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Abstract: This article delves into the analysis of nonlinear implicit ω-Caputo fractional-order ordinary differential
equations (NLIFDEs) with two-point fractional derivatives and integral boundary conditions within the context of Banach
algebra. The primary focus is on demonstrating the existence and uniqueness of solutions for these complex fractional
differential equations by utilizing Banach’s and Krasnoselskii’s fixed point theorems. Furthermore, the study explores
the stability of these solutions through the Ulam-Hyers and Ulam-Hyers-Rassias stability criteria, thereby assessing
the robustness of the proposed model. To illustrate the versatility of the generalized model, several special cases are
examined, showcasing its ability to encompass various classical models. The practical applicability of the theoretical
findings is underscored through a numerical example, which demonstrates the feasibility and relevance of the proposed
methodology. This thorough investigation advances the comprehension of nonlinear fractional differential equations with
integral boundary conditions, highlighting the intricate relationship between fractional derivatives, nonlinearities, and
integral terms. The results offer significant insights into the behavior and stability of solutions within this demanding
mathematical framework.
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1. Introduction
Fractional calculus has garnered significant attention for its extension of differentiation and integration to non-integer

orders, offering a robust framework for modeling complex phenomena across scientific and engineering disciplines.
Pioneering work by mathematicians such as Almeida, Agarwal, Kiblas, and Samko has significantly expanded this field
[1–5].
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A specific area of focus within this domain is nonlinear implicit fractional-order differential equations (NLIFDEs)
with fractional boundary conditions (FBCs), which have applications in mathematical physics, engineering sciences,
and computational mathematics [6–10]. The concept of ω-fractional derivatives, a generalization of Riemann-Liouville
derivatives, has been revisited by Almeida [2], introducing a Caputo-type regularization and exploring its properties [11–
15]. Extensive research has focused on the existence of positive solutions for fractional differential equations with integral
boundary conditions, employing methodologies like fixed-point theory.

Nonlinear implicit ω-Caputo fractional-order differential equations (NLIFDEs) with two-point fractional derivatives
and integral boundary conditions are significant due to their wide-ranging applications in various scientific and engineering
fields. These equations provide a powerful framework for modeling complex phenomena that exhibit memory and
hereditary properties, which are common in many real-world systems such as viscoelastic materials, anomalous diffusion
processes, and biological systems [2, 4, 5]. Studying NLIFDEs extends classical differential equation models, allowing
for a more accurate and comprehensive description of complex systems [6, 7]. By incorporating fractional derivatives,
which generalize integer-order differentiation, these models can capture the intricacies of dynamic processes with greater
fidelity [1, 13]. Therefore, developing a rigorous mathematical analysis for the existence, uniqueness, and stability of
solutions to NLIFDEs is essential for advancing theoretical knowledge and enhancing practical applications in science
and engineering [3, 16, 17].

This research contributes to understanding NLIFDEs by exploring the interplay between fractional derivatives,
nonlinearities, and integral terms. In this study, we employ Banach’s and Krasnoselskii’s fixed-point theorems to establish
the existence and uniqueness of solutions for NLIFDEs. Banach’s fixed-point theorem is utilized to demonstrate that our
problem can be framed as a contraction mapping problem, ensuring a unique fixed point within a complete metric space.
Krasnoselskii’s fixed-point theorem is used to address more general cases where the mapping satisfies certain compactness
conditions, further guaranteeing the existence of solutions. These theorems provide a rigorous mathematical foundation
for our results, confirming the existence and uniqueness of solutions under the given conditions.

The stability of solutions is analyzed using the Ulam-Hyers and Ulam-Hyers-Rassias stability criteria. The Ulam-
Hyers criterion is valuable for assessing whether solutions remain close to exact solutions under perturbations [16], while
the Ulam-Hyers-Rassias criterion extends this analysis to handle more general forms of perturbations [17]. These methods
are particularly well-suited for the complex nature of fractional differential equations with integral boundary conditions,
providing a clear framework for evaluating the robustness of our findings [12]. Although alternative methods, such as
Lyapunov’s direct method, could be considered, the Ulam-Hyers and Ulam-Hyers-Rassias criteria offer a more direct and
feasible approach for our specific context [2, 7, 18].

The practical illustration through a numerical example underscores the methodology’s applicability in real-world
problem-solving. In summary, this research advances the understanding of nonlinear fractional differential equations with
integral boundary conditions, contributing to both theoretical foundations and practical insights for addressing complex
systems governed by NLIFDEs. Numerous recent contributions, summarized comprehensively in works such as [8, 19,
20], among others, have motivated the present paper. The aim of our study is to investigate the existence and uniqueness
of solutions pertaining to a class of nonlinear implicit ω-Caputo fractional differential equations (NLIFDEs). These
equations incorporate fractional derivatives and integral boundary conditions within the domain of Banach Algebra.

The use of Banach algebra is chosen for its comprehensive structure, combining the properties of both a Banach
space and an algebra. This structure provides a robust foundation for analyzing nonlinear operators and ensuring the
convergence of iterative methods. The completeness of Banach algebra under a norm facilitates the application of fixed-
point theorems and other analytical techniques crucial for establishing the existence and uniqueness of solutions to complex
integro-differential equations. Moreover, Banach algebra enables the manipulation of functions and their compositions
within an algebraic context, essential for addressing the complexities of fractional integro-differential equations with
nonlocal boundary conditions.

Consider the following nonlinear implicit ω-Caputo fractional differential equation:

cD
γ, ω
0+ Y (τ) = F (τ, Y (τ), cDθ , ω

0+ Y (τ),
∫ τ

0
k(τ, ξ ) cD

γ, ω
0+ Y (ξ )dξ ), τ ∈ [0, T] , 0 < θ ≤ 1, 2 < γ ≤ 3, (1)
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Subjected to the subsequent set of three integral boundary conditions involving fractional derivatives:

Y (0)+ cD
γ−1, ω
0+ Y (T) = η1

∫ T

0
g1 (ξ , Y (ξ ))dξ , (2)

cD
γ−1, ω
0+ Y (0)+ cD

γ−2, ω
0+ Y (T) = η2

∫ T

0
g2 (ξ , Y (ξ ))dξ , (3)

cD
γ−2, ω
0+ Y (0)+ cD

γ−3, ω
0+ Y (T) = η3

∫ T

0
g3 (ξ , Y (ξ ))dξ , (4)

where τ ∈ J = [0, T], cD
γ, ω
0+ and cDθ , ω

0+ denote the standard ω-Caputo fractional derivatives of orders γ ∈ (2, 3] and
θ ∈ (0, 1], where ω (τ) is an increasing function with ω ′ (τ) ̸= 0 ∀ τ ∈ J = [0, T], F : J ×R3 → R, and gi: J ×R → R
(i = 1, 2, 3) are continuous functions.

The structure of the paper is as follows: In the initial section, we provide an introduction to the article, presenting
an overview, elucidating the research objective, and providing essential background information and prerequisites.
Subsequently, the second section is dedicated to the exploration of solutions for boundary value problems related to
nonlinear fractional differential equations featuring fractional integral boundary conditions. This exploration involves
the application of Banach’s and Krasnoselskii’s fixed point theorems to establish both the existence and uniqueness of
solutions. Furthermore, the third section conducts a thorough stability analysis of the solutions, employing the Ulam-
Hyers and Ulam-Hyers-Rassias criteria. Finally, in the fifth section, a practical numerical example is incorporated to
illustrate the real-world application of the derived findings.

2. Preliminaries: Definitions, Lemmas, and Theorems
In the subsequent text, we present certain symbols, definitions, lemmas, and theorems that serve as foundational

elements for our study. These essential concepts can be referenced in [2–5], and related sources.
Definition 1 [2] Consider γ > 0, and let J = [a, b] represent an interval with −∞ < a < τ < b < +∞, where x ∈

L1 (J, R). The left-sidedω-Riemann-Liouville fractional integral ofY (τ)with order γ for an integrable function x: J →R,
with respect to another function ω: J → R, is defined as follows. Here, ω is an increasing differentiable function such
that ω ′ (τ) ̸= 0 for all τ ∈ J:

I
γ, ω
a+ Y (τ) =

1
Γ(γ)

∫ τ

a
ω ′(ξ )(ω (τ)−ω (ξ ))γ−1Y (ξ )dξ , (5)

where Γ is the Euler gamma function defined by Γ(z) =
∫ +∞

0 tz−1e−t dt.
Definition 2 [5] Consider n ∈ N, and let J = [a, b] denote an interval with −∞ < a < τ < b < +∞. Suppose

ω, x ∈ Cn(J, R) are two functions, where ω is increasing and ω ′(τ) ̸= 0 for all τ ∈ J. In this context, the left-sided
ω-Caputo fractional derivative of a function Y of order γ is formally expressed as follows:

cD
γ, ω
a+ Y (τ) = I

n−γ, ω
a+

(
1

ω ′(τ)
d

dτ

)n

Y (τ), (6)

with
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I
n−γ, ω
a+ Y (τ) =

1
Γ(n− γ)

∫ τ

a
ω ′(ξ )(ω(τ)−ω(ξ ))n−γ−1Y (n)(ξ )dξ , (7)

such that

Y (n)(ξ ) =
(

1
ω ′(ξ )

d
dξ

)n

Y (ξ ), (8)

where n = [γ]+1 for γ /∈ N, and n = γ for γ ∈ N.
To investigate the existence of solutions for a fractional differential equation, it is essential to convert it into an

equivalent integral equation using the fundamental properties of Ia+γ, ω and cDa+γ, ω . The following lemma is pivotal
for establishing the basic properties of fractional integrals and derivatives within the framework of ω-fractional calculus,
which supports the analysis of NLIFDEs in our study.

Lemma 1 [2] Consider γ, θ ∈ R+ and F (τ) ∈ L1(J), where J = [a, b] is an interval. Then, for every τ ∈ J:
1. The fractional integral Iγ, ω

a+ Y (ζ ) exists almost everywhere.
2. Iγ, ω

a+ Iθ , ω
a+ Y (τ) = Iθ , ω

a+ I
γ, ω
a+ Y (τ) = I

γ+θ , ω
a+ Y (τ).

3. (Iγ, ω
a+ )nY (τ) = Inα, ω

a+ Y (τ), where n ∈ N.

4. cD
γ, ω

a+ I
γ, ω

a+ Y (ζ ) = Y (ζ ) for all τ ∈ J.

5. cD
γ, ω

0+ I
γ, ω

0+ Y (ζ ) = I
γ−θ

0+ Y (ζ ) for θ ∈ [0, γ).
6. cD

γ, ω
0+ Y (ζ ) = I

−γ, ω
0+ Y (ζ ) for γ < 0 and ζ ≥ 0.

The subsequent lemmas and theorems are essential for establishing the foundational properties of the ω-Caputo
fractional derivatives. These mathematical tools and transformations leverage the fundamental properties of Ia+γ, ω and
cDa+γ, ω , facilitating the analysis of the NLIFDE problem within the Banach algebra framework, as detailed in [2] and
[5].

Lemma 2 [2] For θ >−1, θ ̸= γ −1, γ −2, . . . , γ −n, then for τ ≥ 0,

cD
γ, ω
0+ (ω(τ)−ω(a))θ−1 =

Γ(θ)
Γ(θ − γ)

(ω(τ)−ω(a))θ−γ−1 , (9)

and

cD
γ, ω
0+ (ω(τ)−ω(a))γ−i = 0 for all i = 1, 2, 3, . . . , n. (10)

Lemma 3 [2] Let γ > 0, then the differential equation cD
γ, ω
a+ Y (τ) = 0 has solution in C (J, R)∩L1 (J, R) is

Y (τ) = c1 (ω (τ)−ω (0))γ−1 + c2 (ω (τ)−ω (0))γ−2 + · · ·+ cn (ω (τ)−ω (0))γ−n , (11)

where ci ∈ R for all i = 1, 2, ..., n, and n = [γ]+1.
Theorem 1 [4] (Banach’s Fixed Point Theorem) Given a Banach space (X , ∥.∥), and a contraction mapping Θ: X →

X , there exists a unique fixed point Y ∈ X such that Θ(Y ) = Y .
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Theorem 2 [3] (Krasnselskii’s fixed point theorem) Let S denote a closed, convex, and non-empty subset of a
Banach space X . Suppose Θ1 and Θ2 are mappings from S to X satisfying the following conditions:

1. For any ψ, ϕ ∈ S , the sum Θ1ψ +Θ2 ϕ belongs to S .
2. The mapping Θ1 is a contraction.
3. The mapping Θ2 is continuous, and the range Θ2 (S ) is bounded.
Under these assumptions, there exists at least one element ψ ∈ S such that Θ1ψ +Θ2 ψ = ψ .

3. Main results
Our investigation into solutions for nonlinear fractional differential equations, accompanied by fractional integral

boundary conditions, has led to substantial findings. Utilizing Banach’s and Krasnoselskii’s fixed point theorems in this
particular section, we not only confirm the existence but also establish the uniqueness of solutions.

Definition 3 A function Y ∈ C(J, R) is identified as a solution if it satisfies both the nonlinear implicit fractional
differential equation NLIFDE (1) and its associated boundary conditions.
The following lemma provides the criteria for recognizing a function Y (τ) as a solution to the NLIFDE by meeting the
conditions of the subsequent fractional integral equation, effectively linking the nonlinear implicit fractional differential
equation to an integral form for analysis.

Lemma 4 Suppose 2 < γ ≤ 3, and let F : J×R3 →R be a continuous function. A function Y (τ), defined on J, is
recognized as a solution to the nonlinear implicit fractional differential equation NLIFDE (1) if and only if it meets the
criteria outlined by the subsequent fractional integral equation:

Y (τ)

=
(ω (τ)−ω (0))γ−1

Γ(γ)

(
η1

∫ T

0
g1 (ξ , Y (ξ ))dξ −

∫ T

0
ω ′(ξ )ψ (ξ )dξ

)

+
(ω (τ)−ω (0))γ−2

Γ(γ −1)

 φ (T)
(
−η1

∫T
0 g1 (ξ , Y (ξ ))dξ +

∫T
0 ω ′(ξ )ψ (ξ )dξ

)
+η2

∫T
0 g2 (ξ , Y (ξ ))dξ −

∫T
0 ω ′(ξ )(ω(T)−ω(ξ ))ψ(ξ )dξ .



+
(ω (τ)−ω (0))γ−3

Γ(γ −2)



η3
∫T

0 g3 (ξ , Y (ξ ))dξ − 1
2
∫T

0 ω ′(ξ )(ω(T)−ω(ξ ))2ψ(ξ )dξ

− 1
2

(
η1
∫T

0 g1 (ξ , Y (ξ ))dξ −
∫T

0 ω ′(ξ )ψ (ξ )dξ
)
(ω (T)−ω (0))2

−φ (T)

(
φ (T)

(
−η1

∫T
0 g1 (ξ , Y (ξ ))dξ +

∫T
0 ω ′(ξ )ψ (ξ )dξ

)
+η2

∫T
0 g2 (ξ , Y (ξ ))dξ −

∫T
0 ω ′(ξ )(ω(T)−ω(ξ ))ψ(ξ )dξ

)



+
1

Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ψ (ξ )dξ , (12)

where φ (T) = 1+ω (T)−ω (0) .
Proof. Let Y (τ) be a solution to the Nonlinear Implicit Fractional Differential Equation NLIFDE (1). Define

ψ(τ) = F (τ, Y (τ), Iγ−θ , ω
0+ Y (τ),

∫ τ
0 k(τ, ξ ) cD

γ, ω
0+ Y (ξ )dξ ). Utilizing Lemma 3, we derive the expression:
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Y (τ) =c1 (ω (τ)−ω (0))γ−1 + c2 (ω (τ)−ω (0))γ−2 + c3 (ω (τ)−ω (0))γ−3

+
1

Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ψ (ξ )dξ . (13)

Applying the boundary conditions (2)-(3), we obtain the following equations:

c1Γ(γ) = η1

∫ T

0
g1 (ξ , Y (ξ ))dξ −

∫ T

0
ω ′(ξ )ψ (ξ )dξ , (14)

c1Γ(γ)(1+ω (T)−ω (0))+ c2Γ(γ −1) = η2

∫ T

0
g2 (ξ , Y (ξ ))dξ

−
∫ T

0
ω ′(ξ )(ω(T)−ω(ξ ))ψ(ξ )dξ , (15)

and

1
2

c1Γ(γ)(ω (T)−ω (0))2 + c2Γ(γ −1)(1+ω (T)−ω (0))+ c3Γ(γ −2)

=η3

∫ T

0
g3 (ξ , Y (ξ ))dξ − 1

2

∫ T

0
ω ′(ξ )(ω(T)−ω(ξ ))2ψ(ξ )dξ . (16)

Solving equations (14), (15), and (16) for c1, c2, and c3, we obtain:

c1 =
1

Γ(γ)

(
η1

∫ T

0
g1 (ξ , Y (ξ ))dξ −

∫ T

0
ω ′(ξ )ψ (ξ )dξ

)
, (17)

c2 =
1

Γ(γ −1)

 φ (T)
(
−η1

∫T
0 g1 (ξ , Y (ξ ))dξ +

∫T
0 ω ′(ξ )ψ (ξ )dξ

)
+η2

∫T
0 g2 (ξ , Y (ξ ))dξ −

∫T
0 ω ′(ξ )(ω(T)−ω(ξ ))ψ(ξ )dξ .

 , (18)

and
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c3 =
1

Γ(γ −2)



η3
∫T

0 g3 (ξ , Y (ξ ))dξ − 1
2
∫T

0 ω ′(ξ )(ω(T)−ω(ξ ))2ψ(ξ )dξ

− 1
2

(
η1
∫T

0 g1 (ξ , Y (ξ ))dξ −
∫T

0 ω ′(ξ )ψ (ξ )dξ
)
(ω (T)−ω (0))2

−

(
φ (T)

(
−η1

∫T
0 g1 (ξ , Y (ξ ))dξ +

∫T
0 ω ′(ξ )ψ (ξ )dξ

)
+η2

∫T
0 g2 (ξ , Y (ξ ))dξ −

∫T
0 ω ′(ξ )(ω(T)−ω(ξ ))ψ(ξ )dξ

)
φ (T)


, (19)

where φ (T) = 1+ω (T)−ω (0). Substituting these into (13), we obtain:

Y (τ)

=
(ω (τ)−ω (0))γ−1

Γ(γ)

(
η1

∫ T

0
g1 (ξ , Y (ξ ))dξ −

∫ T

0
ω ′(ξ )ψ (ξ )dξ

)

+
(ω (τ)−ω (0))γ−2

Γ(γ −1)

 φ (T)
(
−η1

∫T
0 g1 (ξ , Y (ξ ))dξ +

∫T
0 ω ′(ξ )ψ (ξ )dξ

)
+η2

∫T
0 g2 (ξ , Y (ξ ))dξ −

∫T
0 ω ′(ξ )(ω(T)−ω(ξ ))ψ(ξ )dξ .



+
(ω (τ)−ω (0))γ−3

Γ(γ −2)



η3
∫T

0 g3 (ξ , Y (ξ ))dξ − 1
2
∫T

0 ω ′(ξ )(ω(T)−ω(ξ ))2ψ(ξ )dξ

− 1
2

(
η1
∫T

0 g1 (ξ , Y (ξ ))dξ −
∫T

0 ω ′(ξ )ψ (ξ )dξ
)
(ω (T)−ω (0))2

−φ (T)

(
φ (T)

(
−η1

∫T
0 g1 (ξ , Y (ξ ))dξ +

∫T
0 ω ′(ξ )ψ (ξ )dξ

)
+η2

∫T
0 g2 (ξ , Y (ξ ))dξ −

∫T
0 ω ′(ξ )(ω(T)−ω(ξ ))ψ(ξ )dξ

)



+
1

Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ψ (ξ )dξ . (20)

On the contrary, assume that Y (τ) constitutes a solution to the nonlinear implicit fractional differential equation
NLIFDE (12), and this solution can be expressed in the subsequent manner:

Y (τ)

=
(ω (τ)−ω (0))γ−1

Γ(γ)

(
η1

∫ T

0
g1 (ξ , Y (ξ ))dξ −

∫ T

0
ω ′(ξ )ψ (ξ )dξ

)
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+
(ω (τ)−ω (0))γ−2

Γ(γ −1)

 φ (T)
(
−η1

∫T
0 g1 (ξ , Y (ξ ))dξ +

∫T
0 ω ′(ξ )ψ (ξ )dξ

)
+η2

∫T
0 g2 (ξ , Y (ξ ))dξ −

∫T
0 ω ′(ξ )(ω(T)−ω(ξ ))ψ(ξ )dξ .



+
(ω (τ)−ω (0))γ−3

Γ(γ −2)



η3
∫T

0 g3 (ξ , Y (ξ ))dξ − 1
2
∫T

0 ω ′(ξ )(ω(T)−ω(ξ ))2ψ(ξ )dξ

− 1
2

(
η1
∫T

0 g1 (ξ , Y (ξ ))dξ −
∫T

0 ω ′(ξ )ψ (ξ )dξ
)
(ω (T)−ω (0))2

−φ (T)

(
φ (T)

(
−η1

∫T
0 g1 (ξ , Y (ξ ))dξ +

∫T
0 ω ′(ξ )ψ (ξ )dξ

)
+η2

∫T
0 g2 (ξ , Y (ξ ))dξ −

∫T
0 ω ′(ξ )(ω(T)−ω(ξ ))ψ(ξ )dξ

)



+
1

Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ψ (ξ )dξ . (21)

Thus, we can infer that: cD
γ
0+Y (τ) = ψ (τ), with Y (0)+ cD

γ−1
0+ Y (T) = η1

∫T
0 g1 (ξ , Y (ξ ))dξ , cD

γ−1
0+ Y (0)+

cD
γ−2
0+ Y (T) = η2

∫T
0 g2 (ξ , Y (ξ ))dξ , and cD

γ−2
0+ Y (0)+ cD

γ−3
0+ Y (T) = η3

∫T
0 g3 (ξ , Y (ξ ))dξ . This implies that

ψ (τ) indeed satisfies the conditions of problem (12). This concludes the proof.
Lemma 5 Consider the NLIFDE (1) under the following conditions:
(H1) The nonlinear function F : J×R3 → R exhibits continuity, and there exists λ ∈C(J, R+) such that:

|F (τ, ψ1, ψ2, ψ3)−F (τ, ϕ1, ϕ2, ϕ3)| ≤ λ (τ)(|ψ1 −ϕ1|+ |ψ2 −ϕ2|+ |ψ3 −ϕ3|) , (22)

for all τ ∈ J, ψi, ϕi ∈ R, and i = 1, 2, 3.
(H2) The function k(τ, ξ ) is continuous over J× J, and there exists a positive constant K such that:

max
τ, ξ∈[0, 1]

|k(τ, ξ )|= K. (23)

(H3) The nonlinear function gi: J×R→ R maintains continuity, and there exists µi ∈C(J, R+) such that:

|gi(τ, ψ)−gi(τ, ϕ)| ≤ µi(τ) |ψ −ϕ |, ∀ τ ∈ J, and i = 1, 2, 3. (24)

Remark 1. Derived from Lemma (5), we extract the subsequent insights:
1. Under the premise of (H1), the inequality

|F (τ, ψ1, ψ2, ψ3)|− |F (τ, 0, 0, 0)| ≤ |F (τ, ψ1, ψ2, ψ3)−F (τ, 0, 0, 0)| ≤ λ (τ)(|ψ1|+ |ψ2|+ |ψ3|) (25)

holds. Consequently, if F = supτ∈J |F (τ, 0, 0, 0)|, it follows that
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|F (τ, ψ1, ψ2, ψ3)| ≤ F +λ (τ)(|ψ1|+ |ψ2|+ |ψ3|). (26)

2. Given the conditions of (H3), we obtain for i = 1, 2, 3 the inequalities:

|gi(τ, ψ)|− |gi(τ, 0)| ≤ |gi(τ, ψ)−gi(τ, 0)| ≤ µi(τ)|ψ|. (27)

Thus, if Hi = supτ∈J |gi(τ, 0)|, then |gi(τ, ψ)| ≤ Hi +µi(τ)|ψ|.
Definition 4 Define the operator Θ: C (J, R)→C (J, R) as follows:

Θ(Y (τ))

=
(ω (τ)−ω (0))γ−1

Γ(γ)

(
η1

∫ T

0
g1 (ξ , Y (ξ ))dξ −

∫ T

0
ω ′(ξ )ψ (ξ )dξ

)

+
(ω (τ)−ω (0))γ−2

Γ(γ −1)

 φ (T)
(
−η1

∫T
0 g1 (ξ , Y (ξ ))dξ +

∫T
0 ω ′(ξ )ψ (ξ )dξ

)
+η2

∫T
0 g2 (ξ , Y (ξ ))dξ −

∫T
0 ω ′(ξ )(ω(T)−ω(ξ ))ψ(ξ )dξ .



+
(ω (τ)−ω (0))γ−3

Γ(γ −2)



η3
∫T

0 g3 (ξ , Y (ξ ))dξ − 1
2
∫T

0 ω ′(ξ )(ω(T)−ω(ξ ))2ψ(ξ )dξ

− 1
2

(
η1
∫T

0 g1 (ξ , Y (ξ ))dξ −
∫T

0 ω ′(ξ )ψ (ξ )dξ
)
(ω (T)−ω (0))2

−φ (T)

(
φ (T)

(
−η1

∫T
0 g1 (ξ , Y (ξ ))dξ +

∫T
0 ω ′(ξ )ψ (ξ )dξ

)
+η2

∫T
0 g2 (ξ , Y (ξ ))dξ −

∫T
0 ω ′(ξ )(ω(T)−ω(ξ ))ψ(ξ )dξ

)



+
1

Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ψ (ξ )dξ , (28)

where ψ (ξ ) ∈C (J, R) satisfies the following implicit fractional equation:

ψ(τ) = F (τ, Y (τ) , cD θ , ω
0+ Y (τ),

∫ τ

0
k(τ, ξ ) cD

γ, ω
0+ Y (ξ )dξ ). (29)

3.1 Existence of solutions
The subsequent theorem establish the existence of solutions for the nonlinear fractional differential equation

(NLIFDE) (1) by applying Krasnoselskii’s fixed point theorem, assuming the conditions outlined in Lemma 5 are met.
These results are important as they offer a solid mathematical basis for the existence of solutions within the Banach algebra
framework, thereby confirming the model’s robustness and applicability to complex real-world scenarios.

Theorem 3 Suppose that assumptions (H1)-(H3) hold. Consider the real number ℵ so that
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ℵ = ∥µ1∥η1TΛ1 +∥µ2∥η2TΛ2 +∥µ3∥η3TΛ3 +Λ4, (30)

where

Λ1 =

(
1

Γ(γ)
+

1
2Γ(γ −2)

)
(ω (T)−ω (0))γ−1 +φ (T)

(ω (T)−ω (0))γ−2

Γ(γ −1)

+φ2 (T)
(ω (T)−ω (0))γ−3

Γ(γ −2)
, (31)

Λ2 =
(ω (T)−ω (0))γ−2

Γ(γ −1)
+φ (T)

(ω (T)−ω (0))γ−3

Γ(γ −2)
, (32)

Λ3 =
(ω (T)−ω (0))γ−3

Γ(γ −2)
, (33)

and

Λ4 = ∥λ∥
(

1+
1+KT

|Γ(1−θ)|

)


(
T

|Γ(γ+1)| +
1

Γ(γ) +
1

2Γ(γ−1) +
2

3Γ(γ−2)

)
(ω (T)−ω (0))γ

+
(

1
Γ(γ−1) +

1
2Γ(γ−2)

)
φ (T)(ω (T)−ω (0))γ−1

+ 1
Γ(γ−2)φ2 (T)(ω (T)−ω (0))γ−2


. (34)

If ℵ < 1, then the NLIFDE (1) has at least one solution in C [0, 1].
Proof. By transforming NLIFDE (1) into a problem involving fixed points, we introduce the operator Θ: C(J, R)→

C(J, R) as:

Θ(Y (τ)) = Θ1 (Y (τ))+Θ2 (Y (τ)) , τ ∈ [0, 1] , (35)

where

Θ1 (Y (τ))

=
(ω (τ)−ω (0))γ−1

Γ(γ)

(
η1

∫ T

0
g1 (ξ , Y (ξ ))dξ −

∫ T

0
ω ′(ξ )ψ (ξ )dξ

)
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+
(ω (τ)−ω (0))γ−2

Γ(γ −1)


φ (T)

(
−η1

∫T
0 g1 (ξ , Y (ξ ))dξ +

∫T
0 ω ′(ξ )ψ (ξ )dξ

)
+η2

∫T
0 g2 (ξ , Y (ξ ))dξ

−
∫T

0 ω ′(ξ )(ω(T)−ω(ξ ))ψ(ξ )dξ .



+
(ω (τ)−ω (0))γ−3

Γ(γ −2)



η3
∫T

0 g3 (ξ , Y (ξ ))dξ − 1
2
∫T

0 ω ′(ξ )(ω(T)−ω(ξ ))2ψ(ξ )dξ

− 1
2

(
η1
∫T

0 g1 (ξ , Y (ξ ))dξ
−
∫T

0 ω ′(ξ )ψ (ξ )dξ

)
(ω (T)−ω (0))2

−φ (T)

 φ (T)
(
−η1

∫T
0 g1 (ξ , Y (ξ ))dξ +

∫T
0 ω ′(ξ )ψ (ξ )dξ

)
+η2

∫T
0 g2 (ξ , Y (ξ ))dξ

−
∫T

0 ω ′(ξ )(ω(T)−ω(ξ ))ψ(ξ )dξ




, (36)

and

Θ2 (Y (τ)) =
1

Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ψ (ξ )dξ , (37)

with

ψ(τ) = F (τ, Y (τ), cD θ , ω
0+ Y (τ) ,

∫ τ

0
k(τ, ξ )cD

γ, ω
0+ Y (ξ )dξ ). (38)

Consider Bρ = {Y ∈ C(J, R): ∥Y ∥ ≤ ρ} as a closed subset of C [0, 1], where ρ represents a positive constant
satisfying ρ ≥ ℜ

1−ℵ . Here, ℜ and ℵ are real numbers specified previously. It is evident that Bρ constitutes a Banach
space equipped with a metric in C [0, T]. The proof can be outlined in three distinct phases.

Step 1: Θ1Y1 +Θ2Y2 ∈Bρ holds true for all Y1, Y2 ∈Bρ .
Consider Y1, Y2 ∈Bρ and τ ∈ J. We obtain that

|Θ1Y1 (τ)+Θ2Y2 (τ) | ≤ |Θ1Y1 (τ) |+ |Θ2Y2 (τ) |

≤|ω (τ)−ω (0) |γ−1

Γ(γ)

(
η1

∫ T

0
|g1 (ξ , Y1 (ξ )) |dξ +

∫ T

0
ω ′(ξ )|ψ1 (ξ ) |dξ

)

+
|ω (τ)−ω (0) |γ−2

Γ(γ −1)


|φ (T) |

(
η1
∫T

0 |g1 (ξ , Y1 (ξ )) |dξ +
∫T

0 ω ′(ξ )|ψ1 (ξ ) |dξ
)

+η2
∫T

0 |g2 (ξ , Y1 (ξ )) |dξ

+
∫T

0 ω ′(ξ )(ω(T)−ω(ξ ))|ψ1(ξ )|dξ .
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+
|ω (τ)−ω (0) |γ−3

Γ(γ −2)



η3
∫T

0 |g3 (ξ , Y1 (ξ )) |dξ

+ 1
2
∫T

0 ω ′(ξ )(ω(T)−ω(ξ ))2|ψ1(ξ )|dξ

+ 1
2

(
η1
∫T

0 |g1 (ξ , Y1 (ξ )) |dξ
+
∫T

0 ω ′(ξ )|ψ1 (ξ ) |dξ

)
(ω (T)−ω (0))2

+|φ (T) |


|φ (T) |

(
η1
∫T

0 |g1 (ξ , Y1 (ξ )) |dξ
+
∫T

0 ω ′(ξ )|ψ1 (ξ ) |dξ

)
+η2

∫T
0 |g2 (ξ , Y1 (ξ )) |dξ

+
∫T

0 ω ′(ξ )(ω(T)−ω(ξ ))|ψ1(ξ )|dξ





+
1

Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1|ψ2 (ξ ) |dξ . (39)

Using Lemma (5) and the aforementioned remark, if we consider the supremum for τ ∈ [0, T], then

|F (τ, Y (τ), cDθ , ω
0+ Y (τ),

∫ τ

0
k(τ, ξ ) cDθ , ω

0+ Y (ξ )dξ )|

≤∥λ∥(|Y (τ) |+ | cDθ , ω
0+ Y (τ))|+

∫ τ

0
|k(τ, ξ ) cDθ , ω

0+ Y (ξ )dξ |+F,

≤∥λ∥
(

1+
1+KT

|Γ(1−θ)|

)
∥Y ∥+F, (40)

where F = supτ∈J |F (τ, 0, 0, 0)|.
Thus, for each τ ∈ [0, T] we have

|Θ1Y1 (τ)+Θ2Y2 (τ) |

≤|Θ1Y1 (τ) |+ |Θ2Y2 (τ) |

≤ (ω (T)−ω (0))γ−1

Γ(γ)

 η1T(H1 +µ1(τ)∥Y1∥)

+
(
∥λ∥

(
1+ 1+KT

|Γ(1−θ)|

)
∥Y1∥+F

)
(ω (T)−ω (0))
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+
(ω (T)−ω (0))γ−2

Γ(γ −1)



η1T(H1 +µ1(τ)∥Y1∥)φ (T)+(
∥λ∥

(
1+

1+KT

|Γ(1−θ)|

)
∥Y1∥+F

)
φ (T)(ω (T)−ω (0))

+
η2T(H2 +µ2(τ)∥Y1∥)+(

∥λ∥
(

1+ 1+KT
|Γ(1−θ)|

)
∥Y1∥+F

) (ω (T)−ω (0))2

2



+
(ω (T)−ω (0))γ−3

Γ(γ −2)



η3T(H3 +µ3(τ)∥Y1∥)+(
∥λ∥

(
1+ 1+KT

|Γ(1−θ)|

)
∥Y1∥

+F

)
(ω (T)−ω (0))3

6

+


η1T(H1 +µ1(τ)∥Y1∥)

(ω (T)−ω (0))2

2
+ ∥λ∥

(
1+

1+KT

|Γ(1−θ)|

)
∥Y1∥

+F

 (ω (T)−ω (0))3

2



+

η1Tφ2 (T)(H1 +µ1(τ)∥Y1∥)+ ∥λ∥
(

1+
1+KT

|Γ(1−θ)|

)
∥Y1∥

+F

φ2 (T)(ω (T)−ω (0))

+η2Tφ (T)(H2 +µ2(τ)∥Y1∥)+(
∥λ∥

(
1+ 1+KT

|Γ(1−θ)|

)
∥Y1∥

+F

)
φ (T)

(ω (T)−ω (0))2

2



+
(ω (T)−ω (0))γ

|Γ(γ +1)|

(
∥λ∥

(
1+

1+KT

|Γ(1−θ)|

)
∥Y2∥+F

)
T. (41)

Taking supremum over τ ∈ [0, T], we have

∥Θ1Y1 (τ)+Θ2Y2 (τ)∥ ≤ ρ, (42)

for ρ ≥ ℜ
1−ℵ , where

ℜ = (H1η1Tϒ1 +H2η2Tϒ2 +H3η3Tϒ3 +Fϒ4) , (43)

such that
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ϒ1 =

(
1

Γ(γ)
+

1
2Γ(γ −2)

)
(ω (T)−ω (0))γ−1 +φ (T)

(ω (T)−ω (0))γ−2

Γ(γ −1)

+φ2 (T)
(ω (T)−ω (0))γ−3

Γ(γ −2)
, (44)

ϒ2 =
(ω (T)−ω (0))γ−2

Γ(γ −1)
+φ (T)

(ω (T)−ω (0))γ−3

Γ(γ −2)
, (45)

ϒ3 =
(ω (T)−ω (0))γ−3

Γ(γ −2)
, (46)

ϒ4 =

(
T

|Γ(γ +1)|
+

1
Γ(γ)

+
1

2Γ(γ −1)
+

2
3Γ(γ −2)

)
(ω (T)−ω (0))γ

+φ (T)

(
1

Γ(γ −1)
+

1
2Γ(γ −2)

)
(ω (T)−ω (0))γ−1

+φ2 (T)
(ω (T)−ω (0))γ−2

Γ(γ −2)
, (47)

and

ℵ = ∥µ1∥η1TΛ1 +∥µ2∥η2TΛ2 +∥µ3∥η3TΛ3 +Λ4, (48)

with

Λ1 =

(
1

Γ(γ)
+

1
2Γ(γ −2)

)
(ω (T)−ω (0))γ−1 +φ (T)

(ω (T)−ω (0))γ−2

Γ(γ −1)

+φ2 (T)
(ω (T)−ω (0))γ−3

Γ(γ −2)
, (49)

Λ2 =
(ω (T)−ω (0))γ−2

Γ(γ −1)
+φ (T)

(ω (T)−ω (0))γ−3

Γ(γ −2)
, (50)

Λ3 =
(ω (T)−ω (0))γ−3

Γ(γ −2)
, (51)

and
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Λ4 = ∥λ∥
(

1+
1+KT

|Γ(1−θ)|

)


(
T

|Γ(γ+1)| +
1

Γ(γ) +
1

2Γ(γ−1) +
2

3Γ(γ−2)

)
(ω (T)−ω (0))γ

+
(

1
Γ(γ−1) +

1
2Γ(γ−2)

)
φ (T)(ω (T)−ω (0))γ−1

+ 1
Γ(γ−2)φ2 (T)(ω (T)−ω (0))γ−2


. (52)

This proves that Θ1Y1 (τ)+Θ2Y2 (τ) ∈Bρ for every Y1, Y2 ∈Bρ .
Step 2: The operator Θ1 serves as a contraction mapping onBρ . It is clear that

|Θ1 (Y1 (τ))−Θ1 (Y2 (τ))|

=
(ω (τ)−ω (0))γ−1

Γ(γ)

(
η1

∫ T

0
|g1 (ξ , Y1 (ξ ))−g1 (ξ , Y2 (ξ ))|dξ

)

+
(ω (τ)−ω (0))γ−2

Γ(γ −1)

 η1φ (T)
(∫T

0 |g1 (ξ , Y2 (ξ ))−g1 (ξ , Y1 (ξ ))|dξ
)

+η2
∫T

0 |g2 (ξ , Y1 (ξ ))−g2 (ξ , Y2 (ξ ))|dξ



+
(ω (τ)−ω (0))γ−3

Γ(γ −2)



η3
∫T

0 |g3 (ξ , Y1 (ξ ))−g3 (ξ , Y2 (ξ ))|dξ

−η1
2

(∫T
0 |g1 (ξ , Y1 (ξ ))−g1 (ξ , Y2 (ξ ))|dξ

)
(ω (T)−ω (0))2

−φ (T)

(
−η1φ (T)

(∫T
0 |g1 (ξ , Y1 (ξ ))−g1 (ξ , Y2 (ξ ))|dξ

)
+η2

∫T
0 |g2 (ξ , Y1 (ξ ))−g2 (ξ , Y2 (ξ ))|dξ

)


,

≤ (ω (τ)−ω (0))γ−1

Γ(γ)

(
η1

∫ T

0
µ1(ξ )|Y1 (ξ )−Y2 (ξ ) |dξ

)

+
(ω (τ)−ω (0))γ−2

Γ(γ −1)

 η1φ (T)
(∫T

0 µ1(ξ )|Y2 (ξ )−Y1 (ξ ) |dξ
)

+η2
∫T

0 µ2(ξ )|Y1 (ξ )−Y2 (ξ ) |dξ



+
(ω (τ)−ω (0))γ−3

Γ(γ −2)



η3
∫T

0 µ3(ξ )|Y1 (ξ )−Y2 (ξ ) |dξ

+η1
2

(∫T
0 µ1(ξ )|Y2 (ξ )−Y1 (ξ ) |dξ

)
(ω (T)−ω (0))2

+φ (T)

(
η1φ (T)

∫T
0 µ1(ξ )|Y2 (ξ )−Y1 (ξ ) |dξ

+η2
∫T

0 µ2(ξ )|Y2 (ξ )−Y1 (ξ ) |dξ

)


(53)
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Taking supremum over τ ∈ [0, T], we get

∥Θ1 (Y1)−Θ1 (Y2)∥

≤ (ω (T)−ω (0))γ−1

Γ(γ)
(η1T∥µ1∥∥Y1 −Y2∥)

+
(ω (T)−ω (0))γ−2

Γ(γ −1)
(η1Tφ (T)∥µ1∥∥Y1 −Y2∥+η2T∥µ2∥∥Y1 −Y2∥)

+
(ω (T)−ω (0))γ−3

Γ(γ −2)

 η3T∥µ3∥∥Y1 −Y2∥+ η1T
2 ∥µ1∥∥Y1 −Y2∥(ω (T)−ω (0))2

+φ (T)
(
η2

1Tφ (T)∥µ1∥∥Y1 −Y2∥+η2T∥µ2∥∥Y1 −Y2∥
)


≤



η1T∥µ1∥ (ω(T)−ω(0))γ−1

Γ(γ)

+(η1Tφ (T)∥µ1∥+η2T∥µ2∥) (ω(T)−ω(0))γ−2

Γ(γ−1)

+ (ω(T)−ω(0))γ−3

Γ(γ−2)

(
η3T∥µ3∥+ η1T

2 ∥µ1∥(ω (T)−ω (0))2

+η2
1Tφ2 (T)∥µ1∥+η2T φ (T)∥µ2∥

)


∥Y1 −Y2∥

≤



η1T∥µ1∥

 (
1

Γ(γ) +
1

2Γ(γ−2)

)
(ω (T)−ω (0))γ−1

+φ (T) (ω(T)−ω(0))γ−2

Γ(γ−1) +η1φ2 (T) (ω(T)−ω(0))γ−3

Γ(γ−2)


+η2T∥µ2∥

(
(ω(T)−ω(0))γ−2

Γ(γ−1) +φ (T) (ω(T)−ω(0))γ−3

Γ(γ−2)

)
+η3T∥µ3∥ (ω(T)−ω(0))γ−3

Γ(γ−2)


∥Y1 −Y2∥

≤(∥µ1∥η1T Λ1 +∥µ2∥η2T Λ2 +∥µ3∥η3T Λ3)∥Y1 −Y2∥

≤(ℵ−Λ4)∥Y1 −Y2∥ (54)

Thus, it is clear that the operator Θ1 is a contraction mapping with a contraction coefficient of ς < 1, where ς =

ℵ−Λ4.
Step 3: To establish the continuity and compactness of the operator Θ2 on Bρ , we initially establish its continuity.

Let {Yn}n∈N be a sequence in Bρ that converges to Y ∈Bρ as n tends to infinity. Our objective is to demonstrate that
∥Θ2Yn −Θ1Y ∥ tends to zero as n tends to infinity. Subsequently, for τ ∈ [0, T], we have

|Θ2Yn −Θ2Y | ≤ 1
Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1|ψn(ξ )−ψ(ξ )|dξ , (55)
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where

ψn(τ) = F (τ, Yn(τ), cD θ , ω
0+ Yn (τ) ,

∫ τ

0
k(τ, ξ ) cD

γ, ω
0+ Yn(ξ )dξ ), (56)

and

ψ (τ) = F (τ, Y (τ), cD θ
0+Y (τ),

∫ τ

0
k(τ, ξ ) cD

γ, ω
0+ Y (ξ )dξ ).

Here, we have ψn and ψ are two continuous functions defined over [0, T] so that

|ψn(τ)−ψ(τ)|

=|F (τ, Yn(τ), cD θ
0+Yn(τ),

∫ τ

0
k(τ, ξ ) cD

γ, ω
0+ Yn(ξ )dξ )−F (τ, Y (τ), cD θ

0+Y (τ),
∫ τ

0
k(τ, ξ ) cD

γ, ω
0+ Y (ξ )dξ )|,

≤|λ (τ)|(|Yn(τ)−Y (τ)|+ | cD θ
0+Yn (τ)− cD θ

0+Y (τ) |

+
∫ τ

0
|k(τ, ξ )|

∣∣ cD
γ, ω
0+ Yn(ξ )− cD

γ, ω
0+ Y (ξ )

∣∣dξ )|),

≤∥λ∥
(

1+
1+KT

|Γ(1−θ)|

)
∥Yn −Y ∥. (57)

Since Yn tends to Y , then we obtain that ψn(τ) tends to ψ(τ) as n tends to infinity for every τ ∈ [0, T]. In addition,
consider the positive real number ε > 0 such that for every τ ∈ [0, T]. If we take |ψn(τ)| ≤ ε/2 and |ψ(τ)| ≤ ε/2, we
obtain that |ψn(ξ )−ψ(ξ )| ≤ (|ψn(ξ )|+ |ψ(ξ )|)≤ ε for every τ ∈ [0, T]. Utilizing the Lebesgue dominated convergence
theorem leads to the implication that ∥Θ2Yn−Θ2Y ∥ tends to 0 as n tends to∞. This implies that operatorΘ2 is continuous.

In addition, we obtain due to definition of ρ that

∥Θ2Y ∥ ≤ 1
|Γ(γ +1)|

[
∥λ∥

(
1+

1+KT

|Γ(1−θ)|

)
∥Y ∥+F

]
≤ ρ. (58)

Hence, Θ2 is a uniformly bounded operator defined on the closed ballBρ .
At the end, we show that the function Θ2 converts limited collections into sets that exhibit uniform continuity within

C(J, R), particularly guaranteeing the uniform continuity ofBρ .
Let ∀ ε > 0, ∃ δ > 0 and τ1, τ2 ∈ J, τ1 < τ2, |τ2 − τ1|< δ . Then we have
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|Θ2Y (τ2)−Θ2Y (τ1)| ≤
1

Γ(γ)

∫ τ

0
ω ′(ξ )

(
(ω(τ2)−ω(ξ ))γ−1 − (ω(τ1)−ω(ξ ))γ−1) |ψ(ξ )|dξ ,

≤ ∥λ∥
(
∥λ∥

(
1+

1+KT

|Γ(1−θ)|

)
∥Y ∥

)
(ω(τ2)

γ −ω(τ1)
γ)

αΓ(γ)
. (59)

As τ1 approaches τ2, the expression on the right side of the mentioned inequality becomes unrelated to Y and tends
toward zero. Consequently,

|Θ2Y (τ2)−Θ2Y (τ1)| → 0, ∀ |τ2 − τ1| → 0. (60)

Hence, if the compact operator Θ is uniformly continuous on the closed ballBρ , then by applying the Arzela-Ascoli
theorem, we obtain that Θ: C([0, T] , R)→C([0, T] , R) is both continuous and compact at the same time. Therefore, all
the required conditions for applying Krasnoselskii’s fixed-point theorem are satisfied, and hence the operatorΘ=Θ1+Θ2

has a fixed point Y (τ) ∈C [0, T] on the closed ballBρ and satisfies the boundary conditions in problem (1). As a result,
we obtain that the function Y (τ) acts as a solution of the NLIFDE (1). This completes the proof.

3.2 Uniqueness of solutions
The following lemmas and theorems establish the uniqueness of solutions for the nonlinear fractional differential

equation (NLIFDE) (1) by applying Krasnoselskii’s and Banach’s fixed point theorems, given that the conditions in
Lemma 5 are satisfied. These findings are significant as they provide a robust mathematical foundation for the existence
and uniqueness of solutions within the Banach algebra framework.

Lemma 6 Assume that the assumptions (H1)-(H3) hold. If the following inequality



η1T∥µ1∥

 (
1

Γ(γ) +
1

2Γ(γ−2)

)
(ω (T)−ω (0))γ−1 (ω (T)−ω (0))γ−1

+φ (T) (ω(T)−ω(0))γ−2

Γ(γ−1) +φ2 (T) (ω(T)−ω(0))γ−3

Γ(γ−2)


+η2T∥µ2∥

(
(ω(T)−ω(0))γ−2

Γ(γ−1) +φ (T) (ω(T)−ω(0))γ−3

Γ(γ−2)

)
+η3T∥µ3∥ (ω(T)−ω(0))γ−3

Γ(γ−2) +∥λ∥
(

1+ 1+KT
|Γ(1−θ)|

)


< 1, (61)

holds, then the operator Θ: C (J, R)→C (J, R) presented in Definition 4 is a contraction.
Proof. Assuming that conditions (H1)-(H3) are satisfied, let’s examine the continuous functions Y1 (τ) and Y2 (τ)

belonging to C(J, R). In this context, for any τ ∈ J, the following applies:

|Θ(Y1 (τ))−Θ(Y2 (τ))|

≤|Θ1 (Y1 (τ))−Θ1 (Y2 (τ))+Θ2 (Y1 (τ))−Θ2 (Y2 (τ))|

≤|Θ1 (Y1 (τ))−Θ1 (Y2 (τ)) |+ |Θ2 (Y1 (τ))−Θ2 (Y2 (τ))|
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=
(ω (τ)−ω (0))γ−1

Γ(γ)

(
η1

∫ T

0
|g1 (ξ , Y1 (ξ ))−g1 (ξ , Y2 (ξ ))|dξ

)

+
(ω (τ)−ω (0))γ−2

Γ(γ −1)

 η1φ (T)
(∫T

0 |g1 (ξ , Y2 (ξ ))−g1 (ξ , Y1 (ξ ))|dξ
)

+η2
∫T

0 |g2 (ξ , Y1 (ξ ))−g2 (ξ , Y2 (ξ ))|dξ



+
(ω (τ)−ω (0))γ−3

Γ(γ −2)



η3
∫T

0 |g3 (ξ , Y1 (ξ ))−g3 (ξ , Y2 (ξ ))|dξ

−η1
2

(∫T
0 |g1 (ξ , Y1 (ξ ))−g1 (ξ , Y2 (ξ ))|dξ

)
(ω (T)−ω (0))2

−φ (T)

(
−η1φ (T)

(∫T
0 |g1 (ξ , Y1 (ξ ))−g1 (ξ , Y2 (ξ ))|dξ

)
+η2

∫T
0 |g2 (ξ , Y1 (ξ ))−g2 (ξ , Y2 (ξ ))|dξ

)



+
1

Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1|ψ1(ξ )−ψ2 (ξ ) |dξ

≤ (ω (T)−ω (0))γ−1

Γ(γ)
(η1T∥µ1∥∥Y1 −Y2∥)

+
(ω (T)−ω (0))γ−2

Γ(γ −1)
(η1Tφ (T)∥µ1∥∥Y1 −Y2∥+η2T∥µ2∥∥Y1 −Y2∥)

+
(ω (T)−ω (0))γ−3

Γ(γ −2)

 η3T∥µ3∥∥Y1 −Y2∥+ η1T
2 ∥µ1∥∥Y1 −Y2∥(ω (T)−ω (0))2

+φ (T)
(
η2

1Tφ (T)∥µ1∥∥Y1 −Y2∥+η2T∥µ2∥∥Y1 −Y2∥
)


+∥λ∥
(

1+
1+KT

|Γ(1−θ)|

)
∥Y1 −Y2∥

≤



η1T∥µ1∥

 (
1

Γ(γ) +
1

2Γ(γ−2)

)
(ω (T)−ω (0))γ−1 (ω (T)−ω (0))γ−1

+φ (T) (ω(T)−ω(0))γ−2

Γ(γ−1) +φ2 (T) (ω(T)−ω(0))γ−3

Γ(γ−2)


+η2T∥µ2∥

(
(ω(T)−ω(0))γ−2

Γ(γ−1) +φ (T) (ω(T)−ω(0))γ−3

Γ(γ−2)

)
+η3T∥µ3∥ (ω(T)−ω(0))γ−3

Γ(γ−2) +∥λ∥
(

1+ 1+KT
|Γ(1−θ)|

)


∥Y1 −Y2∥

≤(∥µ1∥η1T Λ1 +∥µ2∥η2T Λ2 +∥µ3∥η3T Λ3)∥Y1 −Y2∥

≤(ℵ−Λ4)∥Y1 −Y2∥ (62)
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Taking supremum for all τ ∈ T, we have

∥Θ(Y1)−Θ(Y2)∥ ≤ (ℵ−Λ4)∥Y1 −Y2∥. (63)

Now, since (ℵ−Λ4)< 1, then the operator Θ is a contraction.
Therefore, by applying Krasnselskii’s fixed point theorem, the nonlinear fractional differential equation NLIFDE (1)

at least one solution.
Theorem 4 Assume that the assumptions (H1)-(H3) hold. If the following inequality



η1T∥µ1∥

 (
1

Γ(γ) +
1

2Γ(γ−2)

)
(ω (T)−ω (0))γ−1 (ω (T)−ω (0))γ−1

+φ (T) (ω(T)−ω(0))γ−2

Γ(γ−1) +φ2 (T) (ω(T)−ω(0))γ−3

Γ(γ−2)


+η2T∥µ2∥

(
(ω(T)−ω(0))γ−2

Γ(γ−1) +φ (T) (ω(T)−ω(0))γ−3

Γ(γ−2)

)
+η3T∥µ3∥ (ω(T)−ω(0))γ−3

Γ(γ−2) +∥λ∥
(

1+ 1+KT
|Γ(1−θ)|

)


< 1, (64)

holds, then the NLIFDE (1) has a unique solution on J = [0, T].
Proof. The existence of at least one solution for NLIFDE (1) has been established in Theorem (3). Furthermore,

Lemma (6) demonstrates that the operator Θ exhibits contraction properties. Consequently, through Banach’s fixed point
theorem, we conclude that the operator Θ possesses a single fixed point, which corresponds to a unique solution of the
NLIFDE (1) over the interval J = [0, T]. Thus, the proof is now fully accomplished.

3.3 Stability analysis: Ulam-Hyers and Ulam-Hyers-Rassias stability
In this section, we analyze the stability of solutions to the nonlinear fractional differential equation (NLIFDE) using

the Ulam-Hyers and Ulam-Hyers-Rassias stability criteria. Stability analysis is essential for understanding the robustness
of solutions, especially in the presence of perturbations. The Ulam-Hyers stability criterion assesses whether solutions
remain close to exact solutions under small perturbations, while the Ulam-Hyers-Rassias stability criterion extends this
analysis to more general forms of perturbations. These criteria provide a comprehensive framework for evaluating the
stability and reliability of the solutions obtained for the NLIFDE within the Banach algebra framework.

Let ε > 0, Φ: J →R+ be a continuous function, and consider the following inequalities for all τ ∈ [0, T], 0 < θ ≤ 1,
2 < γ ≤ 3.

| cD
γ, ω
0+ Y (τ)−F (τ, Y (τ), cDθ , ω

0+ Y (τ),
∫ τ

0
k(τ, ξ ) cD

γ, ω
0+ Y (ξ )dξ )| ≤ ε(τ), (65)

| cD
γ, ω
0+ Y (τ)−F (τ, Y (τ), cDθ , ω

0+ Y (τ),
∫ τ

0
k(τ, ξ ) cD

γ, ω
0+ Y (ξ )dξ )| ≤ Φ(τ), (66)

and

| cD
γ, ω
0+ Y (τ)−F (τ, Y (τ), cDθ , ω

0+ Y (τ),
∫ τ

0
k(τ, ξ ) cD

γ, ω
0+ Y (ξ )dξ )| ≤ ε Φ(τ). (67)
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3.3.1Ulam-Hyers-Rassias stability

In the following, we consider the Ulam-Hyers stability for NLIFDE (1) over the interval J = [0, T].
Theorem 5 Suppose that the assumptions of Theorem (4) are satisfied. Then, NLIFDE (1) is Ulam-Hyers stable.
Proof. Let ε > 0 and let z ∈C(J, R) be a function which satisfies inequality (65), such that

| cD
γ, ω
0+ z(τ)−F (τ, z(τ), cD

γ, ω
0+ z(τ),

∫ τ

0
k(τ, ξ ) cD

γ, ω
0+ z(ξ )dξ )| ≤ ε, ∀ τ ∈J, (68)

and letY ∈C(J, R) be a unique solution of NLIFDE (1) which is by Lemma 4 is equivalent to the fractional order integral
equation

Y (τ) = h(τ, Y (τ))+
1

Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ψ (ξ )dξ ,

where

h(τ, Y (τ))

=
(ω (τ)−ω (0))γ−1

Γ(γ)

(
η1

∫ T

0
g1 (ξ , Y (ξ ))dξ −

∫ T

0
ω ′(ξ )ψ (ξ )dξ

)

+
(ω (τ)−ω (0))γ−2

Γ(γ −1)



φ (T)

(
−η1

∫T
0 g1 (ξ , Y (ξ ))dξ

+
∫T

0 ω ′(ξ )ψ (ξ )dξ

)

+η2
∫T

0 g2 (ξ , Y (ξ ))dξ

−
∫T

0 ω ′(ξ )(ω(T)−ω(ξ ))ψ(ξ )dξ .



+
(ω (τ)−ω (0))γ−3

Γ(γ −2)



η3
∫T

0 g3 (ξ , Y (ξ ))dξ

− 1
2
∫T

0 ω ′(ξ )(ω(T)−ω(ξ ))2ψ(ξ )dξ

− 1
2

(
η1
∫T

0 g1 (ξ , Y (ξ ))dξ
−
∫T

0 ω ′(ξ )ψ (ξ )dξ

)
(ω (T)−ω (0))2

−φ (T)


φ (T)

(
−η1

∫T
0 g1 (ξ , Y (ξ ))dξ

+
∫T

0 ω ′(ξ )ψ (ξ )dξ

)
+η2

∫T
0 g2 (ξ , Y (ξ ))dξ

−
∫T

0 ω ′(ξ )(ω(T)−ω(ξ ))ψ(ξ )dξ





, (69)

and ψ is the solution of the fractional order integral equation
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ψ(τ) = F (τ, z(τ), cDθ , ω
0+ z(τ),

∫ τ

0
k(τ, ξ ) cD

γ, ω
0+ z(ξ )dξ )

= F (τ, h(τ, Y (τ))+
∫ T

0
ω ′ (τ)G(τ, ξ )ψ(ξ )dξ , cDθ , ω

0+ z(τ),
∫ τ

0
k(τ, ξ ) cD

γ, ω
0+ z(ξ )dξ )

= F (τ, h(τ)+
1

Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ψ (ξ )dξ , Iγ−θ , ω

0+ ψ(τ),
∫ τ

0
k(τ, ξ )ψ(ξ )dξ ). (70)

Taking the left-sided ω-Riemann-Liouville fractional integral Iγ, ω
0+ on both sides of inequality (68), we get

|z(τ)−h(τ, z(τ))− 1
Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ϕ (ξ )dξ | ≤ ε

(ω (T)−ω (0))γ

Γ(γ +1)
. (71)

For each τ∈ J, and by Lemma 4 and Lemma 6, we have

|z(τ)−Y (τ)|

=|z(τ)−h(τ, Y (τ))− 1
Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ϕ (ξ )dξ |

≤|z(τ)−h(τ, z(τ))− 1
Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ϕ (ξ )dξ −h(τ, Y (τ))

− 1
Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ψ (ξ )dξ +h(τ, z(τ))

+
1

Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ϕ (ξ )dξ |

≤ε
(ω (T)−ω (0))γ

Γ(γ +1)
+ |h(τ, z(τ))−h(τ, Y (τ))|

+
1

Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1|ϕ(ξ )−ψ(ξ )|dξ
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≤ε
(ω (T)−ω (0))γ

Γ(γ +1)
+



η1T∥µ1∥


(

1
Γ(γ) +

1
2Γ(γ−2)

)
(ω (T)−ω (0))γ−1

+φ (T) (ω(T)−ω(0))γ−2

Γ(γ−1)

+η1φ2 (T) (ω(T)−ω(0))γ−3

Γ(γ−2)


+η2T∥µ2∥

(
(ω(T)−ω(0))γ−2

Γ(γ−1) +φ (T) (ω(T)−ω(0))γ−3

Γ(γ−2)

)
+η3T∥µ3∥ (ω(T)−ω(0))γ−3

Γ(γ−2)


∥z−Y ∥

+∥λ∥
(

1+
1+KT

|Γ(1−θ)|

)
(ω (T)−ω (0))γ

Γ(γ +1)
∥z−Y ∥

≤ε
(ω (T)−ω (0))γ

Γ(γ +1)
+(ℵ−Λ4)∥z−Y ∥+∥λ∥

(
1+

1+KT

|Γ(1−θ)|

)
(ω (T)−ω (0))γ

Γ(γ +1)
∥z−Y ∥,

which implies for each τ ∈ I that

∥z−Y ∥ ≤ ε
(ω (T)−ω (0))γ

Γ(γ +1)
+

(
(ℵ−Λ4)+∥λ∥

(
1+

1+KT

|Γ(1−θ)|

)
(ω (T)−ω (0))γ

Γ(γ +1)

)
∥z−Y ∥. (72)

Hence,

∥z−Y ∥ ≤ (ω (T)−ω (0))γ

Γ(γ +1)

[
1−
(
(ℵ−Λ4)+∥λ∥

(
1+

1+KT

|Γ(1−θ)|

)
(ω (T)−ω (0))γ

Γ(γ +1)

)]−1

ε

≤ ς ε , (73)

where

ς =
(ω (T)−ω (0))γ

Γ(γ +1)

[
1−
(
(ℵ−Λ4)+∥λ∥

(
1+

1+KT

|Γ(1−θ)|

)
(ω (T)−ω (0))γ

Γ(γ +1)

)]−1

. (74)

Therefore, the NLIFDE (1) is Ulam-Hyers stable.
Remark 1 If we put Φ(ε) = ς ε, then we get Φ(0) = 0 which yields that the NLIFDE (1) is generalized Ulam-Hyers

stable.

3.3.2Ulam-Hyers-Rassias stability

In the following, we study the Ulam-Hyers-Rassias stability of NLIFDE (1).
Theorem 6 Assume that assumptions (H1), (H2), and (H3) hold. Then, NLIFDE (1) is Ulam-Hyers-Rassias stable

with respect to Φ.
Proof. Let z ∈C(I, R) be a solution of the inequality (67). That is,
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| cD
γ, ω
0+ z(τ)−F (τ, z(τ), cD

γ, ω
0+ z(τ),

∫ τ

0
k(τ, ξ ) cD

γ, ω
0+ z(ξ )dξ )| ≤ ε Φ, τ ∈ [0, T] . (75)

In addition, let Y be a solution of NLIFDE (1), and let ψ ∈C([0, T] , R) such that

Y (τ) = h(τ, Y (τ))+
1

Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ψ (ξ )dξ , (76)

where The functions h(τ, Y (τ)) and ψ (τ) are specified in equations (69) and (70), respectively.
Operating Iγ, ω

0+ on both sides of inequality (67) and then integrating, we get

∣∣∣∣∣ z(τ)−h(τ, z(τ))
− 1

Γ(γ)
∫ τ

0 ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ϕ (ξ )dξ

∣∣∣∣∣≤ ε
Γ(γ)

∫ τ

0
ω ′ (ξ )(ω (τ)−ω (ξ ))γ−1 Φ(ξ )dξ

≤ εµΦΦ(τ), (77)

where ϕ ∈C(J, R) such that

ϕ(τ) = F (τ, z(τ), Iγ−θ , ω
0+ ϕ(τ),

∫ τ

0
k(τ, ξ )ϕ(ξ )dξ ). (78)

Hence, for each τ∈ J, we have

|z(τ)−Y (τ)|

=|z(τ)−h(τ, Y (τ))− 1
Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ψ (ξ )dξ |

≤|z(τ)−h(τ, Y (τ))− 1
Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ϕ (ξ )dξ |

+ | 1
Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ϕ (ξ )dξ − 1

Γ(γ)

∫ τ

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1ψ (ξ )dξ |

≤εµΦ Φ(τ)+
1

Γ(γ)

∫ T

0
ω ′(ξ )(ω(τ)−ω(ξ ))γ−1 |ϕ(ξ )−ψ(ξ )|dξ

≤εµΦ Φ(τ)+
(ω(T)−ω(ξ ))γ

Γ(γ +1)
∥ϕ −ψ∥ (79)

But, from the proof of Theorem 4, we have
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∥ψ −ϕ∥ ≤ ∥λ∥
(

1+
1+KT

|Γ(1−θ)|

)
∥z−Y ∥, (80)

and for each τ ∈ [0, T], we have

∥z−Y ∥ ≤ εµΦ Φ(τ)+∥λ∥
(

1+
1+KT

|Γ(1−θ)|

)
∥z−Y ∥. (81)

Thus,

∥z−Y ∥ ≤
[

1−∥λ∥
(

1+
1+KT

|Γ(1−θ)|

)]−1

µΦεΦ(τ) = cΦεΦ(τ), (82)

where

cΦ =

[
1−∥λ∥

(
1+

1+KT

|Γ(1−θ)|

)]−1

µΦ. (83)

Therefore, the boundary value problem NLIFDE (1) is Ulam-Hyers-Rassias stable with respect to Φ.

4. Special cases
In this section, we present several distinct special cases of our generalized model to illustrate its ability to generalize

and incorporate various classical models.

4.1 Classical Caputo fractional model
By setting ω(t) = t and choosing γ and θ as integers, such as γ = 2 and θ = 1, we obtain

cD2
0+Y (τ) = F (τ, Y (τ), cD1

0+Y (τ),
∫ τ

0
k(τ, ξ )cD2

0+Y (ξ )dξ ), (84)

with boundary conditions

Y (0)+ cD1
0+Y (T) = η1

∫ T

0
g1(ξ , Y (ξ ))dξ , (85)

cD1
0+Y (0)+ cD0

0+Y (T) = η2

∫ T

0
g2(ξ , Y (ξ ))dξ , (86)

cD0
0+Y (0)+ cD−1

0+ Y (T) = η3

∫ T

0
g3(ξ , Y (ξ ))dξ . (87)
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This scenario simplifies to the classical Caputo fractional differential equations with integer orders and linear
boundary conditions.

4.2 Linear integral boundary conditions
When ω(t) = t and η1 = η2 = η3 = 1, the model reduces to

cD
γ
0+Y (τ) = F (τ, Y (τ), cDθ

0+Y (τ),
∫ τ

0
k(τ, ξ )cD

γ
0+Y (ξ )dξ ), (88)

with boundary conditions

Y (0)+ cD
γ−1
0+ Y (T) =

∫ T

0
g1(ξ , Y (ξ ))dξ , (89)

cD
γ−1
0+ Y (0)+ cD

γ−2
0+ Y (T) =

∫ T

0
g2(ξ , Y (ξ ))dξ , (90)

cD
γ−2
0+ Y (0)+ cD

γ−3
0+ Y (T) =

∫ T

0
g3(ξ , Y (ξ ))dξ . (91)

This case corresponds to models with linear integral boundary conditions, which are common in fractional calculus
literature and provide a foundation for comparison with more complex fractional differential equations.

4.3 Fractional delay differential equation
Setting ω(t) = t −h, where h represents a fixed delay, we obtain

cD
γ, t−h
0+ Y (τ) = F (τ, Y (τ), cDθ , t−h

0+ Y (τ),
∫ τ

0
k(τ, ξ )cD

γ, t−h
0+ Y (ξ )dξ ), (92)

with boundary conditions

Y (0)+ cD
γ−1, t−h
0+ Y (T) = η1

∫ T

0
g1(ξ , Y (ξ ))dξ , (93)

cD
γ−1, t−h
0+ Y (0)+ cD

γ−2, t−h
0+ Y (T) = η2

∫ T

0
g2(ξ , Y (ξ ))dξ , (94)

cD
γ−2, t−h
0+ Y (0)+ cD

γ−3, t−h
0+ Y (T) = η3

∫ T

0
g3(ξ , Y (ξ ))dξ . (95)

This case extends the model to fractional delay differential equations, incorporating time delays into the standard
fractional differential framework.
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4.4 Nonlinear fractional oscillator
Assuming the nonlinearity F (τ, Y , · · ·) =−λY (τ)+µY (τ)3, where λ and µ are constants, the model simplifies

to

cD
γ, ω
0+ Y (τ) =−λY (τ)+µY (τ)3 +

∫ τ

0
k(τ, ξ )cD

γ, ω
0+ Y (ξ )dξ , (96)

with boundary conditions

Y (0)+ cD
γ−1, ω
0+ Y (T) = η1

∫ T

0
g1(ξ , Y (ξ ))dξ , (97)

cD
γ−1, ω
0+ Y (0)+ cD

γ−2, ω
0+ Y (T) = η2

∫ T

0
g2(ξ , Y (ξ ))dξ , (98)

cD
γ−2, ω
0+ Y (0)+ cD

γ−3, ω
0+ Y (T) = η3

∫ T

0
g3(ξ , Y (ξ ))dξ . (99)

This special case corresponds to nonlinear fractional oscillators, where nonlinear terms are incorporated into the
fractional differential equations.

4.5 Fractional heat equation with variable coefficients
Setting k(τ, ξ ) = α(τ −ξ ), where α represents a variable coefficient function, we obtain

cD
γ, ω
0+ Y (τ) = α(τ −ξ )+

∫ τ

0
α(τ −ξ )cD

γ, ω
0+ Y (ξ )dξ , (100)

under the boundary condition

Y (0)+ cD
γ−1, ω
0+ Y (T) = η1

∫ T

0
g1(ξ , Y (ξ ))dξ . (101)

This case demonstrates the applicability of our generalized model to fractional heat equations with variable
coefficients, highlighting its flexibility in accommodating different boundary conditions.

The analysis of these special cases highlights the efficacy of our generalized model in encompassing classical models
as specific instances, thus affirming its extensive applicability and versatility. By juxtaposingwith well-establishedmodels,
we effectively demonstrate how our approach not only generalizes but also integrates diverse methods within fractional
calculus. This comparison not only underscores the robustness of our model but also its adeptness at handling intricate
boundary value problems with efficiency.

5. Numerical example
To further demonstrate the practical relevance of our theoretical results, we provide a numerical example. This

example illustrates the application of our proposed methods to specific cases, offering insights into the behavior and
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properties of the solutions. The numerical example validates the theoretical findings, highlighting the effectiveness of
our approach in addressing real-world problems. Additionally, it underscores the significance and potential impact of our
model in various practical applications. Consider the following NLIFDE:



cD
11
5 , τ2+1Y (τ) =

√
2t+1

59e2t+1

[
11+Y (τ)+ cD

3
5 , τ2+1

Y (τ)+
∫ 1

0 e3(τ−ξ ) cD
11
5 , τ2+1

Y (ξ )dξ

1+Y (τ)+ cD
3
5 , τ2+1

Y (τ)+2
∫ 1

0 e3(τ−ξ ) cD
11
5 , τ2+1

Y (ξ )dξ

]
for all τ ∈ [0, 1],

Y (0)+ cD
6
5 , τ2+1
0+ Y (1) =

∫ 1
0

(
e−3t

69+
√

τ +
1

23 |cos
√

Y (τ)|
)

dξ ,

cD
6
5 , τ2+1
0+ Y (0)+ cD

1
5 , τ2+1
0+ Y (1) = 2

∫ 1
0

(
1√

69+τ2
+ e−3t

23+τ2 |Y (τ) |
)

dξ ,

cD
1
5 , τ2+1
0+ Y (0)+ cD

−4
5 , τ2+1

0+ Y (1) = 3
∫ 1

0

(
1

3t2+3 +
1+τ
e3t+3 |Y (τ) |

)
dξ .

(102)

In this problem, we have γ = 11
5 , θ = 3

5 , ω (τ) = τ2 +1 which is an increasing function on [0, 1], K (τ, ξ ) = e3(τ−ξ ),
η1 = 1.5, η2 = 2.5, η3 = 3.5,

g1 (ξ , Y (ξ )) =
(

e−3t

69+
√

τ
+

1
23

|cos
√

Y (τ)|
)
, (103)

with µ1 =
1
23 and H1 =

1
69 .

g2 (ξ , Y (ξ )) =
(

1√
69+ τ2

+
e−3t

53+ τ2 |Y (τ) |
)
, (104)

with µ2 =
1
53 and H2 =

1√
69
.

g3 (ξ , Y (ξ )) =
(

1
3(τ2 +1)

+
1+ τ

e3(τ+1) |Y (t) |
)
, (105)

with µ3 =
1
e3 and H3 =

1
3 .

It is clear that the assumptions (H1)-(H3) are satisfied, and F is a mutually continuous function such that for any
ψ, ϕ , χ ∈ R, and τ∈ [0, 1] we have

|F (τ, ψ, ϕ , χ)|=
√

2t +1
59e2t+1 (11+ |ψ|+ |ϕ |+ |χ|) , (106)

with λ (τ) =
√

2t+1
59e2t+1 , F = 11

59e , ∥λ∥= 1
59e , and K = e3.

It is clear from Theorem (3) that the nonlinear fractional integral differential equation (NLIFDE) (102) possesses at
least one solution within the interval [0, 1], provided that the following condition is satisfied:
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ℵ = ∥µ1∥η1T Λ1 +∥µ2∥η2TΛ2 +∥µ3∥η3TΛ3 +Λ4

≈ 0.265178+0.0616486+0.037957+0.345699 (107)

≈ 0.7148 < 1,

Moreover, by employing Theorem (4), it is deduced that the solution is both unique and stable according to the criteria
of Ulam-Hyers and Ulam-Hyers-Rassias, as indicated by the following condition:

ℵ−Λ4 ≈ 0.364784 < 1. (108)

6. Conclusion
In conclusion, this research has systematically investigated the solutions of nonlinear implicit ω-Caputo fractional-

order ordinary differential equations (NLIFDEs) with two-point fractional derivatives and integral boundary conditions
in Banach algebra. Utilizing rigorous mathematical tools such as Banach’s and Krasnoselskii’s fixed point theorems, the
study successfully established the existence and uniqueness of solutions for this intricate class of fractional differential
equations. The stability of solutions was further scrutinized through the lens of Ulam-Hyers and Ulam-Hyers-Rassias
criteria, providing valuable insights into the robustness of the proposed framework.

The practical applicability of the findings was exemplified through a numerical example, showcasing the methodo-
logy’s effectiveness in real-world problem-solving scenarios. This comprehensive investigation significantly contributes
to the understanding of nonlinear fractional differential equations with integral boundary conditions, emphasizing the
intricate interplay between fractional derivatives, nonlinearities, and integral terms.

Building on the insights gained from this study, several avenues for future research are suggested. Firstly, the
extension of the analysis to more complex NLIFDE models or incorporating additional parameters could provide a deeper
understanding of the system’s behavior. Exploring alternative numerical methods and algorithms for solving NLIFDEs
may enhance the efficiency and accuracy of the proposed methodology. Furthermore, the investigation of applications
in various scientific and engineering disciplines could broaden the practical relevance of the research. Additionally,
considering the dynamic nature of nonlinear systems, a dynamic stability analysis and the exploration of control strategies
could be explored to further enhance the applicability of the proposed framework. Collaborative efforts with experts
from diverse fields, such as physics, engineering, or biology, could foster interdisciplinary research, opening up new
perspectives and applications for NLIFDEs. Finally, continuous efforts in disseminating knowledge through workshops,
conferences, and publications will contribute to the ongoing development of the field and encourage further exploration
of nonlinear fractional differential equations with integral boundary conditions.
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