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Abstract: This study examines the generalized Schrödinger equation governing chiral solitons. We assess its integrability
using the Painlevé test for nonlinear partial differential equations. Our analysis shows that the equation fails the Painlevé
test, suggesting the Cauchy problem cannot be solved using the inverse scattering transform. However, through a traveling
wave reduction, we find that the resulting nonlinear ordinary differential equation does satisfy the Painlevé test. Therefore,
we establish a general solution for this reduced equation, which we outline accordingly.
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1. Introduction
The exploration of chiral solitons arising from quantum Hall effects has been ongoing for several decades. One

significant class of gauge theoretical models, initially investigated by Jackiw and Pi [1–4], describes non-relativistic
matter coupled to a Chern-Simons gauge field. This framework provides a straightforward approach to understanding
non-relativistic interacting anyons and supports the existence of unidirectional chiral solitons [5–8]. These solitons play
a crucial role in the quantum Hall effect, where chiral excitations are observed to manifest prominently.

We delve into the chiral nonlinear Schrödinger equation, exploring its integrability through a comprehensive
Painlevé analysis. Subsequently, we unveil soliton solutions derived from this model, detailing both the Painlevé test
methodology and the extraction process of soliton solutions using the traveling wave hypothesis. The analytical intricacies
are thoroughly elucidated throughout the ensuing sections of this paper.
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1.1 Governing model

The equation representing chiral solitons is formulated as

iqt +
1
2

qxx + iλ (qq∗x −q∗qx) q = 0. (1)

Eq. (1) was first identified in paper [3] as describing anyons and chiral solitons on a line. Numerous investigations of
this equation have been conducted in the literature (see, for instance [9–34]). An intriguing characteristic of this equation
is its possession of four conservation laws [9]. The modified Euler equations were rediscovered in the semiclassical limit
of the one-dimensional Schrödinger equation in a study documented in paper [35]. Soliton solutions of Eq. (1) have been
extensively examined in papers [36, 37], employing specialized techniques for constructing exact solutions.

In this paper, we utilize the Painlevé test to assess the integrability of Eq. (1). Indeed, we can assert with near absolute
certainty that Eq. (1) does not fall into the category of integrable partial differential equations. This conclusion is supported
by our knowledge of a limited number of second-order nonlinear partial differential equations, similar to Eq. (1), that are
integrable via the inverse scattering transform. One notable example is the Kaup-Newell equation, which is expressed as
follows:

iqt = qxx + i (2bqq∗x +bq∗qx) q = 0. (2)

Another integrable equation derived via the inverse scattering transform is presented in the paper [38], taking the
form

iq = qxx + i (aqq∗x +bq∗qx) q+
1
4

b(2b−a)q3 q∗2 = 0. (3)

Taking into account Eqs. (2) and (3), it is expected that Eq. (1) does not pass the Painlevé test, thereby rendering the
Cauchy problem associated with Eq. (1) unsolvable using the inverse scattering transform. However, in this paper, we
examine the Painlevé property of Eq. (1) and demonstrate that it does not satisfy the necessary condition for integrability
among nonlinear partial differential equations (NLPDEs). Furthermore, by applying the Painlevé test for nonlinear partial
differential equations, we derive conditions under which a reduction of the partial differential equation can allow it to
pass the Painlevé test as a nonlinear ordinary differential equation (NLODE). Subsequently, we demonstrate that such
reductions of Eq. (1) to NLODEs do indeed pass the Painlevé test.

Using the traveling wave reduction of Eq. (1), we derive a corresponding nonlinear ordinary differential equation
(NLODE) and present its general solution.

The organization of this paper is as follows. Section 2 applies the Painlevé test to the NLPDE (1), showing it does
not allow for a solution through the inverse scattering transform in the general case. Sections 3 and 4 detail the Painlevé
test applied to the corresponding NLODE derived from Eq. (1). Section 5 covers the general solution derived from the
traveling wave reduction of Eq. (1).

2. Painlevé test to Eq. (1)
The Painlevé property is a critical criterion for determining integrability in equations. To explore whether Eq. (1)

meets this criterion, we address the Painlevé test via the Kruskal variable, following themethodology detailed in references
[38–40]. Initially, we seek a solution to Eq. (1) in this format:
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q(x, t) = u(x, t)ei v(x, t), (4)

where v(x, t) and u(x, t) denote newly introduced functions. By substituting (4) into Eq. (1), we derive the imaginary
and real components of Eq. (1) as shown

ut +ux vx +
1
2

uvxx = 0, (5)

and

1
2

uxx −uvt −
1
2

uv2
x +2λ u3 vx = 0. (6)

To conduct the Painlevé test on the system of equations (5) and (6), we proceed with three sequential steps [41–44].
Initially, we substitute the expressions

u(x, t) = a0(t)F(x, t)p, v(x, t) = b0(t)F(x, t)r, (7)

where a0(t), b0(t), and F(x, t) represent newly defined functions, and p and r denote powers, we substitute them into the
equations derived from the leading terms of the system (5) and (6), which are formulated as

ut +ux vx +
1
2

uvxx = 0, (8)

1
2

uxx +2λ u3 vx = 0. (9)

Consequently, through these substitutions, we obtain the powers p = −1 and = 1, along with functions B0(t) and
a0(t), expressed as follows:

a0(t)(1, 2) =± 1√
−2λ ψt

, b0(t) = ψt . (10)

Our objective is to determine the Fuchs indices, which can take on any form as representations specific to the local
solutions U(x, t) and V (x, t). To accomplish this, we incorporate the following expressions

u(x, t) =± 1√
−2λ ψt F(x, t)

+a j F(x, t) j−1, (11)

v(x, t) = ψt F(x, t)+b j F(x, t) j+1, (12)
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into the system of equations (8) and (9). The Fuchs indices are found from the algebraic equation

det(A) = 0, A=

a11 a12

a21 a22

 , (13)

where the matrix elements a11 and a21 are coefficients at a j of Eqs. (8), (9) and the matrix elements a12 and a22 are
coefficients at b j of of Eqs. (8), (9). These coefficients can be written as follows

a11 = 0, a12 =

√
2F j−2( j2 − j−2)

4
√
−λ ψt

,

a21 =
F j−3 ( j2 −3 j−4)

2
, a22 =

√
2F j−3 ( j+1)

2ψt
√
−λ ψt

.

(14)

By computing detA, we derive the algebraic equation used to determine the Fuchs indices in this manner:

Q( j) = ( j+1)2 ( j−2)( j−4). (15)

Upon solving Eq. (15), the resulting Fuchs indices are as follows:

j1, 2 =−1, j3 = 2, j4 = 4. (16)

In the third step, we need to verify the arbitrary constants present in the expansions of the solutions for the system
of equations (24) and (25). To achieve this goal, we substitute the expansions

u(x, t) =
4

∑
j=0

a j(t)F(x, t) j−1, v(x, t) =
4

∑
j=0

b j(t)F(x, t) j+1, (17)

into equations (24) and (25) to determine the arbitrary functions. Following the approach by Kruskal M, we hypothesize
that the expression for F(x, t) is as follows:

F(x, t) = x−ψ(t), (18)

where ψ(t) represents an arbitrary function.
By inserting (17) into Eqs. (24) and (25), and setting the coefficients of F(x, t) to zero at various powers, we derive:
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b1 =
ψtt

2ψt
, a1 =−

√
2ψtt

6ψ2
t
√
−λ ψt

,

b2 =
1
6

ψ3
t +

√
2a2(t)ψt

√
−λ ψt +

2
9

ψ2
tt

ψ3
t
.

(19)

However, to select an arbitrary function, instead of equality to zero, we get the expression

K2[ψ] =

√
2(ψt ψttt −3ψ2

tt)

6ψ3
t
√
−λ ψt

. (20)

This indicates that Eq. (1) does not satisfy the Painlevé test for NLPDEs, and the Cauchy problem associated with
this equation cannot be solved by the inverse scattering transform. Nonetheless, it is evident that there exists solutions for
ψ(t) of equation:

ψt ψttt −3ψ2
tt = 0. (21)

These solutions of Eq. (21) enable the application of reductions to Eq. (1), potentially revealing its Painlevé property.
These specific scenarios will be further examined in the following sections.

One of the solutions to Eq. (21) is as follows:

ψ(t) = M1 +
√

M1 +M2 (t −M3), (22)

where M1, M2, and M3 are arbitrary constants. Another solution is ψ(t) =C0 t, which enables us to seek traveling wave
solutions of Eq. (1).

3. Painlevé test for the NLODE associated with Eq. (1)
The utilization of the Painlevé test in NLODEs is now widely recognized. Initially, we derive the NLODE from Eq.

(1) via the traveling wave reduction method [45–52]. We seek solutions in the following form:

q(x, t) = y(z)eiϕ(z), z = x−C0 t, (23)

Here, C0 represents a wave velocity, while ϕ(z) and y(z) denote new functions.
Substituting (23) into Equation (1), we obtain:

1
2

ϕzz y+ϕz yz −C0 yz = 0, (24)

and
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1
2

yzz −ϕ 2
z y−2λ ϕz y2 +C0 ϕz y = 0. (25)

Eqs. (24) and (25) can be written taking a new variable φ(z) = ϕz as the following

1
2

φz y+φ yz −C0 yz = 0, (26)

and

1
2

yzz −φ2 y−2λ φ y2 +C0 φ y = 0. (27)

System of equations (26) and (27) is also studied using the three steps by the algorithm of the Painlevé test. Taking
into account that the Eqs. (26) and (27) are autonomous we can use in the first step the formulas

y = a0 zp, φ = b0 zr, (28)

In this context, p and r denote the orders of poles for solutions y(z) and φ(z). By substituting (28) into the equations,
we derive the equation with the leading terms, which are presented as:

1
2

φz y+φ yz −C0 yz = 0, (29)

and

1
2

yzz −2λ φ y2 = 0. (30)

The branches of solutions are derived from the system of equations (29) and (30) as follows

(
a(1, 2)

0 , −1
)
=
(
± (2λ C0)

− 1
2 , −1

)
, (b0, r) = (C0, 0) . (31)

We utilize the following formulas in the second step to compute the Fuchs indices

y =±
a(1, 2)

0
z

+a j z j−1, φ = b0 +b j z j. (32)

Substituting (32) into equations involving the leading elements (29) and (30), we derive the equation that characterizes
the Fuchs indices as follows:
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Q( j) = ( j2 −3 j−4)( j−2) = 0. (33)

From solving Eq. (33), we derive the Fuchs indices:

j1 =−1, j2 = 2, j3 = 4. (34)

Next, we examine the arbitrary coefficients in the local solutions y(z) and u(z). This is achieved by substituting the
following expansions into Eqs. (26) and (27).

y =± 1√
2λ C0 z

+a1 +a2 z+a3 z2 +a4 z3 + . . . , (35)

φ =C0 +b1 z+b2 z2 +b3 z3 +b4 z4 + . . . . (36)

The coefficients b2 and a4, determined by setting expressions at different powers of z to zero, are found to be arbitrary
functions of t, while the remaining coefficients in the expansions are structured accordingly.

b1 = 0, b3 = 0, b4 =−
b2(C3

0 −2b2)

3C0
, (37)

a1 = 0, a2 =−
√

2λ (C3
0 −2b2)

12(C0 λ )3 , a3 = 0. (38)

Finally expansions (35) and (36) can be written as follows

y =± 1√
2λC0 (z− z0)

−
√

2λ (C3
0 −2b2)

12(C0λ )3 (z− z0)+a4(z− z0)
3 + . . . , (39)

ϕz =C0 +b2 (z− z0)
2 −

b2(C3
0 −2b2)

3C0
(z− z0)

4 + . . . . (40)

The expansions (39) and (40) clearly indicate the presence of three arbitrary constants: z0, b2, and a4. Thus, Eq. (1)
satisfies the Painlevé test and the necessary conditions for solving the Cauchy problem associated with NLODEs (24) and
(25). The next section will explore the general solution of these equations.

4. Painlevé test for the self-similar solutions associated with Eq. (1)
Solution (22) indicates that the system of equations (5) and (6) possesses self-similar solutions in the form
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u(x, t) = t−
1
4 f (z), v(x, t) = g(z), z =

x√
t
. (41)

These variables allow us to obtain a non-autonomous second-order ordinary differential equation for f (z) in the form

fzz +2λ z f 3 +

(
4λ µ +

z2

4

)
f − µ2

f 3 = 0, (42)

where µ is an arbitrary constant.
Applying the Painlevé test to Eq. (42), we find that there are integer Fuchs indices given by:

j1 =−1, j2 = 4. (43)

However, by substituting

f (z) =
4

∑
j=0

a j (z− z0)
j−1 (44)

in the third step of the Painlevé test for Eq. (42), we obtain

a(1, 2)
0 =± 1√

λ z0
, a1 =− (λ z0)

5/2

3λ 3 z4
0
, a2 =−

(λ z0)
5/2 (48λ µ z2

0 −3z4
0 −16)

72λ 3 z5
0

,

a3 =−
(λ z0)

5/2 (728λ µ z2
0 +9z4

0 −28)
108λ 3 z6

0
.

(45)

However, we cannot consider a4 as an arbitrary coefficient in the Laurent series expansion. Consequently, the
necessary condition for the existence of the general solution of Eq. (42) is not fulfilled.

5. Traveling wave solutions of Eq. (1)
We explore the general solution to the NLODE derived from Eq. (1). The system described by equations (24) and

(25) is structured as:

1
2

ϕzz y+ϕz yz −C0 yz = 0, (46)

and
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1
2

yzz −ϕ 2
z y−2λ ϕz y2 +C0 ϕz y = 0. (47)

Written in terms of its first integral, Eq. (46) appears as:

y2 ϕz −C0 y2 =C1, (48)

Here,C1 represents an integration constant. One can note that the constant of integration corresponds to the arbitrary
constant b2.

Substituting ϕz from (48) into Eq. (47), we obtain the following equation after integration

y2
z −2λ C0 y4 +(C2

0 −4λ C1)y2 +
C2

1
y2 +C2 = 0, (49)

Here, C2 represents an integration constant associated with the Fuchs index j3 = 4.
Consider a new variable

y(z) =
√

V (z). (50)

Written in the form of Eq. (49), it appears as:

V 2
z −8λ C0 V 3 +(4C2

0 −16λ C1)V 2 +4C2 V +4C2
1 = 0. (51)

Eq. (51) can be solved by employing elliptic functions, which were originally formulated byWeierstrass K and Jacobi
G.

With V1, V2, and V3 assumed as real roots of the polynomial equation represented by

V 3 −
(C2

0 −4λ C1)

2λ C0
V 2 − C2

2λ C0
V − C2

1
2λ C0

= 0. (52)

We believe that (V1 ≥V2 ≥V3) and we have the following conditions

V1 V2 V3 =
C2

1
2λ C0

,

V1 V2 +V1 V3 +V2 V3 =− C2

2λ C0
,

V1 +V2 +V3 =
(C2

0 −4λ C1)

2λ C0
.

(53)
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The solution V (z) corresponding to Eq. (51) is given by the following expression

V (z) =V1 − (V1 −V2)sn2
{√

V1 −V3

8λ C0
(z− z0); S

}
, (54)

where z0 is a arbitrary constant and S2 is expressed by formula

S2 =
V1 −V2

V1 −V3
. (55)

Using the identity

sn2(z)+ cn2(z) = 1, (56)

the solution to Equation (49) is expressed in this form

y(z) =
[
V2 +(V1 −V2)cn2

{√
V1 −V3

8λ C0
(z− z0); S

}] 1
2

. (57)

The solution to Equation (1) can be determined by applying this formula

q(x, t) =
[
V2 +(V1 −V2)cn2

{√
V1 −V3

8λ C0
(x−C0 t − z0); S

}] 1
2

eiϕ(z), (58)

where ϕ(z) is determined by integral

ϕ(z) =C3 +C0 z+C1

∫ [
V2 − (V1 −V2)cn2

{√
V1 −V3

8λ C0
(z− z0); S

}]−1

dz, (59)

where C3 is a arbitrary constant. Solution (57) is a periodic wave.
In the case of V1 ≥V2 =V3 we obtain S = 1 and the solitary wave solution is expressed by formula

q(x, t) =
[
V2 +(V1 −V2)cosh−2

{√
V1 −V2

8λ C0
(x−C0 t − z0)

}] 1
2

eiϕ(z). (60)

Some special solutions can be found from Eqs. (58) and (60).
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Figure 1. Investigating the distinct properties demonstrated by a bright soliton, alongside the dynamics of its magnitude
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Figure 1 presents the characteristics and evolution of the bright soliton solution q(x, t) as described by the complex-
valued solution (52). The analysis spans different time instances t = 0, 2.1, 2.3, 2.5, 2.7, 4.1, 4.3, 4.5, and 4.7, showcasing
the dynamical behavior of the soliton. The specific parameters used for these visualizations includeC0 = 1,C1 =−1, λ =

1/4 and z0 = 1. Figure 1(a) showcases a surface plot of the modulus of the bright soliton solution (52). This plot provides a
three-dimensional perspective of the soliton’s amplitude over the specified time instances and spatial domain. The surface
plot reveals the soliton’s profile, highlighting its peak intensity and how it evolves over time. As time progresses, the bright
soliton maintains its shape, demonstrating the stability characteristic typical of soliton solutions, despite the changes in the
surrounding parameters. Figure 1(b) provides a contour plot of the modulus of the bright soliton solution (52). The contour
plot offers a top-down view, emphasizing the soliton’s intensity distribution across the spatial and temporal domains. This
representation allows for a clearer understanding of the soliton’s position and intensity variations at different time instances.
The contour lines denote regions of equal intensity, and their spacing and shape indicate the soliton’s propagation and
interactionwith themedium. The contour plot further corroborates the stability and localized nature of the bright soliton, as
the contours remain well-defined and concentrated around the soliton peak. Figure 1(c) illustrates a 2D plot of the modulus
of the bright soliton solution (52) over time. This plot captures the soliton’s amplitude along a specific spatial slice,
providing a detailed view of its evolution at discrete time points. The 2D plot reveals how the peak amplitude of the soliton
evolves, showing slight modulations due to the parameter settings but overall retaining the soliton’s coherent structure.
The temporal snapshots indicate the soliton’s robustness against dispersive effects and parameter-induced perturbations.
Collectively, these subfigures in Figure 1 provide a comprehensive depiction of the bright soliton solution’s behavior. The
surface plot (Figure 1(a)) illustrates the soliton in a three-dimensional context, emphasizing its spatial-temporal stability.
The contour plot (Figure 1(b)) offers a different perspective, focusing on intensity distributions, and the 2D plot (Figure
1(c)) highlights the soliton’s temporal evolution. The consistency across these visualizations underscores the inherent
stability and robustness of the bright soliton solution under the given parameter regime. This detailed analysis enhances
our understanding of the soliton’s dynamics and confirms the theoretical predictions of soliton behavior in nonlinear
media.

6. Conclusions
This paper investigates the generalized Schrödinger equation for chiral solitons, with a primary focus on determining

the integrability of the NLPDE. Two different approaches of the Painlevé test are utilized: one for NLPDEs and another
for NLODEs. The findings indicate that the NLPDE does not satisfy the Painlevé test under general conditions. However,
by applying a traveling wave reduction, it is shown that the resulting NLODE meets the Painlevé test criteria. As a result,
the general solution of the original equation, containing four arbitrary constants, is obtained. Lastly, the results in this
article will be expanded, taking into account the previously reported outcomes [53–58].
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