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Abstract: To solve quadratic eigenvalue problems (QEPs), especially the gyroscopic systems, two methods are proposed:
an iterative direct detection method (DDM) of the complex eigenvalues of the original QEP, and a split-linearization
method (SLM) for finding the solvent matrix, which results to a standard linear eigenvalue problem (LEP) being solved
to compute all eigenvalues by the symmetry extension. Reducing the dimension to one-half, the LEP is recast in a
simpler QEP involving the square of the solvent. We set up two new merit functions which are minimized to detect
the complex eigenvalues from the original QEP and a simpler QEP. For each eigen-parameter the merit function consists
of the Euclidean norm of each derived eigen-equation, whose vector variable is solved from a derived nonhomogeneous
linear system. Then, the golden section search algorithm is employed to minimize the merit functions and locate the
complex eigenvalue as a local minimal point. The results are compared with that computed by the cyclic-reduction-based
solvent (CRS) method.

Keywords: quadratic eigenvalue problem, gyroscopic system, solvent, nonhomogeneous linear system, split-linearization
technique, new minimization methods
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1. Introduction
There are two main sources of quadratic eigenvalue problems (QEPs): the vibration system of linear structure and

the gyroscopic system. We first consider a mass-damping-spring q-degree system:

(λ 2M+λC+K)u = 0. (1)

Equation (1) is a quadratic eigenvalue problem (QEP) to determine the eigen-pair (λ , u).
Let
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v = λu (2)

be the generalized velocity of vibration mode. We can combine equations (2) and (1) together as

[
0q Iq

−K −C

][
u
v

]
= λ

[
Iq 0q

0q M

][
u
v

]
. (3)

Defining

x :=

[
u
v

]
, A :=

[
0q Iq

−K −C

]
, B :=

[
Iq 0q

0q M

]
, (4)

equation (3) becomes a generalized eigenvalue problem for the n-vector x:

Ax = λBx, (5)

where A, B ∈Rn×n with n = 2q. Equation (5) is used to determine the eigen-pair (λ , x), which is a linear eigen-equation
associated to the pencil A − λB, where λ is an eigen-parameter. Notice that equation (1) can also be expressed by
equation (5) with

A :=

[
−K 0q

0q −Iq

]
, B :=

[
C M
−Iq 0q

]
. (6)

In the linearization from equation (1) to equation (5), an unsatisfactory aspect is that the dimension of the working
space is doubled to n = 2q and the transformation is not unique. Furthermore, if a complex eigenvalue is considered, the
dimension is raised to 2n = 4q. However, for the generalized eigenvalue problems many powerful numerical methods
are available [1, 2]. The numerical computations in [3, 4] revealed that the methods based on the Krylov subspace could
be very effective in the nonsymmetric eigenvalue problems by using the Lanczos bi-orthogonalization algorithm and
Arnoldi’s algorithm. The Arnoldi and nonsymmetric Lanczos methods are both of the Krylov subspace methods. Among
the many algorithms to solve the matrix eigenvalue problems the Arnoldi method [4–7], the nonsymmetric Lanczos
algorithm [8], and the subspace iteration method [9] are well known.

Next, we consider the eigenvalue problem of a q-degree gyroscopic system [10, 11]:

(λ 2M+λG+K)u = 0q, (7)

where M is a symmetric and positive definite matrix, K a symmetric and negative definite matrix, and G =−GT a skew-
symmetric matrix. Our purpose is to determine the eigen-pair (λ , u) of equation (7), which belongs to the quadratic
eigenvalue problems [12]. In [13] a novel exciting and maximizing method was developed to solve the quadratic
eigenvalue problems for the structural free vibration frequencies.

The Bezout method [14] introduces a solvent matrix S to satisfy
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MS2 +GS+K = 0q, (8)

such that equation (7) is factorized as

(λM+MS+G)(λ Iq −S)u = 0q. (9)

Solving two q-dimensional eigenvalue problems:

(MS+G)u =−λMu, Su = λu, (10)

we can recover all eigenvalues of equation (7). Some techniques for the quadratic eigenvalue problems involving an
accurate solution of the solvent S can refer to [10, 11, 15–24].

Let

v = λMu. (11)

We can combine equations (7) and (11) with M−1v = λu together as

[
0q −K

M−1 0q

][
v
u

]
= λ

[
Iq G
0q Iq

][
v
u

]
. (12)

Defining

x :=

[
v
u

]
, A :=

[
0q −K

M−1 0q

]
, B :=

[
Iq G
0q Iq

]
, (13)

equation (12) becomes a generalized linear eigenvalue problem (LEP) in equation (5).
Especially, because of

(AJ)T = AJ, (BJ)T =−BJ, (14)

where

J :=

[
0q Iq

−Iq 0q

]
, (15)
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A−λB is a skew-Hamiltonian/Hamiltonian pencil, whose eigenvalue happens in the form of quadruplets: (λ , λ̄ , −λ , −λ̄ )
[25, 26]. Owing to this special symmetry property, we merely need to solve the standard eigenvalue problem of the second
one in equation (10); however, the premise is that we have to find S very accurately.

Recently, many applications and solvers of quadratic eigenvalue problems have been proposed, e.g., the stability
analysis of time-delay systems [27], the free vibrations of fluid-solids structures [28], a modified second-order Arnoldi
method [29], the inexact residual iteration method [30], the homotopy perturbation technique [31], the electromagnetic
wave propagation and the analysis of an acoustic fluid contained in a cavity with absorbing walls [32], a friction-induced
vibration problem under variability [33]. In addition, several applications and solvers of generalized eigenvalue problems
have been addressed, e.g., the block Arnoldi-type contour integral spectral projection method [34], the small-sample
statistical condition estimation [35], the matrix perturbation methods [36], the overlapping finite element method [37], the
complex HZ method [38], the context of sensor selection [39], a generalized Arnoldi method [40], a frequency isolation
algorithms [41], the neural networks based on the power method and inverse power method [42], and a novel fifth-order
iterative method [43]. Besides, comparing with the above-mentioned references, our proposed minimization method and
a split-linearization technique is easier to implement and more accurate.

The contents of the present paper are briefly sketched. In Section 2, we introduce a new detection method of the
eigenvalue by a minimization method for the quadratic eigenvalue problem and the numerical process is given, where
the skew-Hamiltonian/Hamiltonian form for the gyroscopic system is further enlarged to the 2n-dimensional LEP for
complex eigenvalue problem. In Section 3, an iterative method is developed to directly solve the quadratic eigenvalue
problem by a minimization method. In Section 4, the gyroscopic system and a split-linearization technique for the solvent
matrix are discussed, and we apply a similar method in Section 2 to solve the LEP Su = λu with dimension n = 2q. Then
we reduce the linear eigenvalue problem of the solvent to a simpler quadratic eigenvalue problem with dimension q, and
a minimization method is proposed to formulate a solvent QEP method. Five examples are demonstrated in Section 5.
Finally, we conclude the main results in Section 6.

2. A new detection method
For equation (5) the eigenvalue may be a complex number:

λ = λR + iλI . (16)

Correspondingly, we take

x = z+ iw. (17)

Inserting equations (16) and (17) into equation (5), yields

[
A−λRB λIB
−λIB A−λRB

][
z
w

]
= 0. (18)

Letting
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x :=

[
z
w

]
, D(λR, λI) : =

[
A−λRB λIB
−λIB A−λRB

]
, (19)

equation (18) becomes

Dx = 0, (20)

where x is a 2n-dimensional vector and D is a 2n×2n matrix. For saving notation we still use x in equation (19).
First we specify the theoretical foundation of the minimization method to be developed. For equation (20), x is not

unique. For x to be a nontrivial solution of equation (20), at least one component of x is not zero; we can normalize x
such that the value of the nonzero component, say the j0-th component, is a unit number. On the other hand, taking the
norm of equation (20) yields

∥Dx∥= 0. (21)

To determine the complex eigenvalue, we consider

min
(λR, λI)∈[a, b]×[c, d]

f (λR, λI) := ∥D(λR, λI)x∥ ≥ 0. (22)

Obviously, x = 0 is a trivial solution of equation (22) because of f = 0. However, when we demand that x is a
nontrivial solution of equation (20), of which at least one component of x is not zero, x = 0 can be excluded. Below we
develop a new technique to find a nontrivial solution of x, and use equation (22) to determine the complex eigenvalue.

In order to create a nontrivial and unique solution of equation (20), of which at least one component of x is not
zero, we can normalize a certain nonzero j0-th component of x by x j0 = 1. Then, from equation (20) an n0 = (2n− 1)-
dimensional nonhomogeneous linear system can be obtained by moving the j0-th column of the eigen-equation to the
right-hand side using the following processes.

Let di j be the components of D(λR, λI) for each specified (λR, λI), and then the components of equation (20) are

d11x1 + . . .+d1, j0x j0 + . . .+d1, 2nx2n = 0,

...

d2n−1, 1x1 + . . .+d2n−1, j0x j0 + . . .+d2n−1, 2nx2n = 0,

d2n, 1x1 + . . .+d2n, j0x j0 + . . .+d2n, 2nx2n = 0. (23)

Move the j0-th column to the right-hand side by
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d11x1 + . . .+d1, j0−1x j0−1 +d1, j0+1x j0+1 + . . .+d1, 2nx2n =−d1, j0x j0 ,

...

d2n−1, 1x1 + . . .+d2n−1, j0−1x j0−1 +d2n−1, j0+1x j0+1 + . . .+d2n−1, 2nx2n =−d2n−1, j0x j0 ,

d2n, 1x1 + . . .+d2n, j0−1x j0−1 +d2n, j0+1x j0+1 + . . .+d2n, 2nx2n =−d2n, j0x j0 . (24)

By defining

ei =−di j0 , i = 1, . . . , n0, (25)

where di j0 is the j0-th column of the matrix D, and taking x j0 = 1 in equation (24), we can obtain the first n0 = 2n− 1
equations as follows:

ci jy j = ei, i, j = 1, . . . , n0, (26)

where the coefficient matrix [ci j] is constructed from [di j] by

Do i = 1 : n0,

k = 0,

Do j = 1 : 2n,

If j = j0 next j,

k = k+1,

cik = di j,

End do of j,

End do of i. (27)
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The nonhomogeneous linear system in equation (26) was obtained by reducing the number of eigen-equation one
less with dimension 2n−1, and with its certain nonzero component being normalized to the unit and moving the column
containing this component to the right-hand side. We can apply the Gaussian elimination method to solve (y1, . . . , yn0)

in equation (26), and then x = (x1, . . . , x2n)
T is computed from y = (y1, . . . , yn0)

T by

k = 0,

Do j = 1 : 2n,

If j = j0 x j = 1, next j,

k = k+1,

x j = yk,

End do of j. (28)

Therefore, the numerical procedures based on equation (22) for determining the complex eigenvalue are depicted as
follows to be a new detection method (NDM) in Table 1.

Table 1. Algorithm: new detection method (NDM)

Algorithm: NDM

1: Give a, b, c, d, j0, and ε
2: For each (λR, λI) ∈ [a, b]× [c, d], solve equations (25)-(28) to obtain x

3: Apply golden section search algorithm (GSSA) to equation (22)

It can be seen that the Algorithm NDM is very simple. The convergence criterion of golden section search algorithm
(GSSA) is fixed to be 10−15. About the two-dimensional golden section search algorithm, one may refer to [44] and also
the Appendix. When λR and λI take values inside a rectangle by (λR, λI) ∈ [a, b]× [c, d], we can plot ∥Dx(λR, λI)∥ vs.
(λR, λI) over the eigen-parametric plane, whose minimal point locates the complex eigenvalue.

The role of GSSA is helped us to locate the minimal point withing the given range [a, b]× [c, d].

3. An iterative method for the direct detection of complex eigenvalue
We directly solve equation (7), rather than equation (5) by the method NDM in Section 2. Inserting

u = a+ ib, (29)

and equation (16) into equation (7), yields
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[
(λ 2

R −λ 2
I )M+λRG+K −2λRλIM−λIG

2λRλIM+λIG (λ 2
R −λ 2

I )M+λRG+K

][
a
b

]
= 0. (30)

Letting

u :=

[
a
b

]
, E :=

[
(λ 2

R −λ 2
I )M+λRG+K −2λRλIM−λIG

2λRλIM+λIG (λ 2
R −λ 2

I )M+λRG+K

]
, (31)

equation (30) becomes

Eu = 0, (32)

which is an n = 2q dimensional homogeneous linear system. For saving notation we still use u in equation (31).
When u is an n-dimensional vector, E is an n×n matrix. Compared to the linearization in equation (20), the direct

formulation with equation (32) has one advantage with the dimension being reduced to one-half of equation (20). The
procedures to find the nontrivial solution of Y are similar to that in equations (25)-(28), but with x replaced by u, and D
replaced by E.

Like that in equation (22), we can employ the following merit function:

min
(λR, λI)∈[a, b]×[c, d]

f (λR, λI) := ∥E(λR, λI)u∥ (33)

to determine the complex eigenvalue, where E is given by equation (31). This detection method in a half-dimension n of
that in Section 2 is named a direct detection method (DDM). Therefore, the numerical procedures based on equation (33)
for determining the complex eigenvalue are depicted as follows to be a new direct detection method (DDM) in Table 2. It
is remarkable that the complex eigenvector can be computed simultaneously.

Table 2. Algorithm: direct detection method (DDM)

Algorithm: DDM

1: Give a, b, c, d, j0, and ε
2: For each (λR, λI) ∈ [a, b]× [c, d], solve equation (32) via equations (25)-(28) to obtain u

3: Apply golden section search algorithm (GSSA) to equation (33)

4. An iterative method for the direct detection of complex eigenvalue
It is known that the eigenvalues of equation (7) occur in quadruplets for the gyroscopic system: (λ , λ̄ , −λ , −λ̄ ).

We merely require to solve the eigenvalue λ of the solvent S in equation (8), and other eigenvalues are obtained by the
symmetric extensions. In [24], inserting
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S = (Iq +Y)(Iq −Y)−1 (34)

into equation (8), results to

PTY2 +QY+P = 0q, (35)

where

P = M+G+K, Q = 2(M−K). (36)

Further use

Y =−Z−1P (37)

in equation (35), a nonlinear matrix equation is available:

Z+PTZ−1P = Q. (38)

For equation (38) the method of cyclic-reduction-based solvent (CRS) is very efficient [11, 24].

4.1 A split-linearization method (SLM)

Rather than the CRS method, we develop a split-linearization method to solve equation (35) directly to find Y, such
that the solvent S can be computed from equation (34).

Inserting a weight factor γ in equation (35), we have

(1− γ)PTY2 +QY =−P− γPTY2. (39)

We give an initial guess Y0 to initialize the iteration, in general Y0 = 0. At the kth step of the iteration, Yk is known
and equation (39) is linearized around Yk to

[(1− γ)PTYk +Q]Y =−P− γPTY2
k . (40)

For Y it is a linear matrix equation system, since the coefficient (1−γ)PTYk+Q is a constant matrix, and meanwhile,
the right-hand side is a constant matrix. We can solve next Yk+1 by

Yk+1 =−[(1− γ)PTYk +Q]−1[P+ γPTY2
k ]. (41)
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The above process is a novel split-linearization method (SLM) for obtaining Y until convergence and thus to obtain
the solvent S by equation (34).

Compared to CRS, which needs to solve a nonlinear matrix equation (38), SLM is simpler to solve a linear matrix
equation (40). The numerical procedure of SLM is simpler than that of CRS.

To explore the stability and convergence, let us focus on the linear matrix equation (40), which is expressed as

AY = B. (42)

In terms of residual matrix and descent matrix:

Rk = B−AYk, (43)

AUk = Rk, (44)

we have

Rk+1 = Rk −AUk. (45)

The iteration in equation (41) is equivalent to take the kth step descent matrix by

Uk = A−1Rk, (46)

such that the following identity holds:

Rk · (AUk)

∥AUk∥2 = 1. (47)

Taking the squared norm of equation (45) yields

∥Rk+1∥2 = ∥Rk∥2 −2Rk · (AUk)+∥AUk∥2, (48)

which by equation (47) changes to

∥Rk+1∥2 = ∥Rk∥2 −∥AUk∥2 < ∥Rk∥2, (49)

owing to ∥AUk∥2 > 0. The inequality ∥Rk+1∥ < ∥Rk∥ obtained from the above demonstrates that the residuals are
decreased step-by-step, such that the split-linearization method (SLM) for obtaining Y is absolutely convergent and the
numerical scheme is unconditionally stable.

When S is available, we can apply the method in Section 2 with A replaced by S and B by Iq to find the eigenvalues:
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[
S−λRIq λIIq

−λIIq S−λRIq

][
z
w

]
= 0, (50)

which is an n = 2q dimensional LEP.
We can apply the techniques in equations (25)-(28) to solve equation (50). Solving this LEP with dimension n = 2q,

it is more time saving and can obtain more accurate eigenvalues when S is accurately computed.
In summary the pseudo-code of the split-linearization method (SLM) to compute the complex eigenvalue can be

depicted by the following algorithm in Table 3.

Table 3. Algorithm: split-linearization method (SLM)

Algorithm: SLM

1: Give M, G, K, Y0, a, b, c, d, γ , and ε
2: Compute P = M+G+K, Q = 2(M−K)

3: Do k = 0, 1, . . .

4: Yk+1 =−[(1− γ)PTYk +Q]−1[P+ γPTY2
k ]

5: If ∥Yk+1 −Yk∥< ε , go to 6; otherwise, go to 3
6: Compute S = (Iq +Yk+1)(Iq −Yk+1)

−1

7: Apply equations (25)-(28) to solve equation (50)
8: Apply golden section search algorithm (GSSA) to min(λR , λI )∈[a, b]×[c, d] ∥Dx∥

No matter which method is employed, we can measure the error by accounting for the value of the residual ∥Dx∥ in
Sections 2 and 4.1, and ∥Eu∥ in Section 3. The above split-linearization technique was first employed by Liu et al. [45]
to solve the system of nonlinear algebraic equations.

4.2 A simpler quadratic eigenvalue problem of solvent

For the q-dimensional standard eigenvalue problem of the solvent:

Su = λu, (51)

of which after inserting equations (16) and (29), we can obtain

S(a+ ib) = (λR + iλI)(a+ ib). (52)

Equating the real and imaginary parts generates

Sa = λRa−λIb, (53)

Sb = λRb+λIa (54)
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To delete b, applying S to equation (53) and using equation (54) yields

S2a = λRSa−λRλIb−λ 2
I a. (55)

Inserting λIb = λRa−Sa obtained from equation (53), we have

S2a = λRSa−λ 2
Ra+λRSa−λ 2

I a, (56)

which can be arranged to

[S2 −2λRS+(λ 2
R +λ 2

I )Iq]a = 0q. (57)

The advantage of this simpler quadratic eigenvalue problem (QEP) is that its dimension is q.
We can apply the techniques in equations (25)-(28) to solve equation (57) and search (λR, λI) by minimizing

min
(λR, λI)∈[a, b]×[c, d]

f (λR, λI) := ∥[S2 −2λRS+(λ 2
R +λ 2

I )Iq]a∥ ≥ 0. (58)

Solving this simpler QEP with dimension q, is more time-saving and can obtain more accurate eigenvalues when S
is accurately computed.

In summary the pseudo-code of the split-linearization method together with a simpler QEP in equation (57), which
is named the solvent QEP (SQEP), can be depicted by the following algorithm in Table 4.

Table 4. Algorithm: solvent quadratic eigenvalue problem (SQEP)

Algorithm: SQEP

1: Give M, G, K, Y0, a, b, c, d, γ , and ε
2: Compute P = M+G+K, Q = 2(M−K)

3: Do k = 0, 1, . . .

4: Yk+1 =−[(1− γ)PTYk +Q]−1[P+ γPTY2
k ]

5: If ∥Yk+1 −Yk∥< ε , go to 6; otherwise, go to 3
6: Compute S = (Iq +Yk+1)(Iq −Yk+1)

−1

7: Apply equations (25)-(28) to solve [S2 −2λRS+(λ 2
R +λ 2

I )Iq]a = 0q

8: Apply golden section search algorithm (GSSA) to min(λR , λI )∈[a, b]×[c, d] f (λR, λI) = ∥[S2 −2λRS+(λ 2
R +λ 2

I )Iq]a∥

Notice that at each step in GSSA, we need to apply equations (25)-(28) to solve [S2 −2λRS+(λ 2
R +λ 2

I )Iq]a = 0q for
computing a, which is an q-dimensional eigenvector.

5. Examples of quadratic eigenvalue problems
To demonstrate the efficiency and accuracy of the proposed iterative algorithms for computing the eigenvalues of

QEPs, several examples will be examined. All the numerical computations are carried out by Fortran 77 in Microsoft
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Developer Studio with Intel Core I7-3770, CPU 2.80GHz and 8GB memory. The precision is 10−16. All the plots are
produced by the Grapher system.

In the computation by an iteration method giving a suitable convergence criterion is required. In general we take a
strict convergence criterion with ε = 10−15 for obtaining highly accurate eigenvalue. For each example the value of ε is
specified.

5.1 Example 1

We consider a free vibration problem of a q-degree linear structure [46]:

Mq̈(t)+Cq̇(t)+Kq(t) = 0, (59)

where q(t) is a time-dependent q-dimensional vector to signify the generalized displacements of the system; the mass
matrix M and the stiffness matrix K are symmetric and positive definite. In terms of the vibration mode u, we can express
the fundamental solution of equation (59) as

q(t) = eλ tu, (60)

which leads to a QEP for (λ , u) in equation (1).
For simplicity we take q = 3 with the following mass matrix M and stiffness matrix K:

M =

 1 0 0
0 1.5 0
0 0 2

 kip · sec2/in, K = 600

 1 −1 0
−1 3 −2
0 −2 5

 kip/in, (61)

and with a proportional damping in the system given by [46]

C = a0M+a1K. (62)

The real and imaginary parts of the eigenvalue are derived as follows:

λR =−ζω , λI =
√

1−ζ 2ω, (63)

where the damping ratio is given by

ζ =
a0

2ω
+

a1ω
2

. (64)

When we take a0 = 0.01 and a1 = 0.001 and apply the method DDM in Section 3 to this eigenvalue problem, we
obtain
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λ1 =−0.1104394223218184+14.52124787422935i,

λ2 =−0.4869803136597109+31.04387711289919i,

λ3 =−1.061803398874989+46.08711293657499i. (65)

They are very close to that computed from the theoretical value in equation (63) with the error of ∥Eu∥ =

1.604999085892749×10−7.

5.2 Example 2

We consider a modeling oscillation in an airplane wing with [19, 47]:

M =

 17.6 1.28 2.89
1.28 0.824 0.413
2.89 0.413 0.725

 , C =

 7.66 2.45 2.1
0.23 1.04 0.223
0.6 0.756 0.658

 , K =

 121 18.9 15.9
0 2.7 0.145

11.9 3.64 15.5

 . (66)

By applying the method DDM in Section 3 to this eigenvalue problem, we obtain

λ1 =−0.8848302276193057±8.441512059499651i,

λ2 = 0.09472173815159608±2.52287655639731i,

λ3 =−0.9179981428161036±1.760584228706396i. (67)

They are very close to the exact value with the errors of ∥Eu∥= 1.14795128039987×10−13, ∥Eu∥= 1.95051619919
4264×10−13, and ∥Eu∥= 1.834711592181303×10−13. Very small values of ∥Eu∥ reflect that the DDMmethod is very
accurate. In the literature a simpler method like the DDM in Section 3 is still deserved, because it can achieve highly
accurate eigenvalues with low computational cost.

5.3 Example 3

We consider an MGK system with [24]:
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M0 =


10−7 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 , G0 =


0 1 0 0
−1 0 0 0
0 0 0 g
0 0 −g 0

 ,

K0 =


−1 0 0 0
0 −10−7 0 0
0 0 −4 0
0 0 0 −1

 , W =


−0.43 −1.15 0.33 −0.59
−1.67 1.19 0.17 2.18
0.13 1.19 −0.19 −0.14
0.29 −0.04 0.73 0.11

 ,

M = WTM0W, G = WTG0W, K = WTK0W, (68)

where we take g = 2.999999.
By applying the method DDM in Section 3 to this eigenvalue problem, we obtain the eigenvalues:

±0.7071067989967894±0.7071067621580626i,

±0.001224744768419265±1.414213032041997i. (69)

They are very accurate with the errors ∥Eu∥ = 1.605990467444744× 10−15 and ∥Eu∥ = 1.273284490727198×
10−14. The high accuracy of DDM is confirmed with very small values of ∥Eu∥.

When we apply the CRS to find the solvent S, it is convergent with 17 iterations to satisfy the convergence criterion
ε = 10−15; however, the residual error to satisfy equation (8) is 1.245683658005252×10−8. Obtained eigenvalues are

±0.7097778691381612±0.7112949472245013i,

±0.001224711667456435±1.414213032097788i. (70)

The errors of equation (7) are 1.88126907801905×10−9 and 5.091216337849501×10−10. The CRS is less accurate
than the iterative method DDM in Section 3. We must emphasize that the simpler method DDM can improve the method
existed in the literature with the accuracy of the eigenvalue being raised about five orders.

When we apply the SLM in Section 4.1 with γ = 0 to solve this problem, we find that ∥Dx∥= 3.546988563973862×
10−9 and ∥∥Dx∥ = 2.409392359237624× 10−9, which is convergent slower and less accurate than the CRS. The SLM
does not satisfy the convergence criterion ε = 10−5 within 100 iterations.

5.4 Example 4

This example is Example 6.1 of [25], and we have a quadratic eigenvalue problem (7) with dimension q= 100. When
we apply the CRS to find the solvent S, it is convergent with 8 iterations to satisfy the convergence criterion ε = 10−15.
One quadruplet of the eigenvalues is
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±1.700677132426048±0.03080172655141696i, (71)

The error of equation (7) is 7.082854615565958×10−16. Another isolated eigenvalues obtained is

±0.2816529303211303±0.8724658668457154i, (72)

whose error 1.514636773591871×10−5 is quite large.
Whenwe apply the SLM in Section 4.1 with γ = 0.05 to solve this problemwe find that ∥Dx∥= 2.81004183202572×

10−16, and the complex eigenvalues are

±1.700678402616394±0.03080232464229823i. (73)

For the isolated eigenvalues we obtained is

±0.2816529303204782±0.8724658668457154i, (74)

and ∥Dx∥= 1.514637096517238×10−5 is near to that obtained by the CRS.
By applying the method DDM in Section 3 to this eigenvalue problem, we obtain

±1.700677891610475±0.03080221866527308i, (75)

whose ∥Eu∥= 2.635669273673072×10−16 is very small. The isolated eigenvalues are

±0.2816529533434994±0.8724658668457159i, (76)

and ∥Eu∥= 1.508995105798522×10−5 is near to that obtained by the CRS and the SLM.
Solving this QEP by the method SQEP in Section 4.2 with dimension q is more time saving, and we can obtain more

accurate eigenvalues. Indeed, we can obtain

±1.700677891610475±0.03080387867252627i, (77)

whose f = 7.452286103066368 × 10−17 and ∥Dx∥ = 9.598114601107021 × 10−15 are very small. The isolated
eigenvalues are

±0.2816529369978221±0.8724654898473985i, (78)
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and f = 1.139077578617813×10−14, which corresponds to ∥Dx∥ = 2.119339196182723×10−13 and is much smaller
than that obtained by CRS. In Figure 1 the distribution of eigenvalues is displayed with respect to λR and λI .

Figure 1. For example 4 the distribution of eigenvalues computed by the SLM for the solvent and an iterative detection method

5.5 Example 5

This example is Example 6.2 of [25], and we have a quadratic eigenvalue problem (7) with dimension q = 25. First,
we apply the SLM in Section 4.1 with γ = 0.005 to solve this problemwith 25 iterations to satisfy the convergence criterion
ε = 10−15. We plot the merit function f resulted from equation (57) with λI = 0 in Figure 2, which shows the first three
real eigenvalues as the local minimums.

Figure 2. For the QEP of a gyroscopic system in Example 5, showing three local minimums of a merit function in the range [0, 1.1]

Precisely, by using the GSSA we can obtain the following eigenvalues:

λ1 = 0.6726432664742701, λ2 = 0.98664429351828, λ3 = 1.068910182356432, (79)

of which ∥Dx∥= 5.156261683403625×10−16, ∥Dx∥= 1.12439767554822×10−16 and ∥∥Dx∥= 1.722994053665819×
10−16 are obtained respectively. Very small values of ∥Dx∥ confirm that the SLM method is very accurate.

In [25], one obtained

λ1 = 0.6726432397672, λ2 = 0.9866442639296, λ3 = 1.0689101679903, (80)
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of which ∥Dx∥= 9.396497532747466×10−16, ∥Dx∥= 3.343995064352587×10−16 and ∥Dx∥= 1.365687731249037×
10−15 are obtained respectively, which are slightly less accurate than that in equation (79).

6. Conclusions
In the paper we have developed fast iterative methods for finding solutions of quadratic eigenvalue problems,

involving mass-spring-damper (MCK) and another mass-spring-damper (MGK) systems. In the constructed curve or
surface the real and complex eigenvalues were being the local minimums of the constructed merit functions. In the
merit function the vector variable is solved from the nonhomogeneous linear system, which is available by reducing
the eigen-equation with one dimension less and by moving the normalized component to the right-hand side. We can
quickly obtain eigenvalues by using the golden section search algorithm to solve the resultant minimization problems.
Eigenvalue and eigenvector can be obtained merely through a few iterations with high precisions and the computations
of the merit functions was saved. A new technique SLM was developed to quickly find an accurate solvent matrix for the
MGK quadratic eigenvalue problems. Then we reduced it to a QEP with half dimension for computing all eigenvalues by
using the symmetry. Upon comparing to the cyclic-reduction-based solvent method, the convergence speed of the SLM
is slightly slower; however, its accuracy by combining with the minimization method is better.

In many engineering applications of MCK and MGK systems, the eigenvalues and their precise values are of utmost
important. The practical significance of the obtained eigenvalues with high accuracy is that we can design a better method
to handle the corresponding system for further understanding its stability behavior.

The proposed methods were based on GSSA to solve the derived minimization problems. We may encounter the
complex eigenvalue problem whose complex eigenvalues are clustered in a narrow region. Limited by the resolution of
GSSA, the detection methods might be difficult to find very accurate eigenvalues which are very close.
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Appendix
In this appendix we give the two-dimensional golden section search algorithm (GSSA) to find the minimum of a give

function f (x, y), (x, y) ∈ [A, B]× [C, D] with a given stopping criterion ε:

R = [
√

5−1]/2

X1 = A+(1−R)(B−A)

X2 = A+R(B−A)

Y1 =C+(1−R)(D−C)

Y2 =C+R(D−C)

F11 = f (X1,Y1)

F12 = f (X1,Y2)

F21 = f (X2,Y1)

F22 = f (X2,Y2)

FMIN = min(F11,F11,F21,F22)

If
√

(B−A)2 +(D−C)2 < ε Then

If (FMIN.EQ.F11) Then

fmin = F11

xmin = X1

ymin = Y1

End if

If (FMIN.EQ.F12) Then
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fmin = F12

xmin = X1

ymin = Y2

End if

If (FMIN.EQ.F21) Then

fmin = F21

xmin = X2

ymin = Y1

End if

If (FMIN.EQ.F22) Then

fmin = F22

xmin = X2

ymin = Y2

End if

Stop

End if

If (FMIN.EQ.F11) Then

B = X2
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D = Y2

End if

If (FMIN.EQ.F12) Then

B = X2

C = Y1

End if

If (FMIN.EQ.F22) Then

A = X1

C = Y1

End if

If (FMIN.EQ.F21) Then

A = X1

D = Y2

End if

X1 = A+(1−R)(B−A)

X2 = A+R(B−A)

Y1 =C+(1−R)(D−C)

Y2 = A2+R(D−C)

F11 = f (X1,Y1)
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F12 = f (X1,Y2)

F21 = f (X2,Y1)

F22 = f (X2,Y2)

FMIN = min(F11,F12,F21,F22)
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