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Abstract: This paper introduces a double-orbit retrial queue model designed to address patient dissatisfaction by
taking into account their willingness to pay for enhanced comfort and service. The system incorporates non-Markovian
characteristics and employs a probability-generating function approach to solve its equations. Key performance metrics
investigated include expected queue length, system length, and the precision of numerical results derived from empirical
data. The model’s application is specifically examined within a hospital management system (HMS), underscoring its
relevance in healthcare operations. Overall, the paper offers valuable insights into optimizing design strategies for retrial
queue systems featuring unreliable servers, with a focus on enhancing patient satisfaction through personalized service
offerings.
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1. Introduction
In queueing theory, Krishna Kumar and Arivudainambi [1] provide us an overview of the fundamentals of the retrial

queueing system and analysis, an M/G/1 retrial queue on a single server with a Bernoulli service schedule, and typical
retrial timings. Ke andChang [2] introduced a retrial queueing systemwith server vacations limited to J, balking, Bernoulli
feedback, and repeated attempts were implemented. Aissani [3] examines an M/G/1 retrial queue server vacations,
analyzing its distribution in a stationary regime. It provides a heavy traffic approximation, decomposes the system size
into two random variables, and solves optimization problems for vacation and retrial policies. Sherman and Kharoufeh
[4] examine a standard queue and an M/M/1 retry queue with the orbit of infinite capacity, analyzing its conditions for
stability and stochastic decomposability results. Jain and Mehta [5] presented imperfect repair and patient discontent by
presenting performance modeling and the ideal configuration for an unstable server retrial queue with two retrial orbits.
patients’ desire to pay more for higher levels of comfort and service is taken into account by the system. Using ANFIS,
the system’s performance measures are investigated. Jain and Sanga [6] investigated a Markovian model that has been
created in the study to analyze double orbit and other faulty single-server retrial queues. patient-discouraging behavior is
addressed, and performance measurements are derived using probability-generating algorithms. The approach is applied
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to manufacturing, computer networks, and telecommunications. The lowest cost and ideal service rates are shown in
the model. Jain et al. [7] examined finite double retrial orbit queues with service interruptions and priority patients into
account. They explained how the suggested queueing paradigm was implemented in the cellular radio network. Kumar
et al. [8] discussed the working vacation features, double retrial orbits, and in most practical instances of queueing, the
server might not be dependable. Specific retrial queue models consider server unreliability as a potential solution in
case of server failure. Sanga and Jain [9] presented A study that looks at the balking behavior of regular and premium
class patients in a double-orbit retrial queueing system. It makes use of a fuzzy FM/FM/1 queueing system including
balking, a profit function, and a steady-state analytical solution. Performance metrics are defined using the ranking
index approach. Dimitriou [10] studied coupled orbit queues and retry queueing systems with two classes of patients.
Dhibar and Jain [11] discussed a study of designing the optimal strategy for a Markovian double orbit retrial queue by
involving the realistic features of imperfect service and vacation interruption. The approach is used for telecommunication
systems, computer networks, call centers, etc. Servi and Finn [12] presented the idea of a working vacation, in which
the server runs services slower while on vacation instead of discontinuing them altogether and working vacation used in
communication, manufacturing, and service systems. Rajadurai [13] studied a retrial queueing system on a single server
that included working vacations and vacation interruptions. Three patient types are taken into account: priority, ordinary,
and harmful. The server goes into vacation mode and operates more slowly when the system is empty. Gupta and Kumar
[14] discovered an M/M/1 retrial model for a server during working vacations, considering breakdowns and repair. PGF
is used to determine steady-state solutions, and performance measures are developed for different server states. Li et al.
[15] examined a queue for M/G/1 retrial with generic retrial durations, in which the Bernoulli schedule governs a single
working vacation. Jain et al. [16] examined The Markovian retrial queue has various applications such as communication
networks, manufacturing businesses’ call centers, and cyber centers. It does take into consideration the idea of a working
vacation, patients’ balking behavior, and faulty service. Rajadurai et al. [17] investigates a queueing system with a
single server feedback retrial that experiences multiple working vacations and interruptions. The system operates at a
lower rate during vacations, and unsatisfied patients may rejoin to receive another service. Further, the steady-state PGF,
Performance metrics, and numerical examples are presented. Zhang [18] investigated a single-server retrial queue with
exponential service times and a Poisson arrival process. It talks about two different ways that patients retrial: independent,
in which each one looks for services on their own, and constant retrial policy, in which the server charges a set price to
users who sign up for the system. Varalakshmi et al. [19] studied the steady state behavior of an M/G/1 retrial queueing
system including two service stages and rapid feedback while operating under a working vacation policy. The system is
impacted by negative consumers arriving, with patients entering an orbit if the server is busy or fails. Boualem et al. [20]
investigated an M/G/1 retrial queue with vacations and identified various stochastic comparison features, such as strong
stochastic ordering and convex ordering. Boualem et al. [21] examined a mathematical method for obtaining performance
index boundaries by comparing Markov chains, focusing on the monotonicity characteristics of a single server retrial
queue. Boualem [22] discussed the monotonicity of a single server retrial queue, revealing insensitive constraints for the
stationary distribution of the embedded Markov chain. Gao et al. [23] examined a queue for M/G/1 retrials that had both
idle and busy breakdowns. It presents steady-state joint queue length distribution, reliability indices, performance metrics,
and stable conditions using probability generating function (PGF) and embedded Markov chain approaches. Additionally,
it examines a patient’s sojourn time in a stable condition and provides numerical examples to highlight the implications of
system characteristics. Boualem et al. [24] presented stochastic comparison techniques to establish performance bounds
in a single-server retrial queue, demonstrating the monotonic transition operator under strong stochastic and increasing
convex ordering. Boualem [25] examines the stochastic analysis of a single server’s unreliable queue, focusing on its
balking and general retrial time.

Our investigation into the double orbit retrial queue was prompted by the literature we have read thus far. Unreliable
servers have been noted. The existing literature has not yet examined the M/G/1 double orbit retrial queue with the
implementation of a working vacation policy in the queuing systems.

The remaining section of this article is organized using the following structure: Section 2 includes a system
description and analysis. Section 3 provides an overview of the steady-state analysis, including determining the number of
consumers and their orbit. And an actual application of the model we covered. Section 4 focuses on systemmeasurements.
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Section 5 investigates the model’s key exceptional cases. Section 6 several numerical figures are provided to demonstrate
the impact of various factors on system performance measures.

2. Model description and analysis
This model aims to estimate performance indices using a non-Markovian model of a double-orbit retrial queue with

unstable servers, showing like Figure 1. Depending on their ability to pay and the needs of the facility in case the server
is busy, patients using the retrial queueing system have the option to wait in any of the two orbits: premium or ordinary.
FCFS is the patient service discipline. The retrial queueing system that has been developed has the followingmathematical
formulation based on the subsequent assumptions:

The arrival process: Patients enter the system using a Poisson process with rate λ .
The process of retrial and service: Presuming there isn’t a waiting area, a new patient who finds the server available

will take advantage of his services. Suppose the server is on vacation or busy, the patient has the option to leave the service
area and join a group of patients who have been blocked, which is referred to as ”orbit.” When a new patient arrives. Upon
arrival, patients can join any one of the retrial orbits, either the premium or ordinary orbit. The patients receive service
from the server based on a general distribution, with patients from the premium and ordinary orbits receiving service first.
If the ordinary orbit patient finds the server is accessible, with the rate λ , they can receive service. If the premium orbit
patient finds the server is accessible, with the rate δ , they can receive service. The ordinary orbit patient joins with the
probability κ , whereas the premium orbit patient joins with the probability κ̄ = (1− κ). Inter-ordinary retrial time of
the patient has an arbitrary distribution R1(ε) and “Laplace-Stieltijes transform” (LST) R∗

1(ν) and inter-premium retrial
time of the patient have an arbitrary distribution R2(ε) and (LST) R∗

2(ν). The service times are assumed to be generally
distributed and shown as the random variable S with a distribution function S(ε) and (LST) S∗(ν) respectively, E(S) and
E(S)2 represent the first and second moments.

Figure 1. Structure of the queuing model

Working vacation procedures: Whenever the orbit is empty, the server takes a vacation, with an amount of time
determined by an exponential distribution with parameter V. The server continues operating at a reduced speed service
rate if a patient arrives during a vacation, commonly called a ”working vacation.” In the event of a working vacation,
processes move more slowly. Over the working vacation period, the service time is a generic random variable ψω , using
E(V ) and E(V )2 as the first and second moments, with distribution functions ψω(ε) and LST ψ∗

ω(ν).
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2.1 Practical application of the model

In a hospital environment, a system with a single server consists of the same pool of resources, such as physicians,
nurses, and facilities, that serve both ordinary and premium patients. The hospital’s structure just like Figure 2. The words
“ordinary” and “premium” patients can refer to distinct types of patients depending on many circumstances, including the
amount of treatment they get, their insurance coverage, and their willingness to pay for additional amenities or services.

Ordinary patients who receive regular or critical healthcare treatments in the hospital. They might have government-
sponsored insurance, minimal health insurance policies, or no insurance. Ordinary patients frequently receive care based
on regular processes and norms, with no added benefits or facilities. They may have less access to doctors, treatment
alternatives, and facilities than premium patients. Because of the high volume of patients and limited resources, they may
have to wait longer for appointments or operations.

Premium patients choose higher-level treatments or facilities at the hospital, sometimes by payingmore fees or having
premium insurance. They may be eligible for expedited appointments, priority scheduling for operations or treatments,
and reduced wait times. Premium patients may have access to a greater number of experts, including top-tier doctors and
specialists. During their stay, they may be offered additional facilities such as private rooms, individualized care plans,
concierge services, or increased comfort alternatives. Premium patients may have access to unique hospital amenities
such as VIP lounges or dedicated patient service personnel. They may receive more customized treatment from medical
professionals, such as faster appointment periods and more complete follow-up care. Premium patients may have access
to premium treatment choices.

The only time the doctor’s assistant has the opportunity to provide care is when the chief doctor is away on vacation,
and even then, the doctor’s assistant frequently offers services at a slower rate than the chief doctor. Within the context
of our queueing paradigm, the hospital administration system serves as a concrete illustration.

Figure 2. Structure of the application model
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3. Probability analysis for steady states
This division develops the retrial system’s steady state equations by treating the elapsed times of normal service,

elapsed premium retrial time, elapsed ordinary retrial time, and lower rate service times that occurred via supplementary
variables. Next, we calculate the orbit size generating functions (GFs) for various server states and the PGF of the total
number of patients in the orbit and system.

3.1 The steady state equations

For steady state techniques, we consider R1(0) = 0, R1(∞) = 1, R2(0) = 0, R2(∞) = 1, S(0) = 0, S(∞) = 1 and
V (0) = 0, V (∞) = 1 are continuous at ε = 0. The hazard rates for ordinary retrial, premium retrial, normal service, and
lower rate service are signified by the functions a1(ε), a2(ε), µ(ε), and ψω(ε), respectively.

a1(ε)dε =
dR1(ε)

1−R1(ε)

a2(ε)dε =
dR2(ε)

1−R2(ε)

µ(ε)dε =
dS(ε)

1−S(ε)

ψω(ε)dε =
dV (ε)

1−V (ε)

Apart from it, let R0
1(ι), R0

2(ι), S0(ι), and V 0(ι) represent the elapsed retrial times of ordinary orbit, premium orbit,
normal service, and the lower rate service times, accordingly, at time ι . Additionally providing the random variables,

Φ(ι) =



0, The server seems to be in working vacation period and the server is free
1, The server seems to be ordinary orbit patient and the server is free
2, The server seems to be premium orbit patient and the server is free
3, The server seems to be normal service at time ι and the server is busy
4, The server seems to be in lower service pace at time ι and the server is busy

Thus the SV R0
1(ι), R0

2(ι), S0(ι), and V 0(ι) are motivated to design a bivariate Markov process{Φ(ι), X (ι); ι ≥
0} where Φ(ι) represents the state of the server as (0, 1, 2, 3, 4) depending on whether the server is free or busy on both
normal service and working vacation periods. X (ι) Identifies the available patient number in the orbit.

We provide four additional variables in order to work with a Markov process when Φ(ι) > 0: If Φ(ι) = 1 and
X (ι) > 0, then R0

1(ι) indicates the elapsed ordinary retrial time. If Φ(ι) = 2 and X (ι) > 0, then R0
2(ι) represents the

elapsed premium retrial time time. If Φ(ι) = 3 andX (ι)≥ 0, then S0(ι) represents the elapsed time of the patient served
in a normal busy period. If Φ(ι) = 4 and X (ι)≥ 0, then V 0(ι) indicates the elapsed time of the patient being served in
a lower rate service period.

Theorem 1 The embedded Markov chain {Vn; nεN} is ergodic if ρ < 1 for our system to be stable, where ρ =

κ{1−R∗
1(λ )− (λ +δ )E(s)+1}− (1−κ){1−R∗

2(δ )− (λ +δ )E(s)+1}.
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Proof. Pakes [26] Foster’s criteria can be used to show that the chain {Vn; n ∈ N} appears to be both an aperiodic
Markov chain and irreducible, which is a necessary requirement for ergodicity. If e(l) exists as non-negative function
with l ∈ N and ε > 0, the Markov chain is ergodic. The mean drift is ηl = E[e(vn+1)− e(vn)/vn = l]. Excluding only a
finite number of l′s, all l ∈ N have ηl ≤− ∈. We take the function e(l) = l for the given instance. Then we obtain

ηl =


(1−κ){1−R∗

2(δ )−E(s)(λ +δ )+1, if l = 0

κ{1−R∗
1(λ )−E(s)(λ +δ )+1}− (1−κ){1−R∗

2(δ )−E(s)(λ +δ )+1, if l = 1, 2, ...

Here κ{1−R∗
1(λ )− (λ + δ )E(s)+ 1}− (1−κ){1−R∗

2(δ )− (λ + δ )E(s)+ 1 < 1 is without a doubt a necessary
requirement for ergodicity.

As stated Sennott et al. [27], whenever the Markov chain {Wn; nεN} sees Kaplan’s status, notably ηl < ∞ for all
l ≥ 0 and ∃ l0 ∈ N s.t ηl ≥ 0 for l ≥ l0, the necessary prerequisite is satisfied. M = (mkl) is relates to one-step transition
matrix of {Vn; n ∈ N} for l < k− i and k > 0, in which M = (mkl) is relates to one-step transition matrix of {Vn; n ∈ N}.
If ρ ≥ 1 indicates that the Markov chain is non-ergodic.

Let’s assume the epoch sequence {ιn; n = 1, 2, ...}, where a shorter service period or the completion of the service
period occurs. The random vector sequence Vn = {∆(ιn+), S(ιn+)}. Incorporated in the RQ system, forming a Markov
chain. Based on Theorem (1), Vn; n ∈ N is ergodic iff ρ < 1, where ρ = κ{1 − R∗

1(λ )− (λ + δ )E(s) + 1}− (1 −
κ){1−R∗

2(δ )− (λ +δ )E(s)+1 < 1. This is necessary for our system to stay stable. The probabilities for the approach
{X (ι), ι ≥ 0} are given as follows: R0(ι) = P{Φ(ι) = 0, X (ι) = 0}; the prob. densities are

R1, n(ε, ι)dε = P{Φ(ι) = 1, X (ι) = n, ε ≤ R0
1(ι)< ε +dε}, for ı ≥ 0, ε ≥ 0 and n ≥ 1.

R2, n(ε, ι)dε = P{Φ(ι) = 2, X (ι) = n, ε ≤ R0
2(ι)< ε +dε}, for ı ≥ 0, ε ≥ 0 and n ≥ 1.

Sn(ε, ι)dε = P{Φ(ι) = 3, X (ι) = n, ε ≤ S0(ι)< ε +dε}, for ı ≥ 0, ε ≥ 0 and n ≥ 0.

Vn(ε, ι)dε = P{Φ(ι) = 4, X (ι) = n, ε ≤V 0(ι)< ε +dε}, for ı ≥ 0, ε ≥ 0 and n ≥ 0.

The limiting densities are R0 = limι→∞R0(ι), if the sequel satisfies the stability conditions.

R1, n(ε) = limι→∞R1, n(ε, ι);

R2, n(ε) = limι→∞R2, n(ε, ι);

Sn(ε) = limι→∞Sn(ε, ι);

Vn(ε, y) = limι→∞Vn(ε, y, ι).
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Applying the supplemental variable method, we build the subsequent system of equations.

(λ +ω)R0(ι) =
∫ ∞

0
S0(ε)µ(ε)dε +

∫ ∞

0
V0(ε)ψ(ε)dε (1)

d
dε

R1, n(ε)+(λ +a1(ε))R1, n(ε) = 0, n ≥ 1 (2)

d
dε

R2, n(ε)+(δ +a2(ε))R2, n(ε) = 0, n ≥ 1 (3)

d
dε

Sn(ε)+(λ +δ +µ(ε))Sn(ε) = (λ +δ )Sn−1(ε), n ≥ 1 (4)

d
dε

Vn(ε)+(λ +δ +ω +ψ(ε))Vn(ε) = (λ +δ )Vn−1(ε), n ≥ 1 (5)

For ε = 0 and y = 0, the following are the steady-state boundary conditions:

R1, n(0) = κ
∫ ∞

0
Sn−1(ε)µ(ε)dε +

∫ ∞

0
Vn(ε)µ(ε)dε (6)

R2, n(0) = (1−κ)
∫ ∞

0
Sn−1(ε)µ(ε)dε (7)

Sn(0) =
∫ ∞

0
R1, n+1(ε)a1(ε)dε +λ

∫ ∞

0
R1, n(ε)dε +

∫ ∞

0
R2, n+1(ε)a2(ε)dε

+δ
∫ ∞

0
R2, n(ε)dε +ω

∫ ∞

0
Vn(ε)dεn ≥ 1 (8)

Vn(0) =


(λ +δ )R0, n = 0

0, n ≥ 1

(9)

The state of normalization is

R0 +
∞

∑
n=1

∫ ∞

0

(
R1, n(ε)dε +R2, n(ε)dε

)
+

∞

∑
n=0

∫ ∞

0

(
Sn(ε)dε +Vn(ε)dε

)
= 1 (10)

3.2 The steady-state solution

The steady-state solution of the RQ model is obtained by the generating function approach. To solve the
aforementioned equations, the GFs for |φ|< 1 are defined as follows:
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R1(ε, φ) =
∞

∑
n=0

Rn(ε)φn; R1(0, φ) =
∞

∑
n=0

Rn(0)φn;

R2(ε, φ) =
∞

∑
n=0

Rn(ε)φn; R2(0, φ) =
∞

∑
n=0

Rn(0)φn;

S(ε, φ) =
∞

∑
n=0

Sn(ε)φn; S(0, φ) =
∞

∑
n=0

Sn(0)φn;

V (ε, φ) =
∞

∑
n=0

Vn(ε)φn; V (0, φ) =
∞

∑
n=0

Vn(0)φn;

From (2) to (9), multiply the steady-state equation and steady-state boundary conditions by φn, then sum over n
(n = 0, 1, 2, ...).

∂
∂ε

R1(ε, φ)+(λ +a1(ε))R1(ε, φ) = 0 (11)

∂
∂ε

R2(ε, φ)+(δ +a2(ε))R2(ε, φ) = 0 (12)

∂
∂ε

S(ε, φ)+((λ +δ )(1−φ)+µ(ε))S(ε, φ) = 0 (13)

∂
∂ε

V (ε, φ)+(ω +(1−φ)(λ +δ )+ψ(ε))V (ε, φ) = 0 (14)

R1(0, φ) = κφ
∫ ∞

0
S(ε, φ)µ(ε)dε +

∫ ∞

0
V (ε, φ)µ(ε)dε −λR0 (15)

R2(0, φ) = (1−κ)φ
∫ ∞

0
S(ε, φ)µ(ε)dε (16)

S(0, φ) =
1
φ

∫ ∞

0
R1(ε, φ)a1(ε)dε +λ

∫ ∞

0
R1(ε, φ)dε +

1
φ

∫ ∞

0
R2(ε, φ)a2(ε)dε

+δ
∫ ∞

0
R2(ε, φ)dε +ω

∫ ∞

0
V (ε, φ)dε (17)

V (0, φ) = (λ +δ )R0 (18)

Solving the partial differential eqns. (11) to (14), we obtain
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R1(ε, φ) = R1(0, φ)e−λ (ε)[1−R1(ε)] (19)

R2(ε, φ) = R2(0, φ)e−δ (ε)[1−R2(ε)] (20)

S(ε, φ) = S(0, φ)e−Cs(φ)ε [1−S(ε)] (21)

V (ε, φ) =V (0, φ)e−Av(φ)ε [1−V (ε)] (22)

whereCs(φ) = (λ +δ )(1−φ), Av(φ) = ω +(λ +δ )(1−φ).
Inserting the eqns. (21) to (22) and (15) and (16) after doing some calculations, the result became,

R1(0, φ) = κφS(0, φ)S∗(Cs(φ))+V (0, φ)V ∗(Av(φ))−λR0 (23)

R2(0, φ) = (1−κ)φS(0, φ)S∗(Cs(φ))−δR0 (24)

combining the equation (19) to (22) in (17), we obtain

S(0, φ) = R0

[
N(φ)
D(φ)

]
(25)

N(φ) = [R∗
1(λ )+φ(1−R∗

1(λ ))]{(λ +δ )V ∗(Av(φ))−λ}− [R∗
2(δ )+δφ(1−R∗

2(δ ))]+(λ +δ )W (φ)

D(φ) = φ −κφ [R∗
1(λ )+φ(1−R∗

1(λ ))]S∗(Cs(φ))−φ(1−κ)[R∗
2(δ )+φ(1−R∗

2(δ ))]S∗(Cs(φ))

WhereW (φ) =
ω[1−V ∗(Av(φ))]

Av(φ)
.

Theorem 2 The stationary dist. of the no. of consumers in the ordinary and premium orbit, while the server is free,
regular busy, reduced speed service, and the prob. That the server is free is provided by ρ < 1 under the stability condition

R1(φ) = R0

[
Ne(R1(φ))

D(φ)

]
(26)

Ne(R1(φ)) =
(1−R∗

1(λ ))
λ

{
κφS∗(Cs(φ))(λ +δ )W (φ)+ [R∗

2(δ )+φ(1−R∗
2(δ ))]{λφ(1−κ)S∗(Cs(φ))

−κφS∗(Cs(φ))(δ )−φ(1−κ)S∗(Cs(φ))(λ +δ )V ∗(Av(φ))}+φ(λ +δ )V ∗(Av(φ))−λφ
}

Volume 5 Issue 3|2024| 3937 Contemporary Mathematics



R2(φ) = R0

[
Ne(R2(φ))

D(φ)

]
(27)

Ne(R2(φ)) =
(1−R∗

2(δ ))
δ

{
[R∗

1(λ )+φ(1−R∗
1(λ ))]{(1−κ)(λ +δ )φS∗(Cs(φ))V ∗(Av(φ))−λ (1−κ)

φS∗(Cs(φ))+δκφS∗(Cs(φ))}+(λ +δ )(1−κ)φS∗(Cs(φ))W (φ)−δφ
}

S(φ) = R0

[
Ne(S(φ))

D(φ)

]
(28)

Ne(S(φ)) =
(1−S∗(Cs(φ))

Cs(φ)

(
[R∗

1(λ )+φ(1−R∗
1(λ ))]{(λ +δ )V ∗(Av(φ))−λ}− [R∗

2(δ )+δφ(1−R∗
2(δ ))]

+(λ +δ )W (φ)
)

V (φ) = R0

[
(λ +δ )[1−V ∗(Av(φ))]

Av(φ)

]
(29)

where

R0 =

[
Ne(R0)

De(R0)

]
(30)

Ne(R0) = (1−κ{1−R∗
1(λ )−E(S)(λ +δ )+1}− (1−κ){1−R∗

2(δ )−E(S)(λ +δ )+1})

De(R0) = (1−κ{1−R∗
1(λ )−E(S)(λ +δ )+1}− (1−κ){1−R∗

2(δ )−E(S)(λ +δ )+1})

(1+
(
(λ +δ )[1−V ∗(ω)

ω

)
)+

(
1−R∗

1(λ )
λ

)[(
1
ω

)(
ωκ(λ +δ )[1−V ∗(ω)]−ωκ(λ +δ )2E(S)

[1−V ∗(ω)]+κ(λ +δ )2[E(V )+(1−V ∗(ω))]+ω(λ +δ )V ∗(ω)−ω(λ +δ )2E(V )−ωλ

+ω
[

1−R∗
2(δ )

]{
λ (1−κ)−λ (λ +δ )(1−κ)E(S)−κδ +κδ (λ +δ )E(S)− (1−κ)V ∗(ω)

(λ +δ )+(1−κ)(λ +δ )2E(S)V ∗(ω)+(1−κ)(λ +δ )2E(V )

})]
+

(
1−R∗

2(δ )
δ

)
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[(
1
ω

)(
ω
(

1−R∗
1(λ )

){
λ +δ )(1−κ)V ∗(ω)− (λ +δ )2(1−κ)E(S)V ∗(ω)− (λ +δ )2(1−κ)

E(V )−λ (1−κ)+λ (λ +δ )(1−κ)E(S)+κδ −κδ (λ +δ )E(S)
}
+ω(λ +δ )(1−κ)

[1−V ∗(ω)]−ω(λ +δ )2(1−κ)E(S)[1−V ∗(ω)]+(λ +δ )2(1−κ)[E(V )+ [1−V ∗(ω)]]−ωδ
)]

−E(S)
[(

1
ω

)(
(λ +δ )2[E(V )+ [1−V ∗(ω)]−E(S)[ω[1−R∗

1(λ )][−(λ +δ )2E(V )−λ ]

−ω[1−R∗
2(δ )]δ

)]

Proof. Taking the eqns. (19)-(22) then computing their integration with respect to ε to ascertain the partial PG
R1(φ) =

∫ ∞
0 R1(ε, φ)dε, R2(φ) =

∫ ∞
0 R2(ε, φ)dε, S(φ) =

∫ ∞
0 S(ε, φ)dε, V (φ) =

∫ ∞
0 V (ε, φ)dε, We estimate the server’s

available probability. Using the normalization condition (R0) by establishing functions as, when there is no patient in the
orbit φ = 1 in (26)-(29) additionally, anytime the l’Hospital Rule is necessary, we get R0+R1(1)+R2(1)+S(1)+V (1) =
1.

Theorem 3 Regarding the stability restriction ρ < 1, We calculate the PGF of the number of patients in the system
and the distribution of orbit sizes at a stationary moment in time.

Ks(φ) = R0
Nes(φ)

(1−φ)D(φ)
(31)

Nes(φ) = (1−φ)
{
(1−R∗

1(λ ))
λ

(
κφS∗(Cs(φ))(λ +δ )W (φ)+ [R∗

2(δ )+φ(1−R∗
2(δ ))]{λφ(1−κ)S∗(Cs(φ))

−κS∗(Cs(φ))(δ )−φ(1−κ)S∗(Cs(φ))(λ +δ )V ∗(Av(φ))}+φ(λ +δ )V ∗(Av(φ))−λφ
)

+
(1−R∗

2(δ ))
δ

(
[R∗

1(λ )+φ(1−R∗
1(λ ))]{(λ +δ )(1−κ)φS∗(Cs(φ))V ∗(Av(φ))−λ (1−κ)φ

S∗(Cs(φ))+δκφS∗(Cs(φ))}+(λ +δ )(1−κ)φs∗(Cs(φ))W (φ)−δφ
)}

+φ(1−φ)D(φ)(λ +δ )

(1−V ∗(Av(φ)))
Av(φ)

+φ
(1−S∗(Cs(φ)))

Cs(φ)

[
[R∗

1(λ )+φ(1−R∗
1(λ ))]{(λ +δ )V ∗(Av(φ))−λ}
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− [R∗
2(δ )+φ(1−R∗

2(δ ))]δ +(λ +δ )W (φ)
]

Ho(φ) = R0
Neo(φ)

(1−φ)D(φ)
(32)

Neo(φ) = (1−φ)
{
(1−R∗

1(λ ))
λ

(
κφS∗(Cs(φ))(λ +δ )W (φ)+ [R∗

2(δ )+φ(1−R∗
2(δ ))]{λφ(1−κ)

S∗(Cs(φ))−κφS∗(Cs(φ))(δ )−φ(1−κ)S∗(Cs(φ))(λ +δ )V ∗(Av(φ))}+φ(λ +δ )

V ∗(Av(φ))−λφ
)
+

(1−R∗
2(δ ))

δ

(
[R∗

1(λ )+φ(1−R∗
1(λ ))]{(1−κ)(λ +δ )

φS∗(Cs(φ))V ∗(Av(φ))−λ (1−κ)φS∗(Cs(φ))+δκφS∗(Cs(φ))}+(λ +δ )(1−κ)φs∗(Cs(φ))

W (φ)−δφ
)}

+(1−φ)D(φ)(λ +δ )
(1−V ∗(Av(φ)))

Av(φ)
+

(1−S∗(Cs(φ)))
Cs(φ)

[
[R∗

1(λ )+φ(1−R∗
1(λ ))]

{(λ +δ )V ∗(Av(φ))−λ}− [R∗
2(δ )+δφ(1−R∗

2(δ ))]+(λ +δ )W (φ)
]

where R0 is denoted by eqn. (30).
Proof. Finally, by applying (26)-(29) and a little mathematical arithmetic, Ks(φ) = R0 +R1(φ)+R2(φ)+φS(φ)+

φW (φ) PGF of available patients number in the system is derived (31). Use the formula H0(φ) = R0 +R1(φ)+R2(φ)+
S(φ)+W (φ) to find the PGF of available patients number in the orbit (H0(φ)). It is possible to compute (32).

4. System performance measures
The mean busy time and mean busy cycle algorithms were discovered, several pertinent system probabilities, and

system efficiency measures even if the system is in various states.

4.1 System state probabilities

Using equations (26)-(29) putting φ → 1 and using l’Hospital’s rule until it’s feasible, we reach at the subsequent
conclusions.

(i) For the period of the Ordinary retrial, let R1 represent the steady state probability of the server being available,

R1 = R1(1) = R0

{
Ne1(1)
De(1)

}
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Ne1(1) =
(

1−R∗
1(λ )

λ

){(
1
ω

)(
ωκ(λ +δ )[1−V ∗(ω)]−ωκ(λ +δ )2E(s)[1−V ∗(ω)]+κ(λ +δ )2

[E(v)+(1−V ∗(ω))]+ω(λ +δ )V ∗(ω)−ω(λ +δ )2E(v)−ωλ +ω[1−R∗
2(δ )]{λ (1−κ)

−λ (λ +δ )(1−κ)E(s)−κδ +κδ (λ +δ )E(s)− (1−κ)V ∗(ω)(λ +δ )+(1−κ)(λ +δ )2E(s)

V ∗(ω)+(λ +δ )2E(v)(1−κ)}
)}

De(1) =1−κ{1−R∗
1(λ )− (λ +δ )E(s)+1}− (1−κ){1−R∗

2(δ )− (λ +δ )E(s)+1}

(ii) Let R2 represent the steady state probability of the server will remain available during the Premium retrial,

R2 = R2(1) = R0

{
Ne2(1)
De(1)

}

Ne2(1) =
(

1−R∗
2(δ )

δ

){(
1
ω

)(
ω[1−R∗

1(λ )]{(λ +δ )(1−κ)V ∗(ω)− (λ +δ )2(1−κ)E(s)V ∗(ω)

− (λ +δ )2(1−κ)E(v)−λ (1−κ)+λ (λ +δ )(1−κ)E(s)+κδ −κδ (λ +δ )E(s)}+ω(λ +δ )

(1−κ)[1−V ∗(ω)]−ω(λ +δ )2(1−κ)E(s)[1−V ∗(ω)]+(λ +δ )2(1−κ)[E(v)+ [1−V ∗(ω)]]

−ωδ
)}

(iii) Let S represent the steady state probability of the server being occupied.

S = S(1) = R0

{
Nes(1)
De(1)

}

Nes(1) =−E(S)
{(

1
ω

)(
(λ +δ )2[E(v)+ [1−V ∗(ω)]−E(s)[ω[1−R∗

1(λ )][−(λ +δ )2E(v)−λ ]

−ω[1−R∗
2(δ )]δ

)}

(iv) Let V represent the steady state probability of the server’s working vacation,

Volume 5 Issue 3|2024| 3941 Contemporary Mathematics



V =V (1) = R0

[
(λ +δ )[1−V ∗(ω)

ω

]

4.2 The size of an orbit and the average size of a system

Once a steady state has been reached by the system,
(i) Given φ , (32), and φ = 1, the expected number of patients in the orbit (Lq) is obtained.

Lq = H
′
0(1) = lim

φ→1

d
dφ

H0(φ)

= R0

[
Ne

′′′
q (1)De

′′
q(1)−De

′′′
q (1)Ne

′′
q(1)

3(De′′
q(1))2

]
(33)

Ne
′′
q(1) =−2

{(
(1−R∗

1(λ ))
λ

)[(
1
ω

)
ωκ(λ +δ )[1−V ∗(ω)]−ωκ(λ +δ )2E(S)[1−V ∗(ω)]

+κ(λ +δ )2[E(V )+(1−V ∗(ω))]+ω(λ +δ )V ∗(ω)−ω(λ +δ )2E(V )−ωλ +ω[1−R∗
2(δ )]

{λ (1−κ)−λ (λ +δ )E(S)(1−κ)−κδ +κδ (λ +δ )E(S)− (1−κ)V ∗(ω)(λ +δ )

+(1−κ)V ∗(ω)(λ +δ )2E(S)+(1−κ)(λ +δ )2E(V )}
]}

−2
{(

(1−R∗
2(δ ))

δ

)
[(

1
ω

)
ω[1−R∗

1(λ )]{(λ +δ )(1−κ)V ∗(ω)− (λ +δ )2(1−κ)E(S)V ∗(ω)− (λ +δ )2

(1−κ)E(V )−λ (1−κ)+λ (λ +δ )(1−κ)E(S)+κδ −κδ (λ +δ )E(S)}+ω(λ +δ )(1−κ)

[1−V ∗(ω)]−ω(λ +δ )2(1−κ)E(S)[1−V ∗(ω)]+(λ +δ )2(1−κ)[E(V )+ [1−V ∗(ω)]]−ωδ
]}

+2
(
(λ +δ )E(S)

){
(−E(S))

(
1
ω

)
(λ +δ )2[E(V )+ [1−V ∗(ω)]−E(S)[ω[1−R∗

1(λ )]

[−(λ +δ )2E(V )−λ ]−δω [1−R∗
2(δ )]

}
−2(1−κ{1−R∗

1(λ )− (λ +δ )E(S)+1}

− (1−κ){1−R∗
2(δ )− (λ +δ )E(S)+1})
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De
′′
q(1) =−2(1−κ{1−R∗

1(λ )− (λ +δ )E(S)+1}− (1−κ){1−R∗
2(δ )− (λ +δ )E(S)+1})

Ne
′′′
q (1) =−3

{ (
1−R∗

1(λ )
λ

)((
1

ω3

)
2ω2κ(λ +δ )2[E(V )+ [1−V ∗(ω)]]−2ω3κ(λ +δ )2E(S)

[1−V ∗(ω)]+ω3κ(λ +δ )3E(S)2[1−V ∗(ω)]−2ω2κ(λ +δ )3E(S)[E(V )+ [1−V ∗(ω)]]

+κ(λ +δ )
[

ω(λ +δ )2E(V )[3ω −ωE(V )−1]+2[1−V ∗(ω)](λ +δ )2
]
−2ω3(λ +δ )2E(V )

+ω3(λ +δ )3E(V )2 +ω3[1−R∗
2(δ )]

[
−2λ (λ +δ )E(S)(1−κ)+λ (λ +δ )2E(S)2(1−κ)+2κδ

(λ +δ )E(S)−κδ (λ +δ )2E(S)2 +2(1−κ)(λ +δ )2E(S)V ∗(ω)+2(λ +δ )2E(V )(1−κ)

− (1−κ)(λ +δ )3E(S)2V ∗(ω)−2(1−κ)(λ +δ )3E(S)E(V )− (1−κ)(λ +δ )3E(V )2
])}

−3
{(

1−R∗
2(δ )

δ

)(
[

(
1

ω3

)
ω3[1−R∗

1(λ )]
[
(λ +δ )3(1−κ)E(S)2V ∗(ω)−2(λ +δ )2(1−κ)

E(S)V ∗(ω)−2(λ +δ )2(1−κ)E(V )+2(λ +δ )3(1−κ)E(S)E(V )+(λ +δ )3(1−κ)E(V )2

+2λ (λ +δ )E(S)(1−κ)−λ (λ +δ )2(1−κ)E(S)2 −2δκ(λ +δ )E(S)+κδ (λ +δ )2E(S)2
]

+2ω2(λ +δ )2(1−κ)[E(V )+ [1−V ∗(ω)]]−2ω3(λ +δ )2(1−κ)E(S)[1−V ∗(ω)]

−2ω2(λ +δ )3(1−κ)E(S)[E(v)+ [1−V ∗(ω)]]+ω3(λ +δ )3E(S)2(1−κ)[1−V ∗(ω)]

+(λ +δ )(1−κ)(ω(λ +δ )2E(V )[3ω −ωE(V )−1]+2[1−V ∗(ω)](λ +δ )2)

)}
−3

(
(λ +δ )2E(S)2

)
(
(−E(S))

(
1
ω

){
−ω(λ +δ )2E(V )+ω[1−R∗

1(λ )][(λ +δ )V ∗(ω)−λ ]−ωδ (1−R∗
2(δ ))

+(λ +δ )2[E(V )+ [1−V ∗(ω)]]

})
+3

(
(λ +δ )E(S)

)(
(−E(S))

(
1

ω3

){
ω3(λ +δ )2E(V )[1−R∗

1(λ )]
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+ω3(λ +δ )3E(V )2 −ω3[1−R∗
1(λ )](λ +δ )2E(V )+(λ +δ )

[
ω(λ +δ )2E(V )[3ω −ωE(V )−1]

+2[1−V ∗(ω)](λ +δ )2
]})

−6
(
(λ +δ )W

′
(1)(1−ρ)

)
−3

(
(λ +δ )[1−V ∗(ω)]

ω

)
[
−2κ[1−R∗

1(λ )]+κ[1−R∗
1(λ )]E(S)(λ +δ )−2(1−κ)[1−R∗

2(δ )]+2E(S)(λ +δ )

+2(1−κ)[1−R∗
2(δ )]E(S)(λ +δ )− (λ +δ )2E(S)2

]

De
′′′
q (1) =−3

(
−2κ[1−R∗

1(λ )]+κ[1−R∗
1(λ )]E(S)(λ +δ )−2(1−κ)[1−R∗

2(δ )]

+2(λ +δ )E(S)+2(1−κ)[1−R∗
2(δ )](λ +δ )E(S)− (λ +δ )2E(S)2)

where

ρ = κ{1−R∗
1(λ )− (λ +δ )E(S)+1}− (1−κ){1−R∗

2(δ )− (λ +δ )E(S)+1}

W
′
(1) =

(λ +δ )[E(V )+ [1−V ∗(ω)]]

ω

(ii) With regard to φ , (31) and putting φ = 1 produces the expected no. of patients in the system (Ls)

Ls = K
′
s(1) = lim

φ→1

d
dφ

Ks(φ)

= R0

[
Ne

′′′
s (1)De

′′
q(1)−De

′′′
q (1)Ne

′′
q(1)

3(De′′
q(1))2

]
(34)

Ne
′′′
s (1) = Nr

′′′
q (1)+6(λ +δ )E(S)

(
(−E(S))

{(
1
ω

)
(λ +δ )2[E(V )+ [1−V ∗(ω)]

−E(S)[ω[1−R∗
1(λ )][−(λ +δ )2E(V )−λ ]−ω[1−R∗

2(δ )]δ
})

−6(1−ρ)

(
(λ +δ )[1−V ∗(ω)]

ω

)
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(iii) Little’s formula is utilized to predict the projected time the patient will spend in the system (Ws) and the queue
(Wq). Specifically,Ws =

Ls
λ andWq =

Lq
λ .

4.3 The busy cycle and the average busy period

R0 =
A(T0)

A(Ty)+A(T0)
; A(Ty) =

1
λ

(
1

R0
−1

)
;

A(Tφ) =
1

λR0
= A(T0)+A(Ty). (35)

where T0 indicates the amount of time the system spent empty. Because the time gap between the arrivals of two patients
is exponential. With λ as the parameter, we have A(T0) = (1/λ ). By placing it into (35) and applying the previously
discovered information, we may obtain (30).

A(Ty) =
1
λ
×
{

Ne(φ)
De(φ)

−1
}

(36)

Ne(φ) =
[

1−κ{1−R∗
1(λ )− (λ +δ )E(S)+1}− (1−κ){1−R∗

2(δ )− (λ +δ )E(S)+1}
]

[
1+

(
(λ +δ )[1−V ∗(ω)

ω

)]
+

(
1−R∗

1(λ )
λ

)[(
1
ω

)(
ωκ(λ +δ )[1−V ∗(ω)]−ωκ(λ +δ )2E(S)

[1−V ∗(ω)]+κ(λ +δ )2[E(V )+(1−V ∗(ω))]+ω(λ +δ )V ∗(ω)−ω(λ +δ )2E(V )−ωλ +ω

[1−R∗
2(δ )]

{
λ (1−κ)−λ (λ +δ )(1−κ)E(S)−κδ +κδ (λ +δ )E(S)− (1−κ)V ∗(ω)(λ +δ )

+(λ +δ )2E(S)V ∗(ω)(1−κ)+(1−κ)(λ +δ )2E(V )

})]
+

(
1−R∗

2(δ )
δ

)[(
1
ω

)(
ω
(

1−R∗
1(λ )

){
(λ +δ )

(1−κ)V ∗(ω)− (λ +δ )2(1−κ)E(S)V ∗(ω)− (λ +δ )2(1−κ)E(V )−λ (1−κ)+λ (λ +δ )(1−κ)

E(S)+κδ −κδ (λ +δ )E(S)
}
+ω(λ +δ )(1−κ)[1−V ∗(ω)]−ω(λ +δ )2(1−κ)E(S)[1−V ∗(ω)]

+(λ +δ )2(1−κ)[E(V )+ [1−V ∗(ω)]]−ωδ
)]

−E(S)
[(

1
ω

)(
(λ +δ )2[E(V )+ [1−V ∗(ω)]

−E(S)[ω[1−R∗
1(λ )][−(λ +δ )2E(V )−λ ]−ω[1−R∗

2(δ )]δ
)]
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De(φ) =
[

1−κ{1−R∗
1(λ )− (λ +δ )E(S)+1}− (1−κ){1−R∗

2(δ )− (λ +δ )E(S)+1}
]

A(Tφ) =
1
λ
×
{

Ne(φ)
De(φ)

}
(37)

5. Special cases
This section examines a few real-world uses for our approach that are consistent with recent studies.
Case (i): No ordinary orbit and No premium orbit.
Let R∗

1(λ ) = R∗
2(δ ) = 1 and our approach reduces to an M/G/1 RQ with WVs. Here are the results that coincide

with Gao et al. [28].

Ks(φ) = R0
Nes(φ)
Des(φ)

Nes(φ) = φ(1−φ)(φ −κφS∗(Cs(φ))−φ(1−κ)S∗(Cs(φ)))
(
(λ +δ )(1−V ∗(Av(φ)))

Av(φ)

)

+
φ(1−S∗(Cs(φ)))

Cs(φ)
{(λ +δ )V ∗(Av(φ))−λ}−δ +(λ +δ )

[
ω[1−V ∗(Av(φ))]

Av(φ)

]

Des(φ) = (1−φ)(φ −κφS∗(Cs(φ))−φ(1−κ)S∗(Cs(φ)))

where,

R0 =

[
Ne(R0)

De(R0)

]

Ne(R0) = (1−κ{−(λ +δ )E(S)+1}− (1−κ){−(λ +δ )E(S)+1})

De(R0) =

[
1−κ{−(λ +δ )E(S)+1}− (1−κ){−(λ +δ )E(S)+1}

][
1+

(
(λ +δ )[1−V ∗(ω)]

ω

)]

−E(S)
[
(λ +δ )2[E(V )+ [1−V ∗(ω)]]

]
Case (ii): No premium orbit and No working vacation.
Let R∗

2(δ ) = 1; and ω = 0. Our approach reduces to an M/G/1 RQ with general retrial times. Here are the results
that coincide with Gómez-Corral [29].
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Ks(φ) =
Nes(φ)
Des(φ)

Nes(φ) = (1−φ)
{(

1−R∗
1(λ )

λ

)
{λφ(1−κ)S∗(Cs(φ))−κφS∗(Cs(φ))(δ )−φ(1−κ)S∗Cs(φ)(λ +δ )

V ∗(λ +δ )(1−φ)}+φV ∗(λ +δ )2(1−φ)−λφ
}
+φ(1−φ)(φ −κφ [R∗

1(λ )

+φ(1−R∗
1(λ ))]S∗(Cs(φ))−φ(1−κ)S∗Cs(φ))

(
(λ +δ )(1−V ∗(λ +δ )(1−φ))

(λ +δ )(1−φ)

)

+
φ(1−S∗(Cs(φ)))

Cs(φ)
[R∗

1(λ )+φ(1−R∗
1(λ ))]{V ∗(λ +δ )2(1−φ)−λ}−δ

Des(φ) = (1−φ)(φ −κφ [R∗
1(λ )+φ(1−R∗

1(λ ))]S∗(Cs(φ)))−φ(1−κ)S∗(Cs(φ))

where,

R0 =

[
Ne(R0)

De(R0)

]

Ne(R0) = 1−κ{1−R∗
1(λ )−E(S)(λ +δ )+1}− (1−κ){1−E(S)(λ +δ )+1}

De(R0) = 1−κ{1−E(S)(λ +δ )}− (1−κ){1−E(S)(λ +δ )}−E(S)[(λ +δ )2E(V )]

6. Numerical results
Using MATLAB, this section illustrates the many parameters that may be applied to system behavior measurements.

The exponential distributions of service times, working vacation periods, premium retrial times, and ordinary retrial times
are analyzed. The numerical measurements that are required to satisfy the stability criteria are selected through the use of
a random selection process. The values that are computed in Tables 1, 2, and 3 are as follows: the server is currently idle
(R0), the average system size (Ls), the average queue size (Lq), the server is currently idle during ordinary and premium
retrial times (R1(1) and R2(1)), the mean waiting time in the queue (Wq), during working vacation time (ψω(1)), and
busy time (µ(1)) in the queueing model that we have computed.

Table 1 displays that ordinary retrial rate a1 hikes, R0, Lq, R1(1), ψω(1) andWq are diminishes.
Table 2 displays that premium retrial rate a2 hikes, R0, Lq, R1(1), ψω(1) andWq are diminishes.
Table 3 displays that working vacation rate ψω escalates, R0, Lq, Ls, ψω(1), µ(1) and Wq are diminishes and R2(1)

is escalates.
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Table 1. Lq and R0 for various Ordinary retrial rate (a1) for the principles of κ = 0.5, λ = 0.1, ω = 1.7, δ = 0.5, µ = 5, ψ = 6

Retrial rate a1 R0 R1(1) ψω (1) Lq Wq

1 1.2324 2.1191 0.0652 4.6159 46.1589

1.2 1.1996 2.0505 0.0635 4.4950 44.9504

1.4 1.1669 1.9809 0.0618 4.3742 43.7416

1.5 1.1505 1.9458 0.0609 4.3128 43.1283

1.9 1.0851 1.8032 0.0574 4.0683 40.6834

2 1.0687 1.7670 0.0566 4.0105 40.1047

2.3 1.0197 1.6573 0.0540 3.8299 38.2989

Table 2. Lq and R0 for various Premium retrial rate (a2) for the principles of κ = 0.5, λ = 2.1, ω = 1.7, δ = 5, µ = 0.5, ψ = 6

Retrial rate a2 R0 R2(1) ψω (1) Lq Wq

1 6.5594 12.7380 2.7360 96.5114 45.9578

1.2 6.3098 10.4066 2.6589 90.9567 43.3127

1.4 6.0601 8.2619 2.5818 90.2727 42.9870

1.5 5.8105 6.2934 2.5047 88.2150 42.0071

1.9 5.5609 4.4916 2.4276 83.7210 39.8712

2 5.3112 2.8475 2.3505 80.0156 38.1026

2.3 5.0616 1.3529 2.2734 77.9615 37.1245

Table 3. R0 and Lq for various Working vacation probabilities (ψω ) for the principles of κ = 0.7, λ = 0.4, ω = 1.1, δ = 0.2, µ = 3, ψ = 8

Working Vacation ψω R0 R2(1) µ(1) ψω (1) Lq Ls Wq

0.3 1.2586 0.0125 0.4625 0.4600 3.5261 4.1016 8.8153

0.4 1.2057 0.0565 0.3904 0.3683 3.3400 4.0083 8.3501

0.5 1.1527 0.0965 0.3230 0.2829 2.8326 3.3828 7.0815

0.6 1.0998 0.1327 0.2601 0.2040 2.3586 2.7987 5.8957

0.7 1.0468 0.1650 0.2019 0.1313 1.9171 2.2558 4.7928

0.8 0.9939 0.1933 0.1484 0.0651 1.5091 1.7542 3.7727

0.9 0.9409 0.2178 0.0994 0.0051 1.1342 1.2939 2.8355

Display the three-dimensional graph that illustrates the performance metrics for the system, taking into account the
influence of the parameters ω , δ , λ , µ , ψ , and κ . Figures (5), (6), and (7) are displayed. It is evident from the surface, as
depicted in Figure (5), that the escalation of the ordinary retrial rate (a1), (Lq), and (Wq) decreases. As shown in Figure
(6), we discovered that the values of (Lq) and (Wq) decrease when the premium retrial rate a2 is increased. As shown in
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Figure 7, we discovered that the values of (Lq) and (Wq) decrease when the working vacation rate (ψω) increases. Now
that we have obtained the influence of the parameters ω , δ , λ , µ , ψ , and κ , Figures (3), (4), and (5), we may proceed
to the next step. Provide a visual representation of the two-dimensional graph that illustrates the performance metrics for
the framework. The escalation of the ordinary retrial rate (a1), (Wq) is seen to decrease in Figure (3). As seen in Figure
(3), the values of (Wq) decrease as the premium retrial rate a2 increases. According to the findings shown in Figure (4),
we discovered that the values of (Lq) and (Wq) decrease when the working vacation rate ψω increases. It is possible to
correctly identify the influence of features concerning the system’s assessment standards using the presented numerical
results, which guarantees that these results are equivalent to situations that occur in the actual world.

Figure 3. Ordinary retrial rate a1 verses premium retrial rate a2

Figure 4. R0 verses working vacation rate ψω
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Figure 5. Wq, Lq verses ordinary retrial rate a1

Figure 6. Wq, Lq verses premium retrial rate a2

Figure 7. Wq, Lq verses working vacation rate ψω
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7. Conclusion
The article details a study focusing on a double-orbit retrial queuemodel that considers two types of patients within its

framework. This model extends the traditional retrial queue concept by incorporating the notion of double orbit, essential
for characterizing queue dynamics and reliability in scenarios involving an unreliable single server. The study employs a
non-Markovian approach to develop the mathematical model, which allows for analyzing both queue behavior and system
reliability. Key performance metrics, such as queue length and system characteristics, are derived using probability-
generating functions (PGF). These metrics are influenced by the number of patients in the system and those in the queue.
Numerical simulations are conducted to explore the different system characteristics that impact performance. Specifically,
the paper evaluates the potential application of the double-orbit retrial queuing model in hospital management systems.
Premium orbit patients wait in the queue for less time than ordinary patients. This decrease in waiting time is critical
since the shorter the waiting period, the lesser the risk to patients. This queueing paradigm is highly useful in a variety
of real-world applications, particularly in healthcare and pandemic scenarios. The analytical methods used are validated
through steady-state results. In conclusion, the paper presents a detailed investigation into the double-orbit retrial queue
model with working vacation, emphasizing its utility in understanding and optimizing queueing systems with unreliable
servers, particularly in healthcare environments.
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