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Abstract: Mandelbrot initiated the term “Fractal” in 1975, and it has since gained popularity among mathematicians
and physicists alike. The mathematical properties of fractals are available and applied in the chaotic structures of various
systems, which are generally experienced in science and technology. The iterated function system (IFS) evolved as a
practical application of the theory of discrete dynamical systems and is a valuable tool to generate fractal attractors. In
this context, the Hutchinson-Barnsley (HB) theory is generalized to construct fractal sets using an IFS of contractions on
a controlled metric space (CMS). The HB theorem of IFS is proved in a Hausdorff controlled metric space (HCMS), and
it is also guaranteed that the HB operator has merely a single fixed point in a Hausdorff controlled metric space, known
as a controlled fractal. This study also links the extended rectangular b-metric space (ERbMS) and the controlled metric
space to create a new metric space, the controlled extended rectangular 5-metric space (CERbMS), by incorporating the
control factor as a function in the rectangular inequality. In addition, the fixed point theorem is also proved with specific
conditions for contractions in the proposed metric space CERbMS and illustrated with an example. Finally, the structure
of IFS is defined in CERbMS to construct the HB theory for generating the controlled extended rectangular b-fractals.
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1. Introduction

The fixed point theory is essential in dynamical systems because it allows us to design multiple chaotic attractors with
contraction mappings. One of the most well-known applications of fixed point theory is to find an approximate solution
for different physical systems represented by a suitable differential equation. Banach [1] developed the well-structured
principle known as the Banach contraction principle to create a distinct point in space that is also unique.

Caccioppoli demonstrated the generalization and extensions of Banach’s fixed point theorem in the whole metric
space. The generalization and extension of Banach’s theorem are based on altering the structure and conditions of the
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mapping under examination. New metrics have a variety of forms, including partial metric, quasi metric, b-metric,
rectangular metric, rectangular b-metric, controlled metric, fuzzy metric, intuitionistic fuzzy metric, probabilistic metric,
and their extensions in various spaces.

Benoit Mandelbrot coined the term Fractal in 1975, derived from the Latin fractus, which means shattered or
fractured, to describe objects too irregular to fit onto a classical geometric platform [2]. Generally, a fractal object is
a less predictable set than the sets considered in standard Euclidean geometry. Hutchinson and Barnsley [3—5] introduced
the concept of IFS in 1981 by defining a fractal set as a non-empty compact invariant subset of a complete metric space
generated by Banach contractions and its fixed point theorem [6, 7]. In many extended spaces, including generalized
metric spaces, multivalued metric spaces, partial metric spaces, quasi metric spaces, b-metric spaces, rectangular metric
spaces, fuzzy metric spaces, intuitionistic fuzzy spaces, probabilistic spaces, topological spaces, and others, there are
numerous generalizations to create a new type of fractal sets as an attractor through HB theory by utilizing the various
contraction and the corresponding fixed point theorems [8-20]. Building distinct classes of Fractal Interpolation Functions
(FIF) in the general form of metric spaces has been made possible according to the theory of IFS for these generalized
spaces. Numerous research problems on dynamical systems, Brownian motion, image compression, and other subjects
extensively use Fractal Sets and Curves derived from IFS and FIF [21-26].

Bourbaki introduced the idea of b-metric space (bMS), and its partial forms were developed as a powerful
generalization for metric space [27, 28]. It extended the metric space by multiplying the triangle equality by a positive
constant. By generalizing the constant by a function that depends on the parameters of the triangle inequality’s left side,
recent researchers successively created and developed an extended b-metric space. The researchers determined the various
forms of extensions for bMS by altering the positive constant using a two-variable function in the triangle inequality’s
right-hand side [29, 30]. Afterward, in 2017 Kamran et al. presented the extended b-metric and also gave the notable
fixed point outcomes over the extended space [31].

Branciari introduced a new metric space called the rectangular metric space by increasing the terms in the triangle
inequality of the general metric space in 2000 [32]. The standard form of rectangular metric space, known as rectangular
b-metric space, was introduced by George et al. in 2015 [33]. Rectangular b-metric space (RbMS) is one of the most
intriguing metric spaces in the category of generalized metric spaces since it possesses the generic form of distance
measure in various contexts. The extended rectangular b-metric space (ERbMS) was popularized successively in the line,
and interesting results were obtained [34]. The CMS, a new extension of the bMS, is implemented using a two-variable
control function in the b-triangle inequality. The majority of researchers developed the general spaces with significant
fixed point theorems, and a lot of substantial applications of those fixed point theorems have been established [35—44].

The preceding sequence of extensions leads us to construct a new type of metric space and demonstrate the essential
fixed point theorems in the context of the ERbMS, in which we serve as the control factor. We also define IFS and talk
about how HB theory can be used to develop this novel kind of fractal in the suggested generalized space; these ideas are
then visually demonstrated by means of certain instances [45—47]. The above flow of extensions prompts us to study the
Banach contraction maps in CMS and CERbMS to construct IFS, explain HB theory, and create a new class of fractal sets
in the suggested CMS and CERbMS.

The Hutchinson-Barnsley (HB) theory is generalized in this paper to construct fractal sets using an IFS of contractions
in controlled metric spaces. The HB theorem of IFS is proved in a Hausdorff controlled metric space, and it is also assured
that the HB operator has only one fixed point in a Hausdorff controlled metric space. Also, the iterated function system
(IFS) is defined in controlled extended rectangular b-metric space to construct the Hutchinson-Barnsley (HB) Theory for
generating the controlled extended rectangular b-fractals.

Our work is divided into six parts, the first of which is the Introduction. Section 2 provides some essential definitions
and results for bMSs, rectangular metric spaces, controlled metric spaces, and their expansions. In Section 3, we discuss
the fractals for single and multivalued contractions. Section 4 discusses an interesting fixed point theorem on a generalized
metric space and the concept of CERbMS and its Hausdorff version. In Section 5, we define the IFS alongside a graphical
illustration and deduce the HB theorem to produce the novel fractal, namely the controlled extended rectangular b-fractal
in the proposed space. The last thoughts are discussed briefly in Section 6.
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2. Preliminaries

In this section, we define some key terms and discuss some preliminary contents required for this research work.

Definition 1 (b-Metric Space [27]) Given a set A # 0. The mapping k: A X A — [0, o) is known as b-metric on A,
if Jaconstant B > 1 such that for all ¢, ¢, u € A, the following conditions are satisfied,

(a). x(¢p,v)=0iff ¢ = v,

(b). x(9,v) =x(¢, v),

(0). x(¢, v) < Blr(¢, u)+x(u, v)].

Then (A, x) is known as b-metric space.

Definition 2 (Extended b-Metric Space [31]) Take A # @ and the mapping fB: A x A — [1, o). Then a mapping
K: A x A — [0, =) is said to be an extended b-metric on A, for all distinct ¢, v, u € A, if it fulfills the following
conditions:
(a). x(¢p,v)=0iff ¢ = v,
b). k(9, v) = (v, 9),
(©). k(9, ) < B(9, V)[Kk(9, 1)+ Kk, V).

Then (A, k) is said to be an extended b-metric space.

Definition 3 (Rectangular Metric Space [32]) Let A # 0. The function x: A X A — [0, o) is said to be a rectangular
metric on A, if V@, v € A and for every distinct i, 1 € A/{¢, v}, it satisfies the following conditions:

(a). x(¢p,v)=0iff ¢ = v,

(b). x(9,v) = K(U, (p)s

(c). k(¢,v) < [x(9, u)+K(u, n)+x(n, )]

Then (A, k) is called a rectangular metric space.

Branciari introduced RbMS as a generalization of bMS in 2000 [32]. George also analyzed this space and extensively
proved the fixed point theorems in 2015 [33].

Definition 4 (Rectangular b-Metric Space [33]) Let A # 0 and the function k: A X A — [0, o) is called a rectangular
b-metric on A, if V ¢, v € A and for every distinct i, n € A/ {¢, v}, it fulfills the following conditions:

(a). x(¢p,v)=0iff ¢ = v,

(b). (9, v) = K(v, 9),

(©). x(¢,v) <B[x(d, u)+x(u, n)+x(n, v)], where B > 1 is a real constant.

Then, the pair (A, k) is called a rectangular b-metric space.

Definition 5 (Extended Rectangular b-Metric Space (ERbMS) [34]) Let A # @ and : A x A — [1, =). A mapping
K: AX A — [0, o) is called an extended rectangular b-metric on A, for all distinct ¢, v, i, 1 € A, if it fulfills the following
conditions:

(a). x(¢p,v)=0iff ¢ = v,

(). k(9, ) = k(v, 9),

(o). x(¢, v) < B(9, vV)[K(¢, 1) + k1, )+ Kk(7n, V)].

Then, (A, k) is called as an extended rectangular b-metric space.

Definition 6 (Controlled Metric Space [35]) Let A # 0 and §: A X A — [1, o). A mapping k: A X A — [0, o) is
known as controlled metric on A, if it fulfills the following conditions:

(a). x(¢,v)=0iff g = v,

(b). x(¢, v) =x(v, 9),

(c). k(¢,v) < B(9, w)x(9, 1)+ B (1, v)x(p, v) Vo, v, p€A.

Then (A, x) is called a controlled metric space.

Theorem 1[31]If every Cauchy Sequence (CS) is convergent, then the CMS (A, k) is said to be a complete controlled
metric space (CCMS).

Definition 7 [31] Let (A, k) be a CMS and let ¢ € A, there exist a positive € such that

(a). The open ball B(¢, €) is defined as

%
v
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Bla, &) ={x €A, k(¢,x) < ¢e}.

(b). The function J: A — A is denoted as continuous at ¢ € A ifV € > 0, 3 positive 6 > T (B(¢, 5)) CB(T 9, €).
Obviously, in CMS 7 is continuous at ¢, then ¢, — ¢ and .7 (¢,) converges to 7 (¢) as n — oo.
Definition 8 [31] If the function .7: A — A is said to be contraction on a CMS (A, k), if 3 § € [0, 1) such that

k(7 (9), 7(v)) <Cx(¢, v), V¢, veEA

Here ¢ is the contractivity ratio of 7.
Theorem 2 (Contraction Theorem on Controlled Metric Space) [31] Let us consider (A, k) asaCMS. If 7: A — A
is a function with

K(7(9), 7(v)) < Ex(9, v),

forevery ¢, v € Aand § € (0, 1). For ¢y € A, take ¢, = "¢y, where T"¢pyp =T 0T 0T o---0.T. Suppose that

n times

sup lim B(it1, Pit2)

1
m>1i—e B(0i, ¢ii1) ﬁ(¢i+17 Om) < =

Z
Moreover, assume that, V ¢ € A, we have
,}E,‘}oﬁ(¢"v ¢) and ,}g&ﬁ(d)’ On)

exist and have a limit. Then “.7 has a unique fixed point”.

3. Fractals for single and multivalued contractions

If (A, J%) is complete, F, S5, ..., J, are Banach contractions and F: JZ,(A) — J%,(A), then

F=F() = F(F)UR(A)U...0 Ty(F).

The HB theorem shows that F has a unique fixed point in JZ,(A), referred to as a fractal.
Definition 9 If (A, k) is a CMS, then the function J%: CLD(A) x CLD(A) — [0, o) is defined as

max{ sup x(¢, #), sup k(v, 427)} ,  if the maximum exists;

(A, B) = pest ve®

oo, otherwise.
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Theorem 3 [36] Let (A, k) be a CCMS with lirg B(dn, &) <1V @y, ¢ € A, where { > 1. Then (CLD(A), )
n, m—oo

is complete.
Theorem 4 [36] Let (A, k) be a nonempty set CCMS and the mapping .7: A — CLD(A) is satisfies the contraction
condition 74 (T, Ty) < {x(9,v), V¢, v €A, where { € [0, 1) such that lig B(dn, &n)& <1,V ¢y, ¢ € H. Then
n, m—yoo

“.7 has a unique fixed point”.

Theorem 5 [36] If (A, k) is a CCMS, then (%, (A), ) is also a CCMS.

Definition 10 Let (A, k) bea CMS and J»: A — A, w=1,2, 3, ..., K (K € N) be K-contraction functions with
the associated contraction ratios {,, @ = 1, 2, 3, ..., K. Then {A; 9, ® =1, 2, 3, ..., K} is said to be Controlled IFS

(C-IFS) or Controlled Hyperbolic IFS of contractions with the ratio { = Hi%.)l( Co-
0=
Definition 11 If (A, k) is a CMS and the system

(A Ty, ©=1,2,3, .., K; Ke N}

is C-IFS of contractions. Then the Controlled HB operator of C-IFS of contractions is a mapping F: J7,(A) — J£5(A)
defined by

K
F(B)= | Tu(B), forall B 1(A).

Theorem 6 If (A, k) is a CMS and

(T A=A, 0=1,2, .. K;KeN} (1)

is a system of contractions, i.e,

K(J(9), Tu(v)) < Cok(9, v) 2

Vo,veAand§,€[0,1),0=1,2,....K
Then there is the attractor, the only invariant element &/ € %, (A) of the HB operator

K
F(#)=J Z0(#), ¢cA. (3)

=1

Here, o7 is called as a Controlled Metric Fractal for the IFS on CMS and we can also represent .o/ * alternatively as
follows

o =F(B)= ] F(v) (: U F(v)), B € ,(N). 4)

veEA vVEA

Moreover,
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lim He(F"(B, o/*)) =0, ¥ B e H(A), (5)

W—roo
and
Hoc(B, ) <

(B, F (7)), (6)

where § = ,_max K(Ca,).

Theorem 7 Let H # 0 and 97, 95, ..., T, be self-maps of A and
K
F(#)= ] Z0(®), #CA. (7
0=

If all fibers of the function .7, are finite for w = 1, 2, ..., K, then F(#) C B and (| F? (%) are invariant with

weN
respect to C-IFS {71, %, ..., Tp}, for any B C A such that F(#) C %B. The set (| F®(%), in the context of this
weN
C-IFS, is the largest invariant set. As a result, if the set (| F®(%) is nonempty, then the system {7}, %3, ..., T} has a

) ) weN
nonempty invariant set.

Theorem 8 If A denotes a CCMS, and 77, %, ..., J, denote continuous self-maps on A and let us consider Eqn.
(7) and

o= (| FO(2)

weN

is the definition of F respectively. Then &/* = F(%), and &/* is the largest invariant set with respect to the C-IFS
{A, S, ..., Tp}.

Theorem 9 (C-IFS Collage Theorem in Controlled Metric Space) If (J7,(A), ) is a CHMS, where (A, k) is a
CMS, then

(B, T(#))

et 5 (G

), V B € Hy(A),

where 7 is the HB operator of the given IFS {A; Z,, 0 =1, 2, ..., K}, K € N, with the contraction ratio { and the
controlled metric fractal .o7,.
Proof. This proof is evident [4, 6]. O
Theorem 10 Let (A, k) be a CCMS and

{Zw: A—CLD(H), ®=1,2, ..., K; K € N} (8)

be a system of multivalued contractions, i, e.,
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H(T0(9), Tu(V)) < Lo K(9, V), ©

Vo, veAand €0, 1), 0=1,2, ..., K.
Then there is a unique invariant element .«7* € CLD(A) of the HB operator

No
F(N) = Zu(¢), ¢€A (10)
w=1

called the Controlled Metric Fractal of the given IFS of multivalued contractions.
Theorem 11 If (A, k) is a CCMS and the mapping 7,: A — CLD(A) such that

Ac(T0(9), To(V)) < So K(, V) + Mo [K(9, Tu(9)) + K(V, To(V)]

Vo,v €A, where gy, N >0, §p+21e < 1,0=1,2, ..., K. Then there exists a closed set 2 # 0 C H that satisfies
BC Tp(B),Vo=1,2,.., K.

Lemma 1 Suppose we take 1 = 0, then Theorem 11 implies Theorem 10. This shows that Theorem 11 is the
generalization of Theorem 10.

4. Controlled extended rectangular b-metric space

Here, we develop a novel metric, the controlled extended rectangular b-metric, and thoroughly analyze the associated
fixed point theorem.

Definition 12 (Controlled Extended Rectangular b-Metric Space (CERbMS)) Consider A # 0 and a mapping f3: A X
A — [1, ). Then a mapping k: A x A — [0, =) is called a controlled extended rectangular b-metric, if it satisfies the
following conditions:

(a). x(¢,v)=0iff ¢ =0,

(). K(9, V) = k(v, 9),

(c). k(¢, v) < [B(¢, w)x(9, 1)+ B(u, m)x(, M)+ B (N, v)k(n, v)] V distinct 9, v, p, N € A.

Then the pair (A, k) is said to be CERbMS.

1
Example 1 Let A=Y UZ", Y = {;meN},Z+ ={1,2,3 ..}, B: AxA—[1,00)
m

¢; if ¢ iseven, U isodd,
B(p,v)=<qv; if ¢ isodd, v iseven,

1; otherwise.

K: AXA— [0, )
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0: if ¢—o,
K(¢7U): ZB’ if (P,'UEY,
B

. otherwise.
2

where f is a positive real constant and k is a controlled extended rectangular b-metric on A.
On the other hand,

11 11 1 1
- =2 - - 1 1, —
K(a’a+1> ﬁ>ﬁ(a7a+1>{x<a,a>+x(a7a+ )+1<<a+ AT

=>2[3>%

Therefore, the example shows that every CERbMS is not necessarily an ERbMS.

)

The notions of convergent sequence, Cauchy sequence, completeness, and compactness are defined in CERbMS

below to proceed further to derive related results.
Definition 13 Let (A, k) be a CERbMS and the sequence {¢, },- in A.

(a). For ¢ € A and € > 0, the open ball about ¢ of radius € is defined as B (¢) = {x € A: x(x, ¢) < €}.
(b). The sequence ¢, is convergentto ¢ € A, if Ve >0,IN € N> k(d,, 9) <e,Vn>N,i.e., lim, oy = 0.

(¢). The sequence {¢,} is Cauchy, if Ve >0,3IN € N > (¢, ¢) <& Vn,m>N.
(d). If every CS converges in A, then (A, k) is complete.

(e). The space (A, k) is known to be a compact CERbMS if every sequence in A has a convergent subsequence

converging to a point in A.

As a consequence, if 7 is continuous at ¢ in (A, ), then ¢, — ¢ — T ¢, — T ¢, as n — .

Theorem 12 If (A, x) is a complete CERbMS and if a function .7: A — A such that

K(7(9), 7(v)) < Cx(¢, v)
V¢, v € Awhere § € (0, 1). For ¢y € A, take ¢, = T"¢y. Suppose that

sup lim B(dix1, 9i2)

m>1i—e l}(@.’ ¢i+1> ﬁ(¢i+la ¢m) <

1
z
In addition that, V¢ € A,

lim B(¢,, ¢) and  lim B(9, ¢)

exist and finite. Then .7 has a unique fixed point.
Proof. Let us consider {¢, € A: ¢, = T "ap}. By using Eqn. (11),

(11)

(12)

(13)
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Vn,meIN>n<m,wehave
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K<¢n+17 (Pn) < C”K((Po, (])1), Vn>0.

K((pna (Pm) < ﬁ(‘Pm ¢n+l)K(¢n7 ¢n+1) +[3(¢n+1a ¢n+2)K(¢n+1a ¢n+2)

+ B (9nr2; Om)K(Pnt2, Om)
< B> Onr 1)K (P Oni1) + B(Dnt1, Oni2)K(Pni1, Pui2)
+ B(Pns2, ) B(Pns2, $ni3) K(Pni2, Ont3)
+ B(Int2: Om)B(Pn43, Onra) K(Pns3, Onra)
+ B (9nr2, Om)B(Bnss: Om)K(Pnss, Om)

S...

< B(‘Pna ¢n+1)K(¢n7 ¢n+l)+B(¢n+1a ¢n+2)K(¢n+ly ¢n+2)

m—2 i
+ ) [H B(¢;, %)]ﬁ(% Gi1) K (i, Pig1)

i=n+2 [ j=n+2

m—1

+ H ﬁ((bga ¢m)K(¢m—1» (pm)

{=n+2

< B(n, Onr1)S"d(90, 01) + B(Pns1, Onr2)S" (00, 01)

m—2 i
+ ) [ TT B(9s, ¢m)| B(@r, ¢i1)E (0, 61)

i=n+2 [ j=n+2

m—1
+ Y B9 0m)C™ ko, 1)

i=n+2

< B(Dns Ons1) 8"k (P0, 01) + B(Pnt1, Pnr2) S (o, 1)
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m—2 i
+ ) lH ﬁ(¢j,¢m>]ﬂ(¢i, ¢ir1)5'x (90, 01)

i=n+2 | j=n+2

m—1
+ H ﬁ((piv ¢m)€m71ﬁ(¢m71a ¢m)K(¢0a (Pl)

i=n+2

= ﬁ(¢n7 ¢n+1)C"K(¢o, ¢1) +ﬁ(¢ﬂ+la ¢n+2)Cn+1K(¢O, ¢1)

m—1 i
+ ) lH ﬁ(¢j,¢m>]ﬂ(¢i, ¢ir1)8'k (90, 01)

i=n+2 | j=n+2

< B, Onr1) S (B0, O1) + B(Bns1, Ons2) " (0, 1)

i=n+2 | j=0

m—1 i
+ ) lHB(d’ja ¢m)] B(¢i, ¢i1)Ek(90, 91)

It is noted that B (x, y) > 1. Lets, =Y/, |:H;:1 B (¢, (Pm)} B(®i, ¢i11)E".

Hence, we have

K(Pns m) < K(¢o, 91) [Cnﬁ(¢n7 Oni1) + Cn+lﬁ(¢n+la Pnt2) + (Sm—1 _Sn)] (14)

By using the Ratio Test, Eqn. (12) confirms that lim,,_,. s, exists. So, {s,} is a CS. By using the inequality (14), as
n,m— oo

lim (@, o) =0 (15)

n, m—oo

i.e., {¢,}is a CS in CERbMS (A, k). So {¢,} converges to ¢ € A.
It is required to prove that ¢ is a fixed point of 7. By triangle inequality,

K(‘Pna ¢n+2) < B(q)» ¢n)K(¢v ¢n) Jrﬁ(q)nv ¢n+l)K(¢n7 ¢n+l)+ﬁ(¢n+la ¢n+2)-

It is concluded from Eqns. (12), (13) & (15) that,

1im (6, 9ui1) =0 (16)

By using the triangle inequality,
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K(9, T9) < B(P, Onr1)K(P, Gur1) + B(Dns1s ur2)K(Dni1s Pur2) + B(Pnr2s Gni3) K(Pni2, Prvs)

< B(‘Pa ¢n+l)K(¢a ¢n+1) + Cﬁ(‘PnJrlv ¢n+2)K(¢n+17 ¢n+2) + Cﬁ(¢n+27 ¢n+3)K(¢n+2a ¢n+3)

As n — o and from Eqns. (13) & (16), it is obtained as k(¢, 7 ¢) = 0 and hence ¢ = T ¢.

To prove the uniqueness of the obtained fixed point, the following argument has to be proceeded.

Suppose ¢, v are two fixed points of 7. Then k(¢, v) < {x(¢, v), which holds for k(¢, v) = 0. This implies
¢ = v. As aresult, “.7 has a unique fixed point”. O

Example 2 Let A = {0, 1, 2, 3}. Let k be a symmetric function on A and given with x(¢, ¢) =0 for all ¢ € A and
also

11 12 2 4 1
k(0,1)=1, K(O,Z)—I—O, K‘(O,3)—E, 1((1,2)—57 1((1,3)—57 1((2,3)—3.
and the function B: A x A — [1, o) is defined as
11 2 4 1
B0, 1)=1, B(0,2)=5. B(O,3)=1, B(1,2)=7, B(1,3)=5, B(2.3)=3.

Clearly (A, x) is a CERbMS.
2, if ¢=0

Consider the mapping 7 from A to A such that 7 (¢) = .
1, if ¢e{1,2,3}

12
Choose § = %5 Then, 7 satisfies all conditions of Theorem dand hence “.7” has a unique fixed point”, which is

o=1.

4.1 Hausdorff controlled extended rectangular b-metric space

The Hausdorff version of “proposed metric space” is defined in this section as an analogue of classical Hausdorff
metric space.

We consider B(¢, &) = infycs B(9, x) and x(¢, o7) = infycq K(@, x), where & C A.

Lemma 1 Let (A, K') be a CERbMS. Then K(¢17 %) < ﬁ((])l, ¢2)K‘(¢1, ¢2) —|—ﬁ(¢27 ¢3)K‘(¢2, ¢3) —|—ﬁ(¢3, x) K(¢3, x),
for all ¢, ¢, 93 € Aand x € & C A, where (93, &) = infycor B(93, X).

Proof. From the definition of the CERbMS, we have k(¢1, x) < B(¢1, ¢2)k(¢1, ¢2) + B(92, ¢3)x(¢2, ¢3) +
B(¢3, x)x(¢3, x) and taking infimum on both side over <7, then we get xien; K(o1, x) < B(¢1, ¢2)x(d1, ¢2) +
B (92, $3)k(¢2, $3) +xiél;l3(¢3’ x)Kk (93, x).

Therefore, k(¢1, ) < B (91, 92)K(91, ¢2) + B (92, 93)K(92, ¢3) + B (93, x)K(¢3, x) for all ¢, ¢, ¢3 € A. O

Here we can define the Hausdorff CERbMS. Let us consider CLD(A) as a set of non-empty closed subsets of A and
J,(A) as a set of non-empty compact subsets of A.

Definition 14 (Hausdorff Controlled Extended Rectangular b-Metric Space (HCERbMYS)) If (A, k) is a CERbMS,
then the Hausdorff Controlled Extended Rectangular b-Metric is defined as a mapping #x: #,(A) X #,(A) — [0, )
such that
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max 4 sup k(¢, #B), sup k(v, &) p, if the maximum exists;
%{(%7 %) = (¥4 veA

oo, otherwise.

Then, (%, (A), #%) is called Hausdorff Controlled Extended Rectangular b-Metric Space.
Theorem 13 Let o7, #, €, 9 C #,(A). Then

St , B) < max{ sup B (9, v), B(v, d)}jﬂw, )
Peo

+max{ﬁ<v, %), sup B (v, N)}%c(%)» %)
UEF

+maX{ﬁ(u, 2), sggﬁ(m n)}%’%((f» 9).

Proof. Consider (<7, B), (B, €) and (€, D) are finite. From Lemma 1, for ¢ € o7, v € A, we have

(9, 2) <B(¢, v)x(9, v)+ B (v, w)K(v, u)+ Bk, Z)k(1, 7).

Asx(u, 9) < (¥, 2), x(v,€) < (A, €). Therefore

(9, 2) <B(9, v)x(9, v)+B(v, w)x(v, 1) +B(u, 7)x(u, 7).
(9, 2) <B(9,v)x(9, B)+ B (v, €)k(v, €) + (1, C)k(E, D).

Taking supremum on both side over A, then

sup k(¢, DZ) < sup B(9, v) A (A, B)
el pcof

+B(v, 1) A (£,6)
+B (1, n) A (C, D).

Similarly,
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sup k(1, &) < B(v, o)A ( , B)
neg

+B (1, v) (B, 6)

+ sup Bk, N) A€, D).
neo

Hence,

maX{SUP k(9, D), sup x(1, A)} < {supﬁ(q), v), B(v, A)}%}(A, B)

PcA nebD ocA

+ {ﬁ(m C), sup B(u, U)}%c(& C)

nse

neb

+ {ﬁ(m D), sup B(u, n)}ﬁﬂ(a D).

Therefore, by definition, we get

I (A, D) SmaX{;élgB(% v), B(v, »‘Zf)}%c(%, A)

+ max {ﬁ(m ¢), sup (v, u)}%«(% %)

UE?

+max{[3(u, -@)’ sup (,U, n)}%K(%v @)
neo

O
Definition 15 If x € o7, where ¢/ is the closure of a set &/ C A, iff 3 a sequence {x, }_ in < such that lgn Xy =X.
n o

Denote for € > 0and o C A, o = {9 € A: x(¢, /) < €}.
Theorem 14 If ¢ € o7, then k(¢, &7) < lim B(n, )€, where B(¢n, ) = infoccr B(Pn, 9).

Proof. Let ¢ € o7 . Then, there exist a sequence {¢),} in % such that lim, .. ¢, = ¢. By Lemma 1, we have

K(‘Pa JZ{) < ﬁ(d)v (Pn)K((P, (bn) +[3(¢na ¢n+l)K(¢n7 ¢n+1) +[3(¢n+la %)K(¢n+lv &7)
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Take n — oo then, (¢, &) <1lim,_e B (P, & )E. O

Definition 16 The upper topological limit of a sequence {.<7};” ; in CERbMS A is denoted by Lr< and determined
by x € Lt.7) iff lim; . inf K (x, o) = 0.

Theorem 15 If a subsequence {xn,} in o7 is convergent to x and x,,, € <7, forl =1, 2, 3, ... if and only if the point
x € Lta].

Theorem 16 L =Lt <7 is closed.

Corollary 1 Lt.ofj = N2, U 4.

Corollary 2 lim;_,., o7, = Lt</; = Lt.o7.

Theorem 17 If (A, k) is a complete CERbMS with

Lim (¢, ¢m)C <1

n, m—oo

for all ¢y, ¢, € A, where { > 1. Then (CLD(A), 7 is complete.
Proof. Let {.<7,},_, be a CS in CLD(A). Then by definition, V € > 0, 3N & N such that

(S, ) <€, Vm,n>N and (e, 4),) <e€Ym, p>N. 17)

Let & = Lty It is required to prove that, & € CLD(A) and ¢, — </. From Theorem 16, L = Lt.<7 is closed and
then we get & € CLD(A). It is enough to claim that, {,} is convergent to <. We have to show that, there exists a
positive integer N such that (7, /) < €,V n > N. By rectangle inequality, V n, m > N,

H(y, &) < max {;‘;EL B(On, o), B(On, ) } K (T, )

+max{ sup ﬁ(‘Pma ¢p)7 B((bmu %)}%(Wmv %)

OmE A

+maX{ sup B(¢p, 9), B(¢, Wp)}%ﬂx(%, o).

PpEt)

Forn, m > N, we have

Hoc(Ap, ) < max{ sup B(Pn, Om), B(n, ﬂm)}'g

OnEn

+max{ sup ﬁ(¢n1a ¢p)a ﬁ((bma %)}8

¢m €

+maX{¢Sl€15 B(9p, 9), B(9, %)}%ﬂx(%? ).
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To prove that,

(A, A) < max{ sup B(dp, ¢p,); B(Pp,, dp)}g-

OpEA)

For this reason, we claim the following inequalities for ¢* € o7,

K(¢p, 07) < B(&p, On, )€, V Oy € . (18)
K(9%, ) < B(Pn,, p)e. (19)

From Eqn. (17), we get <%, C /,,, forallm > p > N. By Corollary 2, we have &/ C o, U 1 U... C ),.
From Theorem 14, for ¢* € <7, we get

K(0", ) < B(dn,, p)e.

Hence Eqn. (19) is proved.

Now, it is required to prove Eqn. (18). Since {4, } isa CS in CLD(A), {n,}._; = {€el~"}__, such that n, > N, where
N € N and S (a,, o)) < el~" for all n, m > n,.

Take arbitrary ¢, € <7,, where ¢, = ¢,,. Since (o, “p,) < € for n > ng, there exists ¢,, € .o, such that
K(@ng, On,) < € for n=ny > ny.

Similarly, (<, <7, ) < ;, so there exists ¢, € 9%, such that k(@ , @n,) < l% forn=n, > ny.

Continuing the same, we can construct a sequence {@,, } with ¢, € 7, , forr=0, 1, 2, ... and

€

K(Pn,s On,,) < &

Py = 9- (20)

Next, we need to claim that {¢,, } is CS, from the rectangle inequality, we have
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K(Pnps On,y) < B(Dny, On,y ) KOsy Onyy)

+ ﬁ (¢nr+1 ? ¢nr+2 ) K(¢nr+l ’ (P”H»Z)

+BOnyizs On) 6 (P Byy)

S ﬁ(d’ma ¢nr+1 )K(¢nr’ ¢”r+1)

FBOnrs O k(P B i)

+ ﬁ <¢nr+27 ¢"r+l)ﬁ (¢"r+27 ¢nr+3)K(¢nr+z7 ¢nr+3)

+ ﬁ (¢”r+2 ? ¢”r+l )ﬁ ((P"H»S ? ¢nr+4 ) K(¢nr+3 ? ¢”r+4)

+ ﬁ (¢nr+2 ? (P”lHJ )ﬁ (¢nr+4’ ¢nr+l ) K(¢nr+47 ¢n,-+1)

IN

S ﬁ(@m ¢nr+1 )K(¢nr’ ¢”r+l)

+ ﬁ (¢nr+1 ’ ¢nr+2 ) K(¢nr+l ) ¢"r+2)

rl=2 i
+ Z ( H ﬁ(‘Pﬂ_,‘a ¢Vlr+1)> ﬁ((P"i’ ¢ni+1)K(¢"i7 ¢”i+1)

i=r 2 \j=r+2

r+l—1

+ H ﬁ(¢"j7 ¢"r+l)K(¢"r+1717 ¢"r+1)

Jj=r+2
S ﬁ ((Pnr’ ¢nr+1 )K((Pnr? ¢nr+1 )

+ :B (¢nr+1 I ¢nr+2)K(¢nr+1 ) ¢Vlr+2)

r+l—1 i
+ Z ( H B(¢nja ¢nr+1)> ﬁ(¢ni7 ¢ni+1)K(¢ﬂia ¢ni+1)'

i=r+2 \ j=r+2

From Eqn. (20), we get

Co iporary Math tics 6180 | D. Easwaramoorthy, et al.




£

KB 9nyr) < B(Ons 0n,) -+ By 90,00 5y

r+l—1 i €
+ Z ( H ﬁ(¢n17¢nr+l)>ﬁ(¢niu ¢ni+l)ﬁ’ (21)

i=r+2 \ j=r+2

As lim B(@,, o) < 1 forall ¢, ¢, € H.
n, m—oo

r+l—1 i

€
By using Ratio test, the series Y, [T B(¢n;, ;) | B(Pn;> Py ) is convergent.
i=r+2 \ j=r+2 ! r

By taking the limit as 7 — e in Eqn. (21), we derive lim, . K(&y,, @n,.,) = 0.
Hence, we claim that {¢,, } is a CS. Since (A, k) is complete then 3¢ € A such that ¢,, — ¢ € A and clearly, ¢ € <.
Again by rectangle inequality, we have,

K(Pngs Bn,) < B(Pngs Gny )6 (Dngs Ony )+ B (Dnys Oy ) Ky s Buy)
+ B (Pny» On ) K(Pny, On)
< B(@ngs Pny)K(ng> Ony) + B (Pnys Oy ) K (G5 By
+ B(Pnys @) B (D5 Py ) K (D5 Dy
+ B(Pnys @) B(Dnys Oy ) K (D5 Dy

+B(¢n27 (Pnr)B((pﬂM (Pnr)K((P”le ¢nr)

IN

S ﬁ(¢n0’ ¢n1 )K(¢nov ¢n| ) +B(¢n|a ¢n2)K(¢n1’ ¢n2)

r=2 i
+ Z (Hﬁ(q&nﬁ ¢nr)> ﬁ((pniv ¢ni+l)K(¢ni7 ¢ni+l)

i=2 \j=2

r—1

+ HB((pnjv ¢”r>ﬁ(¢nr71 ’ (Pnr)K((p’qu ’ (P’lr)

Jj=2
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S ﬁ<¢n07 ¢'11)K(¢no> ¢n1>+ﬁ(¢n17 ¢n2)K(¢n17 ¢n2)

r—1 i
T 2; (Hzﬁ(fl)njy %)) B(0nis O ) K (Dnis By )-
i= j=

From Eqn. (20), we have

r—

K(¢n0, ¢ﬂr) S ﬁ(‘Pﬂov (Pn] )8 +B(¢Vl17 (Pi’lz Z <HB ¢Yl]7 ¢nr ) ﬁ((Pn,'v ¢ni+1 );E, (22)

As lim B(¢,, ¢m) < 1 for all ¢,, ¢, € A. By Ratio test, the series Z (f[ B(¢n; (j)n,)) B (@, (]),,M); is
j=2

n, m—oo

convergent. By taking the limit as r — oo in Eqn. (22), we get

hm K(¢n0> ¢f’lr) S Z

From the rectangle inequality, we have

K<¢7 ‘Pp) S ﬁ(‘P’ ¢ﬂr)K(¢7 (Pnr) +ﬁ(¢nm ¢nr+1)K(¢nr? ¢nr+1)+ﬁ(¢f’lr+1’ ¢p)K(¢ﬂr+1’ ¢p)

Hence k(¢, ¢,) < B(@n,,,, Op)€, as r — oo. This implies k(¢,, ¢) < B(¢p, ¢n,,)€. Hence we derive the following
expression.

OnEtn

H(, ) < max { sup B(9n; @m), B(9n, %m)} A (G, )

+max{ sup ﬁ((Pm, ¢p)7ﬁ(¢ma )}%(%ﬂhﬂ)

OmEAm

+maX{ sup B(¢p, 9), B(¢, Wp)}%x(%a A ).

¢17 S

Since limy, y—seo B (X, xm) & < 1, for all x,,, x,, € A and n, m — oo in the preceding inequality, we get a positive real
number. Therefore, o7, approaches to A, which completes this proof. O
Proposition 1 If &7, # € J#,(A) forall € > 0and v € £, 3 ¢ € & such that

K(¢7 U) S%K<ﬂa ‘@>+8
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Proof. The proposition is proved by using Theorem 13. O
Theorem 18 If (A, k) is a complete CERbMS with the contraction condition

lim B(@n, om)C <1

n, m—soo

for all ¢y, ¢, € A where { > 1. Then (%, (A), H#5) is complete.

Proof. Let {.<7,}," | be a CS in %, (A). By definition, V € >0 3 N > 0 € IN such that (4, ,) <€,¥n,m>N.
It is proved that for &7 € J#,(A), #4, — <. Theorem 2.4 in [36] confirms that {47, } converges to <. Also {7} isa CS
in %,(A). Therefore (#,(A), ) is complete. O

Theorem 19 Let 7: A — J%,(A) be a mapping on a complete CERbMS (A, x). If 7 fullfills the inequality
H(T(9), T(v)) < (9, V),V ¢, veA, where € (0, 1) is an real constant such that lim,, m—seo B(Pn, Om)C < 1
Y @n, Om € A. Then “.7 has a unique fixed point”.

Proof. The proof is evident when using Theorem 18 and Theorem 2.4 in [36] to prove the theorem. O

5. Controlled extended rectangular b-fractals

As a consequence of the previous section, the new version of IFS and Fractal in the CERbMS are initiated and
discussed in this section.

Definition 17 (Controlled Extended Rectangular b-Iterated Function System (CERA-IFS)) Let (A, k) be a CERbMS
and 7,: A— A, o=1,2,3, ..., K (K € N) be contraction functions on CERbMS with the associated contraction
ratios {p, @ =1, 2,3, ..., K. Then {A; T, ®=1,2,3, ..., K} is said to be a controlled extended rectangular b-iterated
function system (CERA-IFS) of contractions with the contraction factor { = rnaxﬂcf):1 Co.

Example 3 Let A= {0, 1, 2, 3} and k be a “symmetric function” on A. k is a CERbMS on A from Example 2. Next,
consider the self mappings 7; from A to A for i = 1, 2 as below.

15 i =0
Tl(@_{z; if ¢ell,2,3)

[ i =0
T2<¢)_{1; it ¢ell,2,3)

Then {A; T1, T» } is the system of contraction functions is a CERbIFS.

The fixed point of the contractions 77 and 7, in CERb-IFS are illustrated graphically in Figure 1.

The point at which the graph of 71 and 7, intersects the graph of the identity function represents the fixed points
graphically for the given contractions respectively.

Based on the above definitions and results, we can define the HB Operator and HB Theorem on Hausdorff CERbMS
as follows.
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Fixed point of contractions in CERb-IFS

3 -
weifp= Graph of T
s Graph of 7,
=& Graph of T(x) = x
2 2
IS
U]
S
=
1 e *
0 c’ i i i
0 1 2 3

aeH

Figure 1. Graphical representation for fixed point of contractions in CERb-IFS

Definition 18 (HB Operator on HCERbMS) Let (A, k) be a CERbMS. Let {A; T, @ =1, 2,3, ..., K; K € IN} be
a CERDIFS system consists of the finite number of contractions on A. Then the HB operator on HCERbMS is a function
F: Z,(A) — JE,(A) as

F(%) = 6 To(B), forall B e Hy(A).

w=1

Theorem 20 Let (H, x) be a CERbMS and let (7, (A), #%) be the corresponding Hausdorff space. Let 7: A — A
be continuous and contraction on (A, k) with the contractivity factor §. Then 7: 7, (A) — #,(A) defined by 7 (B) =
{7(9): ¢ € B}V B € %,(A) is a contraction on (#,(A), ;) with the contractivity factor .

Proof. Since .7 is a continuous function on A, .7 maps elements of J#,(A) into itself.

Let B, ¢ € #,(A). Then

(7 (), 7(%)) =max{x<9<@>, T (%)), k(T (6), m%))}
< max{g[;c(,@, %), (%, 93)} }

< gmax{ [K(@, %), (%, @)} }
< H(B,C).
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This completes our assertion. O

Theorem 21 Let (A, k) be a CERbMS and let (%, (A), #%) be the corresponding Hausdorff space. Let 7,: A — A,
o=1,2 3 .., K (K eN) be continuous and contraction mappings on (A, k) with the contractivity factors {,, © =
1,2,3, ..., K. Then the HB operator F: .%,(A) — J,(A) on on HCERbMS is also a contraction on (%, (A), ) with
contractivity factor §{ = max_, .

Proof. It is enough to prove the theorem for the case N = 2.

For N = 2, by Theorem 20, the following is proceeded.

%K(F(%), F(‘f)) T (%(%) US(B), Ti(€)U %(‘@)
< max{%mwx F8)), AT B), %<%’>>}
< max{Clﬂ(%, ©), L5, %’)}
< max {¢1, &) {%(%’, %), Sl B, %)}

< Cmax{%”,((%, ‘5)}

This completes the proof. O

Theorem 22 (HB Theorem for CERbH-IFS) Let (A, ) be a Complete CERbMS and {A; 7, ©=1,2,3, ... K;K €
IN} be CERD-IFS of continuous contractions with contraction ratios §. Then, there exists only one attractor <%, € J#,(A)
of the HB operator (F) on HCERbMS or equivalently, “F has a unique fixed point” namely <%, € %, (A) such that

and is given by .7, = limg e FO(©)(B) for any B € #,(A).

Proof. Since (A, k) complete in the CERbMS, it implies that the Theorem 18 shows that (7, (A), %) is also
complete HCERbMS. Also Theorem 21 clears that the HB Operator, F is a contraction mapping on HCERbMS. By using
Theorem 19, we conclude that “F has a unique fixed point”. This completes our assertion. O

Definition 19 (Controlled Extended Rectangular b-Fractals (CERb-Fractals)) The fixed point <%, € .%,(A) of the HB
operator F for CERb-IFS described in Theorem 22 is the controlled extended rectangular b-attractor or controlled extended
rectangular b-fractal in CERbMS. So, <%, € #,(A) is known as a fractal generated by the CERA-IFS on CERbMS.

The derived fractal is constructed in the CERbMS as in the above HB theory; hence, it will be extended to develop
the concepts of fractal interpolation theory and other related results in the extended space proposed in this paper. Since
the control factor is included in the basic metric space, the fractal developed over the controlled space may be applicable
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in the fractal and control theories to model specific physical systems and analyze the experimental system’s stability and
controlability.

6. Conclusion

The contractions over CMSs have been used in this study to create a new type of IFS known as C-IFS, and an IFS
of contractions has been built in a CMS to generate controlled fractals. The subsequent results have been demonstrated
intriguingly using the CIFS and controlled fractals. Furthermore, the CERbMS has been established and investigated
using the fixed point theorem on the proposed metric space, called the CERbMS. Additionally, the IFS has been defined
on CERbMS to generate a new fractal attractor known as controlled extended rectangular b-fractals.

The controlled metric can be studied in the fractal interpolation and multifractal analysis. A new type of fractals in the
controlled extended rectangular b-metric space with Kannan, Fisher-type and some other contractions can be addressed
generically. It can be a new path to further describe the fractal interpolation function and multifractal analysis in the
proposed general space.
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