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1. Introduction
We define A as the set of analytic functions in U= {z : |z|< 1}, which can be represented as a series of the form

f(z) = z+
∞

∑
n=2

anzn. (1)

We also introduce S , which represents all functions in A that are univalent in U. It is a well-established fact that
every function f belonging to S has an inverse function f−1 of the form

f−1(w) = w+
∞

∑
n=2

dnwn (2)
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such that

f−1 (f(z)) = z (z ∈ U)

and

f
(
f−1(w)

)
= w

(
w ∈ U, |w|< r0( f ); r0( f )≥ 1

4

)
.

Indeed, the inverse function f−1 can be expressed as

f−1(w) = w−a2w2 +(2a2 −a3)w3 − (5a3
2 −5a2a3 +a4)w4 + · · · . (3)

Lewin, in his work [1], introduced the concept of bi-univalent functions. These are analytic functions, denoted by
f, in the unit disc U, where both f and its inverse f−1 are univalent within U. We use BS to represent the class of these
bi-univalent functions.

Examples of functions that belong to the class BS include

f1(z) =
z

1− z
, f2(z) =− log(1− z) f3(z) =

1
2

log
(

1+ z
1− z

)
,

where log(·) is single-valued branch defined on U. If the domain is a unit disc, Figures 1 and 2 show the mapping of f1
and its inverse f−1

1 . However, the function
z

1− z2 is a member of the class S but does not belong to BS .
In recent times, numerous researchers have introduced and explored various sub-classes of bi-univalent functions.

For more details, refer to [2–7].

Figure 1. Representation of f1(z) =
z

1− z
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Figure 2. Representation of f−1
1 (w) =

w
1+w

P refers to functions with a positive real part that can be represented by a power series of the form.

p(z) = 1+
∞

∑
n=1

pnzn.

In their work, Ma and Minda [8] examined a function Ξ that belongs to P and satisfies the following conditions:
1. Ξ(0) = 1, Ξ′(0)> 0.
2. Ξ transforms the open unit disc U onto a starlike region with respect to 1 and symmetric with respect to the real

axis.
In addition, they made an assumption that Ξ(z) = 1+ L1z+ L2z2 + . . . , where L1 ̸= 0. Then they introduced the

following classes

S ∗(Ξ) : =
{
f ∈ A :

zf′(z)
f(z)

≺ Ξ(z)
}

and

C (Ξ) : =
{
f ∈ A : 1+

zf′′(z)
f′(z)

≺ Ξ(z)
}
.

The so-called Janowski starlike functions and Janowski convex functions (see [9]) are well-known special cases of
S ∗(Ξ) and C (Ξ) that have been deeply investigated by several researchers.

S ∗(ξ1, ξ2) : =
{
f ∈ A :

zf′(z)
f(z)

≺ 1+ξ1z
1+ξ2z

, −1 ≤ ξ2 < ξ1 ≤ 1
}
,
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and

C (ξ1, ξ2) : =
{
f ∈ A : 1+

zf′′(z)
f′(z)

≺ 1+ξ1z
1+ξ2z

, −1 ≤ ξ2 < ξ1 ≤ 1
}
.

The subordination of the analytic function is shown here by ≺; its definition and characteristics can be found in any
standard text. To represent ℵ(ξ1, ξ2) for arbitrary fixed numbers ξ1, ξ2, −1 < ξ1 ≤ 1, −1 ≤ ξ2 < ξ1, we use the family
of functions p(z) ∈ P that satisfy the given condition

ℓ(z)≺ (1+ξ1)p(z)+1−ξ1

(1+ξ2)p(z)+1−ξ2
.

This so-called Janowski class [9] was studied by several authors, see [10–12]. Extending the Janowski class of
functions [9], Aouf [10, Eq. 1.4] defined the class ℓ(z) ∈ P(ξ1, ξ2, p, α) if and only if

ℓ(z) =
p+[pξ2 +(ξ1 −ξ2)(p−α)]w(z)

[1+ξ2w(z)]
, (−1 ≤ ξ2 < ξ1 ≤ 1, 0 ≤ α < 1), (4)

where w(z) is the a Schwarz function and p ∈ N = {1, 2, . . .}. Recently, Breaz et al. [13, Eq. 4] used the following
expression to study a new class of multivalent function

ℵ(p; ξ1, ξ2; α; Ξ; z) =
[(1+ξ1)p+α(ξ2 −ξ1)]Ξ(z)+ [(1−ξ1)p−α(ξ2 −ξ1)]

[(ξ2 +1)Ξ(z)+(1−ξ2)]
. (5)

ℵ(p; ξ1, ξ2; α; Ξ; z) is an extension of the class P(ξ1, ξ2, p, α).
The conic domain’s extremal functions are represented by the function p̂k, φ(z), which is given by

p̂k, φ(z) =



1+(1−2φ)z
1− z

, if k = 0

1+
2(1−φ)

π2

(
log

1+
√

z
1−√

z

)2

, if k = 1

1+
2(1−φ)

1− k2 sinh2
[(

2
π

arccosk
)

arc tanh
√

z
]
, if 0 < k < 1

1+
2(1−φ)

1− k2 sin

(
π

2R(t)
∫ u(z)

t
0

1√
1− x2

√
1− (tx)2

dx

)
+

1
k2 −1

, if k > 1

(6)

where u(z) =
z−

√
t

1−
√

tz
, t ∈ (0, 1) and t is chosen such that k = cosh

(
πR′(t)
4R(t)

)
, with R(t) is Legendre’s complete elliptic

integral of the first kind and R′(t) is the complementary integral of R(t). Clearly, p̂k, φ(z) is in P with the expansion of
the form

p̂k, φ(z) = 1+ τ1z+ τ2z2 + · · · , (τ j = p j(k, φ), j = 1, 2, 3, . . .), (7)
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we get

τ1 =



8(1−φ)(arccosk)2

π2(1− k2)
, if 0 ≤ k < 1,

8(1−φ)
π2 , if k = 1

π2(1−φ)
4
√

t(k2 −1)R2(t)(1+ t)
, if k > 1.

(8)

Noor and Malik in [14] studied a class functions involving ℵ
(
1; ξ1, ξ2; 0; p̂k, φ ; z

)
. The impact of Janowski

functions on different subclasses was then investigated by a number of authors; see [13, 15–19].
Lemma 1 [8] If p(z) = 1+

∞
∑

k=1
pkzk ∈ P , then

|pk| ≤ 2, ∀k ≥ 1 and
∣∣∣∣p2 −

p2
1

2

∣∣∣∣≤ 2− |p2
1|

2
.

Lemma 2 [8] If p(z) = 1+
∞
∑

k=1
pkzk ∈ P , and v is complex number, then

∣∣p2 − vp2
1
∣∣≤ 2max{1, |2v−1|} ,

and the result is sharp for the functions

p1(z) =
1+ z
1− z

and p2(z) =
1+ z2

1− z2 .

Inspired by [20] (also see [21, 22]), we examine a novel class of functions in this work by omitting the further strict
condition that f−1 be one-one.

Definition 1 For 0 ≤ λ ≤ 1, the class RS ∗(λ , Ξ, ξ1, ξ2) consists of all analytic functions f ∈ A of the form (1)
satisfying

[
f′(z)

]λ [ zf′(z)
f(z)

]1−λ
≺ (ξ1 +1)Ξ(z)− (ξ1 −1)

(ξ2 +1)Ξ(z)− (ξ2 −1)
(9)

where Ξ(z) = 1+L1z+L2z2 + · · · ∈ P .
We will now present some of our class’s special cases.
Remark 1
1. Let λ = 0 in Definition 1., then the class RS ∗(λ , Ξ, ξ1, ξ2) reduces to class S ∗(Ξ, ξ1, ξ2)

zf′(z)
f(z)

≺ (ξ1 +1)Ξ(z)− (ξ1 −1)
(ξ2 +1)Ξ(z)− (ξ2 −1)

.

2. Let λ = 1 in Definition 1., then the class RS ∗(λ , Ξ, ξ1, ξ2) reduces to class R(Ξ, ξ1, ξ2)

Volume 5 Issue 4|2024| 6107 Contemporary Mathematics



f′(z)≺ (ξ1 +1)Ξ(z)− (ξ1 −1)
(ξ2 +1)Ξ(z)− (ξ2 −1)

. (10)

3. Let λ = 0 and Ξ(z) = pk, φ(z) in Definition 1., then the class RS ∗(λ , Ξ, ξ1, ξ2) reduces to classes k−S T [23].

2. Coefficient estimates of RS ∗(λ ,Ξ,ξ1,ξ2)

In the first theorem, we will find the coefficient bounds for the function class RS ∗(λ , Ξ, ξ1, ξ2).
Theorem 1 If the function f ∈ RS ∗(λ , Ξ, ξ1, ξ2) is given by (1), then

|a2| ≤
|L1|(ξ1 −ξ2)

2(1+λ )
(11)

and

|a3| ≤
(ξ1 −ξ2)|L1|

2(2+λ )
max{1, |2δ −1|}, (12)

where

δ =
L1(ξ2 +1)

4
+

(
1− L2

L1

)
2

− (ξ1 −ξ2)L1(2+λ )(1−λ )
8(1+λ )2 .

Proof. Since f(z) ∈ RS ∗(λ , Ξ, ξ1, ξ2), according to subordination relationship, there exists a Schwarz function
c(z) with c(0) = 0 and |c(z)|< 1, satisfying

[
f′(z)

]λ [ zf′(z)
f(z)

]1−λ
=

(ξ1 +1)Ξ(c(z))− (ξ1 −1)
(ξ2 +1)Ξ(c(z))− (ξ2 −1)

. (13)

The left side of (13) will take the following form:

[
f′(z)

]λ [ zf′(z)
f(z)

]1−λ
= 1+(1+λ )a2z+

z2

2
(2+λ )

[
2a3 − (1−λ )a2

2
]
+ · · · . (14)

Let ℓ(z) ∈ P be of the form

ℓ(z) = 1+
∞

∑
n=1

pn zn

and it is defined by
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ℓ(z) =
1+ c(z)
1− c(z)

, (z ∈ U) .

A simple computations gives

c(z) =
ℓ(z)−1
ℓ(z)+1

=
1
2
p1z+

1
2

(
p2 −

1
2
p2

1

)
z2 +

1
2

(
p3 −p1p2 +

1
4
p3

1

)
z3 + · · · .

and considering

(ξ1 +1)Ξ(c(z))− (ξ1 −1)
(ξ2 +1)Ξ(c(z))− (ξ2 −1)

=1+
L1p1(ξ1 −ξ2)z

4

+
(ξ1 −ξ2)L1

4

p2 −p2
1

 (ξ2 +1)L1 +2
(

1− L2

L1

)
4


z2 + · · · . (15)

Comparing the coefficients of z, z2 between the equations (14) and (15), we obtain

a2 =
L1p1(ξ1 −ξ2)

4(1+λ )
, (16)

a3 =
(ξ1 −ξ2)L1

4(2+λ )

p2 −p2
1

L1(ξ2 +1)
4

+

(
1− L2

L1

)
2

− (ξ1 −ξ2)L1(2+λ )(1−λ )
8(1+λ )2

 . (17)

Applying Lemma 1, we easily get

|a2| ≤
|L1|(ξ1 −ξ2)

2(1+λ )
, (18)

|a3|=
(ξ1 −ξ2)|L1|

4(2+λ )

∣∣∣∣∣∣p2 −

L1(ξ2 +1)
4

+

(
1− L2

L1

)
2

− (ξ1 −ξ2)L1(2+λ )(1−λ )
8(1+λ )2

p2
1

∣∣∣∣∣∣
=

(ξ1 −ξ2)|L1|
4(2+λ )

∣∣p2 −δp2
1
∣∣ (19)

where
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δ =
L1(ξ2 +1)

4
+

(
1− L2

L1

)
2

− (ξ1 −ξ2)L1(2+λ )(1−λ )
8(1+λ )2 .

Now by applying Lemma 2, we get

|a3| ≤
(ξ1 −ξ2)|L1|

2(2+λ )
max{1, |2δ −1|}. (20)

Corollary 1 If the function f ∈ S ∗(Ξ, ξ1, ξ2) is given by (1), then

|a2| ≤
|L1|(ξ1 −ξ2)

2
(21)

and

|a3| ≤
(ξ1 −ξ2)|L1|

4
max{1, |2δs −1|}, (22)

where

δs =
L1(ξ2 +1)

4
+

(
1− L2

L1

)
2

− (ξ1 −ξ2)L1

4
.

The result is sharp for the function

f̂1 (z) = ze
∫ z

0

(
(ξ1+1)Ξ(t)−ξ1+1
(ξ2+1)Ξ(t)−ξ2+1

−1
)

t−1dt
.

Figure 6 shows the image of U under f̂1(z) with suitable choice of parameters. In Figure 3, we choose ξ1 = 1, ξ2 =

−1, Ξ(z) = 1+ z. In Figure 4, we choose ξ1 = 1, ξ2 =−1, Ξ(z) = 1+
4
5

z+
1
5

z4. In Figure 5, we choose ξ1 = 1, ξ2 =−1,

Ξ(z) = 1+
5
6

z+
1
6

z5.
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Figure 3. zez

Figure 4. ze
4
5 z+ 1

20 z4

Figure 5. ze
5
6 z+ 1

30 z5
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The images of U under f̂1(z) with suitable choice of parameters.
Corollary 2 If the function f ∈ R(Ξ, ξ1, ξ2) is given by (1), then

|a2| ≤
|L1|(ξ1 −ξ2)

4
(23)

and

|a3| ≤
(ξ1 −ξ2)|L1|

6
max{1, |2δr −1|}, (24)

where

δr =
L1(ξ2 +1)

4
+

(
1− L2

L1

)
2

.

The result is sharp for the function

f̂2 (z) =
∫ z

0

(ξ1 +1)Ξ(t)−ξ1 +1
(ξ2 +1)Ξ(t)−ξ2 +1

dt.

Figure 10 shows the images ofU under f̂2(z)with suitable choice of parameters. In Figure 7, we choose ξ1 = 1, ξ2 =

−1, Ξ(z) = 1+ z. In Figure 8, we choose ξ1 = 1,ξ2 =−1, Ξ(z) = 1+
4
5

z+
1
5

z4. In Figure 9, we choose ξ1 = 1,ξ2 =−1,

Ξ(z) = 1+
5
6

z+
1
6

z5.

Figure 6. z+
1
2

z2
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Figure 7. z+
2
5

z2 +
1
25

z5

Figure 8. z+
5

12
z2 +

1
36

z6

The images of U under f̂2(z) with suitable choice of parameters.

3. Coefficient inequalities for the function f−1

Theorem 2 If the function f ∈ RS ∗(λ , Ξ, ξ1, ξ2) is given by (1), then for the coefficients of f−1(w) the following
estimates hold:

|d2| ≤
|L1|(ξ1 −ξ2)

2(1+λ )
(25)

and
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|d3| ≤
(ξ1 −ξ2)|L1|

2(2+λ )
max{1, |2δ1 −1|}, (26)

where

δ1 =
L1(ξ2 +1)

4
+

(
1− L2

L1

)
2

+
(ξ1 −ξ2)L1(2+λ )(3+λ )

8(1+λ )2 .

Proof. From equations (2) and (3), we get the following relations

d2 =−a2,

d3 = 2a2
2 −a3. (27)

From relations (16), (17), and (27), we have

d2 =−L1p1(ξ1 −ξ2)

4(1+λ )
, (28)

d3 =
L2

1 p2
1(ξ1 −ξ2)

2

8(1+λ )2 − (ξ1 −ξ2)L1

4(2+λ )

p2 − p2
1

L1(ξ2 +1)
4

+

(
1− L2

L1

)
2

− (ξ1 −ξ2)L1(2+λ )(1−λ )
8(1+λ )2

 . (29)

On simple computations,

d3 =− (ξ1 −ξ2)L1

4(2+λ )

p2 −p2
1

L1(ξ2 +1)
4

+

(
1− L2

L1

)
2

+
(ξ1 −ξ2)L1(2+λ )(3+λ )

8(1+λ )2

 . (30)

Taking modulus on both sides and applying Lemma 2 on the right hand side of (28) and (30), one can obtain the
result as in (25) and (26).

Corollary 3 If the function f ∈ S ∗(Ξ, ξ1, ξ2) and f−1 is given by (2), then

|d2| ≤
|L1|(ξ1 −ξ2)

2

and

|d3| ≤
(ξ1 −ξ2)|L1|

4
max{1, |2δ1s −1|},
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where

δ1s =
L1(ξ2 +1)

4
+

(
1− L2

L1

)
2

+
3(ξ1 −ξ2)L1

4
.

Corollary 4 If the function f ∈ R(Ξ, ξ1, ξ2) and f−1 is given by (2), then

|d2| ≤
|L1|(ξ1 −ξ2)

4

and

|d3| ≤
(ξ1 −ξ2)|L1|

6
max{1, |2δ1r −1|},

where

δ1r =
L1(ξ2 +1)

4
+

(
1− L2

L1

)
2

+
3L1(ξ1 −ξ2)

8
.

An intriguing generalization of a class of starlike functions is the so-called class of starlike functions associated with
the vertical domain, described as follows.

Definition 2 [24] f ∈ A is said to be in S (η1, η2) if it satisfies

η1 < Re
(

zf′(z)
f(z)

)
< η2, z ∈ U. (31)

where 0 ≤ η1 < 1 < η2.
Let λ = 0, ξ1 = 1, ξ2 =−1 and

Ξ(z) = 1+
η2 −η1

π
i log

(
1− e2πi((1−η1)/(η2−η1)) z

1− z

)
(32)

in Theorem 3..
Corollary 5 [25] Let f ∈ S ∗(η1,η2), then the coefficient estimates of the inverse function are

|d2| ≤
2(η2 −η1)

π
sin
(

π(1−η1)

η2 −η1

)

and

Volume 5 Issue 4|2024| 6115 Contemporary Mathematics



|d3| ≤
2(η2 −η1)

π
sin
(

π(1−η1)

η2 −η1

)
max

{
1,
∣∣∣∣12 −3

η2 −η1

π
i+
(

1
2
+3

η2 −η1

π
i
)

e2πi 1−η1
η2−η1

∣∣∣∣} .

4. Fekete-Szegö inequality for the function of RS ∗(λ ,Ξ,ξ1,ξ2)

The Fekete-Szegö problem solution will be provided for the functions that belong to the classes defined in the first
section.

Theorem 3 Let f ∈ RS ∗(λ , Ξ, ξ1, ξ2) given by (1). Then for all µ ∈ C we have

| a3 −µa2
2 |≤

(ξ1 −ξ2) |L1|
2(2+λ )

max{1, |2τ −1|} (33)

with

τ =
1
4

(
L1(ξ2 +1)+2

(
1− L2

L1

)
−ρ1 −µρ2

)
(34)

where

ρ1 =
(ξ1 −ξ2)L1(2+λ )(1−λ )

2(1+λ )2

and

ρ2 =
(2+λ )L1(ξ1 −ξ2)

2(1+λ )2 .

Proof. If f ∈ RS ∗(λ , Ξ, ξ1, ξ2), in the view of relation (16) and (17), for µ ∈ C we have

a3 −µa2
2 =

(ξ1 −ξ2)L1

4(2+λ )

p2 −p2
1

L1(ξ2 +1)
4

+

(
1− L2

L1

)
2

− (ξ1 −ξ2)L1(2+λ )(1−λ )
8(1+λ )2

−µ
L2

1p
2
1(ξ1 −ξ2)

2

16(1+λ )2 (35)

=
(ξ1 −ξ2)L1

4(2+λ )

[
p2 −

1
4
p2

1

(
L1(ξ2 +1)+2

(
1− L2

L1

)
−ρ1 −µρ2

)]
. (36)

Taking absolute value on both sides, we get

| a3 −µa2
2 |=

(ξ1 −ξ2) |L1|
4(2+λ )

∣∣p2 − τp2
1
∣∣ . (37)
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Using Lemma 2, we get

| a3 −µa2
2 |≤

(ξ1 −ξ2) |L1|
2(2+λ )

max{1, |2τ −1|}.

Corollary 6 Let f ∈ S ∗(Ξ, ξ1, ξ2) be given by (1). Then for all µ ∈ C we have

| a3 −µa2
2 |≤

(ξ1 −ξ2) |L1|
4

max{1, |2τs −1|}

with

τs =
1
4

(
L1(ξ2 +1)+2

(
1− L2

L1

)
− (ξ1 −ξ2)L1(1+µ)

)
.

Corollary 7 Let f ∈ R(Ξ, ξ1, ξ2) be given by (1). Then for all µ ∈ C we have

| a3 −µa2
2 |≤

(ξ1 −ξ2) |L1|
6

max{1, |2τr −1|}

with

τr =
1
4

(
L1(ξ2 +1)+2

(
1− L2

L1

)
− 3

8
µL1 (ξ1 −ξ2)

)
.

Letting λ = 0, ξ1 = 1, ξ2 =−1 and Ξ(z) be of the form (32) in Theorem 3, then we have the following result obtained
by Sim and Kwon [25].

Corollary 8 [25] Let f ∈ S ∗(η1, η2). Then, for any µ ,

∣∣a3 −µa2
2
∣∣≤ η2 −η1

π
sin
(

π(1−η1)

η2 −η1

)

max
{

1;
∣∣∣∣12 +(1−2µ)

η2 −η1

π
i+
(

1
2
− (1−2µ)

η2 −η1

π
i
)

e2πi 1−η1
η2−η1

∣∣∣∣} .

Letting λ = 0, ξ1 = 1, and ξ2 =−1 in Theorem 3, then we have the following result obtained by Tu and Xiong [26].
Corollary 9 [26] Suppose f(z) ∈ S ∗(Ξ) (z ∈ U). Then

∣∣a3 −µa2
2
∣∣≤ L1

2
max

{
1;
∣∣∣∣L1 +

L2

L1
−2µL1

∣∣∣∣} (µ ∈ C).

The inequality is sharp for the function given by
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f(z) =

zexp
∫ z

0 [Ξ(t)−1] 1
t dt, if

∣∣∣L1 +
L2
L1

−2µL1

∣∣∣≥ 1

zexp
∫ z

0
[
Ξ(t2)−1

] 1
t dt, if

∣∣∣L1 +
L2
L1

−2µL1

∣∣∣≤ 1.

5. Conclusion
In this paper, we have introduced a new subclass of starlike functions, denoted by RS ∗(λ , Ξ, ξ1, ξ2), that are

influenced by the Janowski functions. We have obtained the coefficient estimates of the inverse function and the Fekete-
Szegö result for this subclass. We have also presented some special cases of our results that generalize some existing
results in the literature. Some possible directions for future work are

To investigate other properties of the class RS ∗(λ , Ξ, ξ1, ξ2), such as growth, distortion, rotation, and radius
problems.

To consider other subclasses of starlike functions that are defined by using different superordinate functions or
different differential operators.

To study the applications of the class RS ∗(λ , Ξ, ξ1, ξ2) to other branches of mathematics, such as differential
equations, harmonic analysis, and complex dynamics.
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