible only when cn = 0 for any n ≥ 1, i.e., f (x, q) is constant. Thus,
f (x, q) = 1. The proof is completed.

3.2 Asymptotic expression of characteristic determinant

Theorem 10 As |λ | → ∞, the characteristic determinant of the problem (1)-(3) has the following form

∆(µ) =
∞

∑
r=1

(−1)r q
r2−r(1+qr)(1−q)2r(bµ)2r

(q, q)2r
+O

e

−(log |µ|b(1−q))2
√
q logq

 . (15)

Proof. Using (11)-(14) and Lemma 3.1, we have
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∆(µ) =cos(bµ; q)+ cos(
bµ
√
q

; q)−1−
√
qsin(bµ; q)sin(

bµ
√
q

; q)

− cos(bµ; q)cos(
bµ
√
q

; q)+O

e

−(log |µ|bq−1/2(1−q))2
√
q logq



=cos(bµ; q)+ cos(bµ; q)−2+O

e

−(log |µ|b(1−q))2
√
q logq

 .

Using the expansion series of cos(x; q), we have

∆(µ) =
∞

∑
r=1

(−1)r q
r2−r(1+qr)(1−q)2r(bµ)2r

(q, q)2r
+O

e

−(log |µ|b(1−q))2
√
q logq

 . (16)

This ends the proof.
Before obtaining the zeros ∆(µ), we will obtain an asymptotic expression for the roots of the series given by

F(µ) =
∞

∑
r=1

(−1)r µr2−r(1+µr)(1−µ)2r(µ)2r

(µ,µ)2r
, µ ∈ (0, 1). (17)

Lemma 11 The positive zeros of F(µ) are given by

xr =
q1−r

(1−q)
(1+O(qr/2)), as r → ∞. (18)

Proof. Let σ := (q, q)∞ and define the function H(µ) given as

H(µ) = F(µ)− 1
σ

θ(
−(µ(1−q))2

q
)

=
+∞

∑
r=−∞

δ2rµ2r,

where
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δ2r =


(−1)r q

r2−r((1−q))2r

σ
[
(1+qr)(q2r+1, q)−1

]
, r ≥ 1,

(−1)r q
r2−r((1−q))2r

σ
, r < 1.

(19)

From the expansion of series (4) for r ≥ 1, we have

| (1+qr)(q2r+1, q)−1 | ≤| qr |+ | qr +1 || (q2r+1, q) |

≤ qr +
qr+1q2r+1

(1−√
q)σ

≤ 2qr

(1−√
q)σ

.

Thus, we get

| δ2r |≤
2qr2

((1−q)2)

(1−√
q)σ2 . (20)

Hence, for µ ∈ C−{0} we arrive at

| H(µ) |≤ 2
(1−√

q)σ2 θ((|µ|(1−q))2; q). (21)

By taking the logarithm of both sides of (21) for µ ∈ C−{0}, we obtain at once

log |H(µ)| ≤ logθ((|µ|(1−q))2; q)+ log
2

(1−√
q)σ2 . (22)

Theorem 6 tells us that if µ2(1−q)2 ∈ Ar, r ≥ r0 and

q−2r+2 ≤ (1−q)2|µ|2 ≤ q−2r, (23)

then, we obtain
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logθ((|µ|(1−q))2; q)≤ −(log(|µ|(1−q))2)2

4logq
+ log |1+q2r−1(|µ|(1−q))2|+O(1)

≤ −(log(|µ|(1−q))2)2

4logq
+q−1 +O(1)

=
−(log(|µ|(1−q)))2

logq
+O(1)

=
−(log(|µ|(1−q)q−1/2))2

logq
− log |µ|− log(1−q)q−1/2 − logq1/2 +O(1).

For r > r0, we define the annulus Ãr given by

Ãr =

{
µ ∈ C : q−2r+2 ≤ ((1−q)|µ|)2

q
≤ q−2r

}
. (24)

Then, we obtain

− log(
(|µ|(1−q))2

q
)2

4logq
+ log |1−q2r−2(µ(1−q))2|+C ≤ logθ(

−(|µ|(1−q))2

q
; q)+O(1). (25)

Therefore, we deduce that

−(log(
|µ|(1−q)

√
q

))2

logq
≤ logθ(

−(|µ|(1−q))2

q
; q)− log |1−q2r−2(µ(1−q))2|+O(1). (26)

Hence, for µ ∈ Ãr one has

log |H(µ)| ≤ logθ(
−(|µ|(1−q))2

q
; q)− log |1−q2r−2(µ(1−q))2|− log |µ|+C1, (27)

where C1 =− log(1−q)q−1/2 − logq−1/2 +O(1). This implies that if µ ∈ ∂ Ãr we have

|1−q2r−2(µ(1−q))2| ≥ q2r−2(|µ|(1−q))2 −1 = q−1(1−q); |µ|= q−r+1/2,

|1−q2r−2(µ(1−q))2| ≥ 1−q2r−2(|µ|(1−q))2 = (1−q); |µ|= q−r+3/2.
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This is equivalent to write

log |1−q2r−2(µ(1−q))2| ≥ log(1−q), µ ∈ ∂ Ãr. (28)

Consequently, for any µ on the boundary of Ãr we have

log |H(µ)| ≤ logθ(
−(|µ|(1−q))2

q
; q)− log((1−q)|µ|)+C1.

If we choose r0 such that − log((1−q)|µ|)+C1 < 0, then the following inequality holds:

|H(µ)| ≤ |θ(−(|µ|(1−q))2

q
; q)|, µ ∈ ∂ Ãr

= K(µ).

Applying the Rouché theorem, we deduce that the number of zeros of the function H(µ) and H(µ)+K(µ) = F(µ)
are the same in Ãr. Thus, two simple roots of the functionF(µ) are real and symmetric in Ãr. Suppose that xr,r > r0 is
the positive zeros of F(µ). Then one can see that

log |1−q2r−2(xr(1−q))2| ≤ − logxr +C1 ⇒ 2log |1−qr−1xn(1−q)| ≤ − logxr +C1

⇒ log |1−qn−1xr(1−q)| ≤ −1
2

logxr +C1,

which shows that |1−qr−1xr(1−q)|= O(x−1/2
r ).We note that q2r−2(xr(1−q)) is positive, and the above inequality holds

true. Then, we obtain

xr =
q1−r

1−q
(1+O(qr/2) as r → ∞. (29)

Hence, the proof is completed.
Now we give the lemma about the asymptotic behavior of |F(ω)|. For this purpose we define a sequence {ζk}∞

k=1
given by

ζk =
log | xk

xk+1
|

logα
. (30)

Then, we see that
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ζk → 1 as k → ∞.

Set ζ = infk∈Z+ ζk such that 0 < ζ ≤ 1.We now define the sequences {ck}∞
k=1 and {dk}∞

n=1 given by

ck :=

{
ζk+ζ

2 , ζk ̸= ζ ,
ζ
2 ζk = ζ ,

d1 =
ζ
2
, dk =

{
ζk−ζ

2 ζk ̸= ζ ,
ζ
2 ζk = ζ .

We note that

xmq
−cn = xm+1q

dm+1 , m ≥ 1. (31)

Through the division of the region
{

ω ∈C : |ω| ≥ qζ/2x1

}
, let us define the set

A f
m =

{
ω ∈C : xmq

dm ≤ |ω| ≤ q−cm
}

m ≥ 1. (32)

The following lemma provides the asymptotic behavior of the function |F(ω)| will be used in the sequel.
Lemma 12 Assume that |ω| ≥ qx1 then for ω ∈ A f

m,then

log |F(ω)|= −(log(|ω|(1−q)))2

logq
+ log |

x2
m −ω2

x2
m

|+ constant, m → ∞ (33)

Proof. Since F(ω) is an entire function with zero order, the proof can be deduced from [27] using similar
methodologies.

3.3 Asymptotic expression of eigenvalues

Theorem 13 Asymptotic expression of the positive zeros λm of ∆(µ) is, m → ∞

√
λm =

q1−m

b(1−q)

(
1+O(qm/2)

)
, (34)

Proof. We set ∆(µ) = F(µ)+S(µ) where

S(µ) = O

e

−(log |µ|b(1−q))2
√
q logq

 , (35)

Then there exists a positive constant c such that as µ → ∞
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|S(µ)| ≤ ce

−(log |µ|b(1−q))2
√
q logq


. (36)

Thus, from (33) if µb ∈ A f
m, m ≥ 1, we get, as m → ∞

log |F(µ)|= −(log(|µ|b(1−q)))2

logq
+ log |

x2
m −b2µ2

x2
m

|+ constant. (37)

So there exists an integer l0, and δ1 > 0 such that for m ≥ l0

∣∣∣ logF(µ)+
−(log(|µ|b(1−q)))2

logq
− log |

x2
m −b2µ2

x2
m

|
∣∣∣≤ δ1. (38)

Hence

log |S(µ)| ≤ logc− (log |µ|b(1−q))2

√
q logq

≤ log |F(µ)|− log
∣∣∣∣1− b2µ2

x2
m

∣∣∣∣+ logc+δ1.

If ω ∈ ∂A f
m, then either |µb|= xmq

dm

log |1− b2µ2

x2
m

| ≥ log(1−q2dm), |µb|= xmq
dm (39)

or

log |1− b2µ2

x2
m

| ≥ log(q2cm−q), |µb|= xmq
−cm (40)

Since {cm}∞
m=1 and {xm}∞

m=1 are bounded, we can define

δ3 = in fm≥1log(1−q2dm) log(q−2cm −1). (41)

Thus, we obtain
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log |1− b2µ2

x2
m

| ≥ δ3. (42)

By choosing l0 sufficiently large, we can ensure that

|S(µ)| ≤ |F(µ)|, λ ∈ ∂A f
m.

Thus we get

log |1− b2λm

x2
m

| ≤ − log |
√

λm|+δ2.

This leads to write

log |1− b
√

λm

xm
| ≤ − log |λ 1/4

m |+ δ2

2
. (43)

Consequently, one has

log

∣∣∣∣∣1− b
√

λ
xm

∣∣∣∣∣= O(|λ−1/4
m |),

√
λm = b−1xm

(
1+O(qm/2)

)
,

√
λm =

q1−m

b(1−q)

(
1+O(qm/2)

)
.

This completes the proof.

4. An example
Example 1. Consider the q-Sturm-Liouville boundary value problem with b = 1 and r(x) = 0

−1
q

Dq−1Dqy(x) = λy(x), x ∈ (0,1), (44)

subject to the periodic boundary conditions
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V1(y) = y(1)− y(0) = 0, (45)

V2(y) = Dq−1y(1)−Dq−1y(0) = 0. (46)

A fundamental set of the solutions is given by

ψ1(x, λ ) = cos(
√

λx; q), ψ2(x, λ ) =
sin(

√
λx; q)√
λ

.

The characteristic equation is given by

∆(λ ) = 2− cos

(√
λ

√
q

)
− cos(

√
λ ).

Hence, the eigenvalues {λr}∞
r=1 are the zeros of ∆(µ). Hence, using Lemma 11 we can express the roots of ∆(µ)

asymptotically by

√
λ =

q1−r

1−q
(1+O(qr/2)), as r → ∞. (47)

5. Conclusion
In [25], the authors give the asymptotic expression for the problem (1) with separable boundary conditions. In this

work, we examined the q-Sturm Liouville equation with periodic boundary conditions. Periodic boundary conditions are
known as non-separable boundary conditions. By using asymptotic solution of solutions, we derived asymptotic solution
of the characteristic equation. Finally, we presented the asymptotic expressions for the eigenvalues of the problem using
the Rouche theorem.
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