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Abstract: Reliability, a crucial aspect in engineering and project management, signifies the likelihood of a system or
project enduring without malfunction over a specified duration. Typically, the random variable X embodies the lifespan
of the system or project. Stress-strength reliability, on the other hand, gauges the assurance that a product or process
remains unaffected by stress Y . Extensive literature explores the point estimation and testing of R(t) = P(X > t) (the
survival function of the random variable), and P = P(Y < X), delving into methods to enhance reliability assessment.
This paper delves into the estimation of R(t) and stress-strength reliability P through ranked set sampling (RSS), assuming
independence between stress Y and strength X , both following the Beta-Lomax (BL) distribution. Through rigorous
analysis, the maximum likelihood (ML) estimator for R(t) and P is derived, subsequently juxtaposed with its simple
random sampling (SRS) equivalent to gauge performance. By applying this methodology to real data fromWheaton River,
the study underscores the practicality and efficacy of the proposed approach. By offering a comprehensive analysis of
reliability and stress-strength reliability estimation utilizing RSS and the BL distribution, this research furnishes valuable
insights for practitioners and researchers in the field. The integration of innovative sampling techniques and statistical
methodologies not only enhances the precision of estimations but also underscores the importance of robust reliability
assessments in ensuring the longevity and efficiency of systems and projects.
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1. Introduction
The estimation of stress-strength reliability is crucial in engineering, manufacturing, and quality control. One

approach to estimating it is through RSS, which provides more efficient and precise estimates compared to traditional
sampling methods. Researchers have explored the application of RSS in stress-strength reliability estimation, aiming
to enhance precision and efficiency. Incorporating the BL distribution, which combines the flexibility of the Beta
distribution and the heavy-tailed characteristics of the Pareto distribution, has shown promise in improving estimation
accuracy. In this study, we investigate stress-strength reliability estimation using RSS in the BL distribution, exploring its
theoretical foundations, advantages, and integration into the estimation process. Real-world data analysis demonstrates
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the effectiveness of this approach. In this study, we aim to investigate the estimation of stress-strength reliability usingRSS
in the BL distribution. We will explore the theoretical foundations of RSS, discuss its advantages over traditional sampling
methods, and examine how it can be integrated into the estimation process. Additionally, will analyze real-world data to
demonstrate the effectiveness of the proposed approach in estimating stress-strength reliability parameters.

1.1 The problem of stress and strength

In the field of statistical quality control, there is a problem known as the stress-strength problem. It involves
determining the probability that the strength of a given material exceeds the applied stress on that material. To express
this in terms of probability, we need to evaluate P = P(Y < X) where Y and X are random variables representing strength
and stress, respectively [1]. The BL distribution, also known as the Lomax distribution or the Pareto Type II distribution,
is a heavy-tailed distribution commonly used in reliability and survival analysis. It has applications in various domains,
particularly when modeling the behavior of stress and strength systems. In stress-strength estimation, it provides several
advantages:

1. Flexibility in Modeling
The Lomax beta distribution is flexible in modeling different types of data. It can handle a variety of shapes, including

symmetrical and skewed distributions. This flexibility makes it suitable for stress-strength models, where the relationship
between stress (applied force) and strength (material durability) may not always be linear or symmetric.

2. Capturing Heavy Tails
Since the Lomax distribution has heavy tails, it is ideal for modeling extreme values or outliers. In many real-world

scenarios, particularly in engineering and materials science, extreme events (like sudden stress failures) are significant.
The Lomax beta distribution accounts for these cases effectively, providing a more realistic representation of stress and
strength characteristics.

3. Parameterization
The Lomax beta distribution can be parameterized easily, typically requiring only two parameters. This simplicity

makes it more manageable in practice, allowing researchers and engineers to obtain estimates from limited data effectively.
4. Stress-Strength Model Relevance
In reliability engineering, the Lomax beta distribution can model the distribution of applied stress and the distribution

of material strength. The probability that a component will fail can be evaluated as P(Y < X), where Y is the stress and
X is the strength. The site for potential failure is where the stress exceeds the strength, which aligns well with the Lomax
structure.

5. Real-World Applications
The Lomax beta distribution is useful in diverse fields such as engineering (materials science), finance (modeling

income distributions), and epidemiology (modeling time until failure or death), allowing for cross-disciplinary applications
in stress-strength estimation.

This problem can be divided into two parts: (i) under certain assumptions about the distribution of the variables,
finding an expression for P, and (ii) using a set of data that satisfies these assumptions to estimate P through point
estimation and interval estimation [2].

Early research in this area focused on assuming a normal distribution for Y and X . [3] and [4] provided fundamental
results in this regard. Nevertheless, subsequent research has explored various other distributions and their implications,
leading to a deeper comprehension of the stress-strength problem. [5] offer an introductory account on this topic, while
[6] provide a more extensive review.

The aim of this note is to investigate the aforementioned problem when one or both of the underlying probability
distributions follow a BL distribution. The focus will primarily be on the scenario where only either Y or X has
a BL distribution. A brief overview of the BL distribution is provided below [7]. In summary, the motivation for
employing the BL distribution in stress-strength estimation lies in its flexibility, capability to model extreme events, ease
of parameterization, and its compatibility with modern statistical approaches. By effectively capturing the underlying
dynamics of stress and strength distributions, it enhances the reliability and accuracy of assessments in various practical
scenarios.
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1.2 Probability results
The estimation of stress-strength reliability plays a crucial role in various fields, including engineering, manufacturing,

and quality control. It involves assessing the probability that a system or component will withstand applied stress levels
without failure, considering the strength of the material or structure [8]. Accurate estimation of stress-strength reliability is
essential for ensuring the safety and performance of critical systems, optimizing design parameters, and making informed
decisions regarding maintenance and operational strategies.

The estimation of stress-strength reliability, P = P(Y < X), is a well-researched problem in the statistical, industrial,
and mechanical engineering fields. Y represents stress and X represents strength, making P a measure of system reliability.
If stress exceeds strength, the system fails; otherwise, it continues to function. Stress-strength reliability was first proposed
by [8], and subsequent studies have explored estimating P under various distributions of Y and X , including Weibull [9],
Frechet [10], and Pareto [11].

1.3 Ranked set ampling (RSS)
RSS stands as a highly advantageous statistical sampling technique that surpasses traditional random sampling

methods, initially proposed by McIntyre in 1952 to enhance the efficiency of population parameter estimation [12].
Rather than directly measuring the values of interest, RSS involves ranking the sampled units based on the variable under
study. This distinctive approach has gained significant attention and widespread application across diverse fields such
as environmental studies, biological research, and quality control [13]. The RSS methods provide more flexibility in
adjusting the sampling volume, especially when the population is dynamic or when there is a high variability in responses.
Researchers can adapt the number of repetitions based on the observed data or variability rather than adhering to a fixed
sample size upfront. Also when employing RSS, data collection can be more robust, as researchers can gather information
across varying conditions or time frames. This approach enriches the dataset, which can be particularly valuable in
studies requiring longitudinal data or repeated measures. If the correlation between repeated measurements is high, RSS
sampling can make better use of available data, leading to increased statistical efficiency. This efficiency can enable
smaller sample sizes while still achieving robust power in hypothesis testing. One of the key benefits of RSS is its ability
to reduce sampling variability and increase estimation precision compared to sampling method SRS. By utilizing the
relative ordering of observations, RSS captures information about the entire distribution of the variable, leading to more
efficient estimators. This makes it particularly useful when the variable of interest exhibits high variability or extreme
values [14]. To implement RSS, a set of ranked units is selected from the population, typically through a two-stage
process. In the first stage, a preliminary random sample is drawn from the population. Then, in the second stage, the
units in the sample are ranked based on the variable of interest. The final analysis is performed using the ranks rather
than the actual measurements, which helps mitigate the impact of outliers and measurement errors [15]. Several studies
have demonstrated the effectiveness of RSS improving estimation accuracy and reducing costs. For instance, [16] applied
RSS to estimate the abundance of endangered species in a wildlife reserve, achieving more precise estimates compared
to traditional sampling methods. In [17] Fisher’s data for generalization Rayleigh distribution has been investigated in
ranked set sampling. Additionally, [18] utilized RSS in a quality control study to assess the performance of manufacturing
processes, resulting in improved process monitoring and defect detection.

RSS is a powerful statistical technique that leverages the relative ordering of observations enhance estimation
precision and reduce sampling variability. Its applications span across diverse fields, offering valuable insights and cost-
effective solutions. As demonstrated by the studies conducted by [19] and [20], RSS has proven be an effective tool for
various research and practical applications. In [21] the author advances the field by using ranked set sampling techniques
in the inverse Kumaraswamy distribution in multi-stress resistance reliability estimation. The RSS procedure involves
two stages. In the first stage, a set of independent and identically distributed items are collected from the population and
arranged based on a specific attribute. From this arranged subsample, only one observation is measured and recorded,
along with its rank within the subsample. This process is repeated until the resulting sample consists of independent
order statistics. If subsamples have a constant size, such as k, and each of the k order statistics are sampled in equal
proportion across all subsamples, the ranked set sample is considered to be balanced. In the second stage, a portion of
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the ranked elements is selected for measurement while retaining their order. The RSS is a type of sampling method that
leads to more efficient estimators of various population parameters than an sampling method SRS of the same size. Let
XSRS={X1, X2, ..., Xn} be an SRS of size n drawn from a continuous population with cumulative distribution function
(CDF) and probability density function (PDF). To obtain an RSS of size n from the same population, we first draw a
random sample of size n from the population and arrange them in order without measuring them. Then, we measure only
the smallest observation, and the rest are left unmeasured. We repeat this process by drawing another sample of size n and
measuring only the second smallest observation, continuing until we measure the largest observation in the nth sample.
This process is called a one-cycle RSS of size n, and the resulting data are denoted by XRSS = {X(11), X(22), ..., X(nn)}.
See the figure below for a visualization of this procedure. Where X(i)n, (i = 1, ..., n) denote the ith ordered statistics from
the Random sample size nx.

X1:1 X2:1 ... Xn:1 −> X(11)

X1:2 X2:2 ... Xn:2 −> X(22)

... ... ... ... −> ...

X1:n X2:n ... Xn:n −> X(nn)

Finally, repeat this process r times and obtain the ranked set sample of size m = nr. It should be stated that the set
size m has a critical role in the RSS procedure. We would like to take m as large as possible to obtain more information
regarding the variable of interest. However, obviously the possibility of doing error in ranking, called imperfect ranking,
increases as m increases. Therefore, the optimal selection of m is very important to avoid the effects of imperfect ranking.
To obtain the RSS of size m = nr, repeat this process r times. It is important to note that the selection of m plays a critical
role in the RSS procedure. A larger m can provide more information about the variable of interest, but it also increases the
risk of imperfect ranking and errors. Therefore, selecting an optimal value for m is crucial to avoid the effects of imperfect
ranking.

1.4 Stress and strength with RSS sampling method
Stress-strength reliability is a fundamental concept in engineering and statistical analysis, aiming to assess the

probability of failure or success in a system under stress. Accurate estimation of stress-strength reliability is crucial
for ensuring the safety and performance of various applications, ranging from structural engineering to material science.
Traditional methods for estimating stress-strength reliability often rely on sampling method SRS techniques, which may
not fully capture the underlying variability and correlation structures present in the data [22]. To address these limitations,
researchers have turned to alternative sampling strategies, such as RSS, which has gained significant attention in recent
years. RSS is a unique sampling technique that incorporates ranking information into the sampling process, allowing for
more efficient and precise estimation of population parameters [23]. By utilizing the order statistics of observations, RSS
reduces the impact of outliers and improves the estimation accuracy compared to conventional sampling method SRS [24].

One specific area where the application of sampling method RSS has shown promise is in the estimation stress-
strength reliability. The stress-strength model considers two independent random variables: stress (X) and strength (Y ).
The objective is to estimate the reliability R = P(Y > X), which represents the probability that the strength exceeds the
stress level [25]. Traditional approaches based on sampling method SRS often assume normality and independence
between X and Y , which may not hold in practice. Traditional methods for stress-strength reliability estimation often
rely on simple random sampling (SRS) and make assumptions about the independence of stress and strength variables.
However, these approaches have several limitations: A) Dependency between stress and strength: In many real-world
scenarios, stress and strength variables are not independent. This dependency can lead to biased estimates when using
traditional methods that assume independence. B) Efficiency: Simple random sampling may not always provide the most
efficient estimates, especially when dealing with complex distributions like the beta-lomax. C) Sample size requirements:
Accurate estimation using traditional methods often requires larger sample sizes, which can be costly or impractical in
some situations. To address these limitations, researchers have explored alternative sampling methods, such as ranked
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set sampling (RSS) and its variations. The motivation for using RSS in stress-strength reliability estimation includes:
A) Improved efficiency: RSS has been shown to provide more efficient estimates compared to sampling method SRS,
often requiring smaller sample sizes to achieve the same level of precision. B) Flexibility: RSS and its variations (e.g.,
median ranked set sampling, extreme ranked set sampling) can be adapted to different distribution types and estimation
scenarios. C) Handling complex distributions: RSS methods have demonstrated effectiveness in estimating parameters
and reliability for various distributions, including the exponentiated Pareto distribution. D) Practical applicability: In some
situations, it may be easier or more cost-effective to rank a small set of units rather than obtain precise measurements for
a large sample. Recent research has focused on applying RSS and its variations to stress-strength reliability estimation for
various distributions. Al-Omari [26] investigated the use of RSS and median RSS for estimating stress-strength reliability
in the exponentiated Pareto distribution. Their results the MLE estimation based on RSS samples were more efficient than
those based on sampling method SRS. Furthermore, researchers have explored the use of copula functions to model the
dependency between stress and strength variables, addressing one of the key limitations of traditional methods [27]. This
approach, combined with advanced sampling techniques like RSS, offers promising avenues for improving the accuracy
and efficiency of stress-strength reliability estimation. As a result, distributions such as beta-Lomax and beta-Pareto
using RSS sampling methods show significant improvements in stress-strength reliability estimation. By addressing the
limitations of traditional approaches and providing greater flexibility and efficiency, these techniques help improve the
accuracy and applicability of reliability analysis in various engineering domains. Several studies have demonstrated
the advantages of using RSS for stress-strength reliability estimation. For instance, [28] applied RSS to estimate the
reliability of a bridge structure subjected to varying stress loads. Their results showed that RSS provided more accurate
estimates compared to sampling method SRS, particularly when dealing with non-normal and dependent stress-strength
distributions. Additionally, [29] conducted a simulation study comparing different sampling methods for stress-strength
reliability estimation, including sampling method RSS. Their findings indicated that sampling method RSS consistently
outperformed SRS in terms of bias reduction and confidence interval precision.

In light of these advancements, this study aims to further investigate the application of sampling method RSS in
estimating stress-strength reliability. We will build upon the existing literature by considering more complex dependence
structures, incorporating covariates, and exploring the robustness of MLE estimation based on RSS samples under various
scenarios. The findings from this research will contribute to the growing body of knowledge on efficient and accurate
estimation techniques for stress-strength reliability, with potential implications for engineering design, risk assessment,
and decision-making process.

1.5 The BL distribution

LetG(x) denote the cumulative distribution functionCDF and probability density function PDF of a random variable
X . The cumulative distribution function for a generalized class of distribution for the random variable X , as defined by
[30], is generated by applying the inverse CDF to a beta distributed random variable to obtain

F(x) =
1

B(α, β )

∫ G(x)

0
tα−1(1− t)β−1dt. α > 0, β > 0 (1)

In the present study, we let G(x) be the CDF of the Lomax random variable with parameters (λ , α) and density

function g(x) =
α
λ

[
1+

x
λ

]−(α+1)
and CDF G(x) = 1−

[
1+

x
λ

]−α
for x ≥ 0.

The corresponding probability density function for F(x) is given by

f (x) =
1

B(α, β )
[G(X)]α−1[1−G(X)]β−1Ǵ(X). (2)

From Equations (1) and (2), the PDF and CDF of the beta-Lomax random variable is given by respectively,
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f (x) =
α

λB(a, b)

[
1−
(

1+
x
λ

)−α
]a−1(

1+
x
λ

)−(αb+1)

. (3)

and

F(x) =
α

B(a, b)

a−1

∑
i=0

(
a−1

i

)
(−1)i 1

α(i+b)

[
1−
(

1+
x
λ

)−α(i+b)
]
. (4)

The BL distribution is a compound distribution characterized by a beta distribution that governs the strength and a
Lomax distribution that represents the applied stress. The beta distribution is defined on the interval (0, 1), while the
Lomax distribution is a heavy-tailed distribution often used in survival analysis. Also the BL distribution can exhibit a
variety of shapes depending on the parameters of the beta and Lomax components, ranging from unimodal to bimodal
distributions. The presence of the Lomax component can introduce heavy-tails in the stress distribution, meaning that
there is a higher probability of extreme values compared to lighter-tailed distributions. The BL distribution provides
a flexible and powerful framework for modeling the stress-strength relationship, especially in contexts where traditional
simple models may fall short due to the nature of the data. It helps in understanding the likelihood of failure under varying
stress scenarios, making it essential for effective risk management and reliability engineering.

2. Inferential aspects
In the subsequent sections, our focus will be on examining the inference for MLE based on assumptions (3) and (4).

Specifically, we assume that there is a set of independent samples of size n, denoted as X∼BL(a, b, λ , α), at our disposal.
Then we estimate the MLE of the parameters using two sampling methods, SRS and RSS.

2.1 MLE of the parameters with SRS

Maximum Likelihood Estimation (MLE) is a method of estimating the parameters of a probability distribution by
maximizing a likelihood function. This function expresses the likelihood of observing the given data as a function of the
parameters. The core idea is to choose parameter values that make the observed data “most likely” to have occurred. As
sample size increases, the estimate converges to the true parameter value and for large samples, the distribution of the
MLE is approximately normal. In general,MLEs achieve the Kramer-Rao lower bound asymptotically, whichmakes them
asymptotically efficient. MLE can be applied to a wide range of statistical models and distributions. It’s particularly useful
for complex distributions often encountered in reliability analysis, such as the inverted Kumaraswamy or beta-Pareto and
beta-lomax distributions.

The log-likelihood function of BL(a, b, λ , α) distribution may be expressed as

lnL(x; a, b, λ , α) = n
[

ln
α
λ
+ ln

Γ(a+b)
(Γ(a)+Γ(b))

]
+(a−1)

n

∑
i=1

ln

[
1−
(

1+
x
λ

)−α
]
+(αb+1)

n

∑
i=1

ln
(

1+
x
λ

)
. (5)

Differentiating Equation (5) with respect to k, α and β , respectively, and setting the results equal to zero, we have
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∂ lnL(x)
∂α

=
n
α
+nα(a−1)

n

∑
i=1

(
1+

xi

λ

)−(α+1)

[
1−
(

1+
xi

λ

)−α
] +b

n

∑
i=1

ln
(

1+
xi

λ

)
= 0 (6)

∂ lnL(x)
∂λ

=
nα(a−1)

λ 2

n

∑
i=1

(
1+

xi

λ

)−(α+1)

[
1−
(

1+
xi

λ

)−α
] − n(αb+1)

λ 2

n

∑
i=1

1(
1+

xi

λ

) − n
λ

= 0 (7)

∂ lnL(x)
∂a

= n{Ψ(a+b)−Ψ(a)}+
n

∑
i=1

ln
[

1+
(

1+
xi

λ

)−α
]
= 0 (8)

∂ lnL(x)
∂b

= n{Ψ(a+b)−Ψ(b)}+α
n

∑
i=1

ln
(

1+
xi

λ

)
= 0. (9)

The ML estimates of the parameters α , λ , a and b (represented respectively by α̂ , λ̂ , â and b̂) can be obtained by
solving Equations (6)-(9) alternatively. By applying the same procedure to a second sample Yj, ( j = 1, ..., n), analogous
results to those derived for the first sample are obtained. Expectations can be obtained using a numerical method.

2.2 MLE of the parameters with RSS

Ranked set sampling RSS is an effective technique for acquiring data when measuring units in a population is costly,
but ranking them according to the variable of interest is relatively easy. MLE estimation based on RSS samples, including
MLE, have been shown to outperform their Simple Random Sampling (SRS) counterparts significantly, providing
more accurate parameter estimates. Studies have demonstrated that RSS-based estimators are more efficient than SRS-
based methods, especially when using the same number of measured units. MLE with sampling method RSS has been
successfully applied to estimate parameters of various complex distributions used in reliability studies and life testing, such
as the Inverted Kumaraswamy distribution [31]. The effectiveness of RSS-based MLE has been demonstrated through
applications to real-world datasets, such as waiting times between consecutive eruptions of natural phenomena [31]. RSS
can be used not only with MLE but also with other estimation techniques like maximum product of spacings, least squares,
and various goodness-of-fit based methods, allowing for comprehensive comparisons. These motivations highlight that
MLE with RSS offers a powerful and flexible approach to parameter estimation, particularly valuable in scenarios where
data collection is challenging or expensive, and when dealing with complex or bounded distributions common in reliability
and life testing applications. When applying MLE within the framework of RSS, here’s how the two concepts interact:

1) MLE with Ranked Data: By using the ranked data from RSS, the likelihood function can be constructed to reflect
the rankings. This allows for potentially more informative data to be used in the estimation process.

2) Asymptotic Properties: Similar to standard MLE, the estimates derived from RSS will converge to the true
underlying parameter values as the sample size increases.

3) Efficiency Gains: The combination of ranked data and MLE often leads to estimators that not only approximate
the Cramer-Rao lower bound more effectively but also maintain desirable asymptotic properties, making them robust for
a variety of applications in reliability and other fields.

Let X(i)is, (i = 1, ..., nx, s = 1, ..., rx) denote the ith ordered statistics from the ith set of size nx in the sth cycle of
size rx, where m = nxry sample of size for X and Y( j) jl , ( j = 1, ... ny, l = 1, ..., ry) denote the jth ordered statistics from
the jth set of size my in the lth cycle of size ry, where m = nyry sample of size for Y . Here, X and Y have BL(a, b, α, λ )
and BL(c, d, β , θ) densities, respectively. For the sake of simplicity, we use the notations Xis and Yjl instead of the
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notations X(i)is and Y( j) jl , respectively. It should be mentioned that if the judgment ranking is perfect, the pdf of the ith
ordered statistics Xis is given below

fi(xis) =
1

B(i, nx − i+1)
[F(xis)]

i−1[1−F(xis)]
nx−i f (xis), (10)

In addition, the PDF of Yjl has a form similar to (10). First, we need to calculate the relationship (10) for the BL
distribution with (a, b, α, λ ).

fi:n(x) =
1

B(i, n− i+1)
[F(x)]i−1[1−F(x)]n−i f (x)

=
1

B(i, n− i+1)
[F(x)]i−1

n−i

∑
j=0

(−1) j
(

n− i
j

)
[F(x)] j f (x)

=
1

B(i, n− i+1)

n−i

∑
j=0

(−1) j
(

n− i
j

)
[F(x)]i+ j−1 f (x).

Then we can write:

Fi:n(x) =
∫ ∞

0
fi:n(x)dx

=
∫ ∞

0

1
B(i, n− i+1)

n−i

∑
j=0

(−1) j
(

n− i
j

)
[F(x)]i+ j−1 f (x)dx

=
n−i

∑
j=0

(−1) j
(n−i

j

)
B(i, n− i+1)

∫ ∞

0
[F(x)]i+ j−1 f (x)dx

=
n−i

∑
j=0

(−1) j
(n−i

j

)
B(i, n− i+1)(i+ j)

[F(x)]i+ j.

In this part, we use the relationships found in the [32] to calculate

(I) F(x) =
∞

∑
t=0

btG(x)t (11)

(II) F(x)n =
∞

∑
t=0

dn, tG(x)t (12)

where
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bt =
∞

∑
j=0

∞

∑
l=t

p j(−1)l+t
(

a+ j
l

)(
l
t

)
& p j =

(−1) jΓ(a+b)
Γ(a)Γ(b− j)Γ( j+1)(a+ j)

and dn, t ; t = 1, 2, ... are easily determined from the recurrence equation

dn, t = (tb0)
−1

t

∑
m=1

[m(n+1)− t]bmdn, t−m,

and dn, 0 = bn
0. Hence, dn, t comes directly from dn, 0, ..., dn, t−1 and, therefore, from b0, ..., bt . With this description,

the proposition (II) (12) is confirmed. And finally, according to the presented relations, we have

Fi:n(x) =
∞

∑
t=0

n−i

∑
j=0

(−1) j
(

n− i
j

)
di+ j, t

B(i, n− i+1)(i+ j)
G(x)t (13)

and

fi:n(x) =
∞

∑
t=0

n−i

∑
j=0

t(−1) j
(

n− i
j

)
di+ j, t

B(i, n− i+1)(i+ j)
G(x)t−1g(x). (14)

To obtain the ML estimator of R we first derive the ML estimators of parameters. Therefore, the likelihood function
based on RSS is written as shown below

L(x; a, b, α, λ ) =
nx

∏
i=1

rx

∏
s=1

fi(xis)

=
nx

∏
i=1

rx

∏
s=1

∞

∑
l=0

∞

∑
t=0

m−i

∑
j=0

αt(−1) j+l
(

t −1
l

)(
m− i

j

)
di+ j, t

λB(i, m− i+1)(i+ j)

[
1+

xis

λ

]−α(l+1)

=

 ∞

∑
l=0

∞

∑
t=0

m−i

∑
j=0

αt(−1) j+l
(

t −1
l

)(
m− i

j

)
di+ j, t

λB(i, m− i+1)(i+ j)


nxrx(

nx

∏
i=1

rx

∏
s=1

∞

∑
l=0

[
1+

xis

λ

]−α(l+1)
)
. (15)

Then, the log-likelihood function is

lnL(x; a, b, α, λ ) = Q+nxrx(lnα)−nxrx(lnλ )+ rx ln

(
nx

∑
i=1

∞

∑
t=0

m−i

∑
j=0

di+ j, t

)
+

nx

∑
i=1

rx

∑
s=1

ln

(
∞

∑
l=0

[
1+

xis

λ

]−α(l+1)
)
. (16)
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Differentiating Equation (16) with respect to a, b, α and λ , respectively, and setting the results equal to zero, we
have

∂ lnL(x)
∂α

=
nxrx

α
−

nx

∑
i=1

rx

∑
s=1

∞

∑
l=0

(l +1) ln
[
1+

xis

λ

]
= 0 (17)

∂ lnL(x)
∂λ

=
nxrxα

λ 2

nx

∑
i=1

rx

∑
s=1

∞

∑
l=0

(l +1)[
1+

xis

λ

] − nxrx

λ
= 0 (18)

∂ lnL(x)
∂a

= rx

nx

∑
i=1

∞

∑
t=0

m−i

∑
j=0

∂ l
∂a

di+ j, t

di+ j, t
= 0 (19)

∂ lnL(x)
∂b

= rx

nx

∑
i=1

∞

∑
t=0

m−i

∑
j=0

∂ l
∂b

di+ j, t

di+ j, t
= 0 (20)

The maximum likelihood estimates α̂ , λ̂ , â and b̂ for the parameters α , λ , a and b, respectively, are obtained by
solving alternatively Equations (17)-(20). By applying the same procedure for the second sampleY( j) jl , ( j = 1, ..., ny, l =
1, ..., ry), our results are similar to those of the higher process. The expectations are not in close form. we resort to iterative
methods for the ML estimators.

2.3 MLE of R(t) = P(X > t)

Suppose X follows the BL distribution with parameters a, b, α, λ . Using the Beta distribution function, it can be
easily shown that,

R = P(X > t) = FB(b, a; W ).

Where FB(b, a; W ) = IW (b, a) is the distribution function of the beta distribution with W =
(

1+
t
λ

)−α
.

It can be easily seen from (3)

R = P(X > t) =
∫ ∞

t
fX (x)dx =

∫ ∞

t

α
λB(a, b)

[
1−
(

1+
x
λ

)−α
]a−1(

1+
x
λ

)−(αb+1)
dx

=
∫ W

0

1
B(a, b)

[1− z]a−1zb−1dz = FB(b, a; W ). (21)

By setting z =
(

1+
x
λ

)−α
andW =

(
1+

t
λ

)−α
the above integration becomes. Now to compute the MLE of R(t),

we use the estimates of parameters that were calculated in the previous section. Therefore, according to the reliability
property of MLE, we can write,
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ˆR(t) = R(α̂, β̂ , θ̂ , k̂). (22)

2.4 MLE of P = P(Y < X)

Suppose that X ∼ BL(a, b, α, λ ) and Y ∼ BP(c, d, β , θ) are independent. That it can be shown that,

R = P(Y < X) = E[P(Y < X |X)] = E
[∫ X

0
fY (y)dy

]
= E[Fy(X)].

As the same method reported in [32] for BL distribution we have,

Fy(X) =
∞

∑
k=0

∞

∑
j=0

Wk jX j −C1. (23)

Where

Wk j =

(
β −1

k

)(
−β (k+d)

j

)
(−1)k+1

(k+d)B(c, d)θ j . (24)

And

C1 =
∞

∑
0

(
β −1

k

)
(−1)k+1

(k+d)B(c, d)
.

Therefore we can write,

R =
∞

∑
k=0

∞

∑
j=0

Wk jE[X j]−C1. (25)

In Equation (25), X ∼ BL(a, b, α, λ ) with PDF (3). Then it can be easily for the X ∼ BL(a, b, α, λ ) that,

fX (x) =
∞

∑
r=0

∞

∑
p=0

Qrpxp

Where
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Qrp =

α
(

α −1
r

)(
−α(r+b)−1

p

)
(−1)r

θ p+1B(a, b)
.

Therefore we can write,

E(Xk) =
∞

∑
r=0

∞

∑
p=0

Qrp

(p+ k+1)
.

And finally, using the above relations, we have

R(a, b, α, λ , c, d, β , θ) =
∞

∑
k=0

∞

∑
j=0

∞

∑
r=0

∞

∑
p=0

Wk jQrp

(p+ k+1)
−C1. (26)

Now to compute the MLE of R, we use the estimates of parameters that calculated in the previous section. Therefore,
according to the reliability property of MLE, we can write,

R̂ = R(â, b̂, α̂, λ̂ , ĉ, d̂, β̂ , θ̂). (27)

3. Numerical experiments and discussions
The BL distribution is particularly useful in engineering fields, financial risk assessment, and any area where fatigue

or failures due to stress are of concern. It can help in quality control, assessing acceptable levels of stress in materials and
components. The model can be used for reliability function analysis, allowing for the calculation of the reliability R(t),
which gives the probability that the systemwill perform successfully up to time t. In this section, based on the relationships
obtained in the previous sections, we perform simulation studies to compare the performance of ˆR(t) for different sample
sizes. We generate 10,000 samples each of size n from the Beta-Lomax distrobution and repeat this procedure for several
values of R(t). Figures 1 and 2 show the MSE of the MLE of R(t) for different sample sizes n and parameters. From
these figures we note that the MSE of the MLE of R(t) is always greate when n is less than 20, however for large sample
sizes (more than 20) this estimator of R(t) is better and almost efficient. In Table 1 the estimation of P = P(Y < X),
when X ∼ BL(3, 2, 3, 4) and Y ∼ BL(1, 2, 2, 1.5) are independent random variables from Beta-Lomax distribution
using ranked set sampling and simple random sampling has been compared. The plots in Figure 3 shows the process of
change Bias and MSE in P when X ∼ BL(3, 2, 3, 4) and Y ∼ BL(1, 2, 2, 1.5) are independent random variables from
Beta-Lomax distribution. We can see from Figure 3 that the RSS produces smaller absolute MSEs compared to sampling
method SRS for sample size 40 or less. In large samples, many statistical properties hold (e.g., normality due to the
Central Limit Theorem), making MSE a robust metric for comparing model performance. Beyond a certain sample size,
improvements in MSE may become marginal. Larger datasets can help refine the model, but the marginal gain might not
justify the added complexity or cost of data collection.
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Figure 1. The performance of MSE of R(t) by the MLE for different sample sizes n

Table 1. Estimation of P = P(Y < X)

Sampling method results n = 9 n = 15 n = 25 n = 40 n = 50 n = 100

MLE (SRS)

P 0.8887 0.8887 0.8887 0.8887 0.8887 0.8887

P̂ 0.8231 0.8347 0.8362 0.8408 0.8441 0.8447

Bias (P) 0.0656 0.0540 0.0525 0.0480 0.0446 0.0440

MSE (P) 0.0087 0.0055 0.0045 0.0034 0.0029 0.0024

MLE (RSS)

P 0.8887 0.8887 0.8887 0.8887 0.8887 0.8887

P̂ 0.8283 0.8358 0.8412 0.8414 0.8444 0.8444

Bias (P) 0.0604 0.0529 0.0475 0.0573 0.0443 0.0443

MSE (P) 0.0065 0.0042 0.0032 0.0037 0.0023 0.0022
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Figure 2. The performance of MSE of R(t) by the MLE for different sample sizes n

Table 2. Estimation of P = P(Y < X)

Sampling method results n = 9 n = 15 n = 25 n = 40 n = 50 n = 100

MLE (SRS)

P 0.5750 0.5750 0.5750 0.5750 0.5750 0.5750

P̂ 0.5634 0.5590 0.5644 0.5658 0.5653 0.5639

Bias (P) 0.0116 0.0081 0.0106 0.093 0.0097 0.0112

MSE (P) 0.0107 0.0084 0.0051 0.0009 0.0027 0.0014

MLE (RSS)

P 0.5750 0.5750 0.5750 0.5750 0.5750 0.5750

P̂ 0.5621 0.5655 0.5660 0.5655 0.5674 0.5643

Bias (P) 0.0129 0.0095 0.090 0.0096 0.0077 0.0109

MSE (P) 0.0069 0.0041 0.0018 0.0009 0.0006 0.0004
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In Table 2 the estimation ofP=P(Y <X), whenX ∼BL(3, 2, 5, 4) andY ∼BL(1, 2, 1, 1.5) are independent random
variables from Beta-Lomax distribution using ranked set sampling and simple random sampling has been compared. The
plots in Figure 4 shows the process of change Bias and MSE in P when X ∼ BL(3, 2, 5, 4) and Y ∼ BL(1, 2, 1, 1.5) are
independent random variables from Beta-Lomax distribution. According to the graphs, it can be seen that in n less than 50,
the performance of the MLE estimation based on RSS samples is better than the MLE estimation based on SRS samples.
With increasing n, there is no significant difference between the performance of estimators in these two methods.

Figure 3. Performance of Bias and MSE in P

Figure 4. Performance of Bias and MSE in P

In Table 3 the estimation ofP=P(Y <X), whenX ∼BL(2, 4, 3, 2) andY ∼BL(1, 2.5, 3, 4) are independent random
variables from Beta-Lomax distribution using ranked set sampling and simple random sampling has been compared.
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Table 3. Estimation of P = P(Y < X)

Sampling method results n = 9 n = 15 n = 25 n = 40 n = 50 n = 100

MLE (SRS)

P 0.9324 0.9324 0.9324 0.9324 0.9324 0.9324

P̂ 0.8879 0.8935 0.8966 0.8979 0.8987 0.8987

Bias (P) 0.0445 0.0389 0.0358 0.0345 0.0337 0.0337

MSE (P) 0.0047 0.0030 0.0021 0.0017 0.0016 0.0013

MLE (RSS)

P 0.9324 0.9324 0.9324 0.9324 0.9324 0.9324

P̂ 0.8927 0.8951 0.8989 0.9002 0.9013 0.9008

Bias (P) 0.0397 0.0373 0.0335 0.0322 0.0311 0.0316

MSE (P) 0.0047 0.0021 0.0013 0.0011 0.0010 0.0010

The plots in Figure 5 shows the process of change Bias and MSE in P when X ∼ BL(2, 4, 3, 2) and Y ∼
BL(1, 2.5, 3, 4) are independent random variables from Beta-Lomax distributin. According to the graphs, it can be
seen that in n less than 50, the performance of the MLE estimator based on RSS is better than the MLE estimation based
on SRS samples. With increasing n, there is no significant difference between the performance of estimators in these
two methods. Considering that in this research, the comparison between the MLE estimation based on RSS and SRS
samples was done considering different parameters and no restrictions were applied in the selection of parameters, it can
be concluded that in general, for n less than 50, the error of the MLE estimation based on RSS samples is less and therefore
more suitable. Given that large sample sizes can impose large costs on researchers, it is worthwhile to use estimators that
provide better results in small sample sizes. RSS sampling can improve the precision of estimates by allowing the same
sampling unit to be observed multiple times. By accumulating data across several repetitions, researchers can derive more
accurate estimates and reduce variability, thereby requiring a smaller sample size compared to SRS for the same level of
precision. While both SRS and RSS sampling methods have distinct advantages, RSS sampling can provide significant
benefits related to sampling volume, particularly in improving precision, enhancing data collection, managing rare events,
and reducing bias. These strengths make RSS especially useful in contexts requiring detailed understanding or frequent
measurements.

Figure 5. Performance of Bias and MSE in P
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4. Real data analysis
Studying the failure times of materials such as Kevlar 49/epoxy composites is very important in various engineering

andmaterials science applications, especially in fields such as aerospace, automotive, and civil engineering. In this section,
we review actual data collected on 51 observations of the failure time of a Kevlar 49/epoxy foundation under 90% pressure.
Kevlar 49 is a high-strength synthetic fiber known for its excellent tensile strength and durability. When combined with
epoxy resin, it forms a composite material that is widely used in high-performance applications. The failure times can
be collected through controlled experiments where Kevlar 49/epoxy samples are subjected to increasing pressure until
failure occurs. The time until failure is recorded for each sample. The data comes from the studies in [33] based on
the recorded failure times in hours. In this research, each unit of the society has an equal chance to be selected. This
method reduces bias and helps achieve a representative sample. If the materials were selected without any bias from a
larger batch of Kevlar 49/epoxy composites, this could represent simple random sampling (SRS). MLE can be used to
estimate the parameters of the underlying distribution of failure times, which can be modeled using various distributions
including the beta-Lomax. Data for these sample are provided in Tables 4 and 5. The data are fitted by using the BLD. The
Kolmogorov-Smirnov (K-S) goodness-of-fit statistic is used for the comparison of the fits. The parameters are estimated
by the maximum likelihood technique. The maximum likelihood estimates and the P-values based on the (K-S) goodness-
of-fit statistics are given and presented in Table 6. Let us assign the random variable X ∼ fX (x) to Data set (I) and random
variableY ∼ fY (y) to Data set (II) that have been reproduced in the following tables. According to the Figures 6 and 7, and
Tables 6 and 7, it is clear that our distributions have a good fit on these data. In the following, to show the applicability of
the relations obtained in the article, we will calculate R(t). Considering that the real data was collected by simple random
sampling method (SRS), we also use parameters estimated by MLE and sampling method (SRS) to estimate R(t). In Table
8 and 9 the observed R(t) values for data set (I) and data set (II), and their predicted values are calculated based on the
parameters estimated in Table 6 and 7 for different t. Also, the values of bias and MSE have been calculated and included.
The results show that the estimator R(t) is well able to estimate the real probability value.

Table 4. Data set (I)

I

0.01 0.24 0.80 1.45 0.01 0.24 0.80 1.50 0.02 0.35 0.90 1.53 0.03

0.36 0.92 1.54 0.05 0.42 1.00 1.58 0.06 0.43 1.01 1.60 0.08 0.56

1.05 1.80 0.09 0.60 1.10 1.80 0.10 0.65 1.15 2.05 0.11 0.67 1.18

2.14 0.13 0.72 1.31 3.03 0.18 0.72 1.33 3.03 0.23 1.43 7.89

Table 5. Data set (II)

II

0.02 0.29 0.83 1.51 0.02 0.03 0.85 1.52 0.03 0.38 0.95 1.54 0.04

0.40 0.99 1.55 0.07 0.52 1.02 1.63 0.07 0.54 1.03 1.64 0.09 0.60

1.10 1.81 0.10 0.63 1.11 2.02 0.11 0.68 1.20 2.17 0.12 0.72 1.29

2.33 0.19 0.73 1.34 3.34 0.20 0.79 1.40 4.20 0.23 4.69
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Table 6. The parameters estimates and goodness of fit criteria for data set (I)

Distribution MLE (SRS) (K-S) statistics p-value

Beta-Lomax

â = 2.25 0.9754 0.0694

b̂ = 2.38

λ̂ = 0.156

α̂ = 5.49

Figure 6. Plot of the PDF for Beta-Lomax based on data set (I)

Figure 7. Plot of the PDF for Beta-Lomax based on data set (II)
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Table 7. The parameters estimates and goodness of fit criteria for data set (II)

Distribution MLE (SRS) (K-S) statistics p-value

BL

â = 1.61 1.1434 0.0714

b̂ = 1.97

λ̂ = 0.14

α̂ = 5.49

Table 8. Observed R(t) and their predicted values for data set (I)

Results t = 0.05 t = 0.1 t = 0.5 t = 1 t = 2 t = 3 t = 5

Observed R(t) 0.901 0.823 0.627 0.411 0.098 0.059 0.019

Predicted R(t) 0.897 0.798 0.574 0.333 0.059 0.035 0.018

Bias 0.004 0.025 0.053 0.078 0.039 0.024 0.001

MSE 0.0000 0.0000 0.0002 0.0006 0.0001 0.0005 0.0000

Table 9. Observed R(t) and their predicted values for data set (II)

Results t = 0.05 t = 0.1 t = 0.5 t = 1 t = 2 t = 3 t = 5

Observed R(t) 0.916 0.827 0.662 0.427 0.124 0.062 0.000

Predicted R(t) 0.909 0.794 0.587 0.337 0.104 0.043 0.008

Bias 0.007 0.033 0.075 0.090 0.020 0.019 0.008

MSE 0.0000 0.0010 0.0056 0.0081 0.0004 0.0003 0.0000

Figure 8. The performance of MSE of R(t) for data set (I) and data set (II)
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Figures 8 and 9 show the MSE and Bias of Predicted R(t) for data set (I) and data set (II).

Figure 9. The performance of Bias of R(t) for data set (I) and data set (II)

Figures 10 shows the MSE and Bias of Predicted R(t) for data set (I) and data set (II).

Figure 10. The performance of MSE and Bias of R(t) for different value t for data set (I) and data set (II)

Now, for the above two data sets, we obtain estimators of P = P(Y < X) for BL distribution, and the results are
presented in Table 10.
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Table 10. The MLE and of P = P(Y < X)

Distribution P̂

Beta-Lomax 0.327

5. Conclusions
Based on the analysis of the provided data sets (Data set I and Data set II) using the BL distribution, the following

conclusions can be drawn:
1. Goodness-of-fit: The BL distribution provides a good fit for both data sets, as indicated by the K-S goodness-of-fit

statistics and p-values presented in Tables 6 and 7.
2. Parameter estimates: The MLE technique was used to estimate the parameters of the BL distribution for each data

set. The estimated parameter values are presented in Tables 6 and 7.
3. Predicted R(t): The observed and predicted values of the reliability function R(t) for different time points (t) were

calculated based on the estimated parameters. Tables 8 and 9 show the observed and predicted R(t) values for Data set I
and Data set II, respectively. The bias and MSE of the predictions were also calculated.

Performance evaluation: Figures 6, 7, 8, 9, and 10 provide visual representations of the performance of the predicted
R(t) values in terms MSE and bias for both data sets.

6. Suggestion
Based on the results obtained from the analysis, the following suggestions can be made:
1. Further validation: While theBL distribution appears to provide a good fit for the given data sets, it is recommended

to validate the results using additional statistical tests or alternative distributions to ensure the robustness of the findings.
2. Model comparison: It would be beneficial to compare the performance of the BL distribution with other competing

distributions commonly used for modeling failure times, such as Weibull or log-normal distributions. This can help
determine if the BL distribution is the most appropriate choice for these data sets.

3. Sample size consideration: The data sets used in this analysis consist of 51 and 50 observations, respectively. It is
worth exploring the impact of sample size on the estimation results and assessing whether larger sample sizes would lead
to more reliable parameter estimates and predictions.

4. Sensitivity analysis: Conducting a sensitivity analysis by varying the assumptions or parameters of the BL
distribution can provide insights into the robustness of the results and help identify potential sources of uncertainty.

5. External validation: available, it would be valuable to compare the estimated parameters and predictions from the
BL distribution with independent data sets or real-world observations to assess the generalizability and applicability of
the findings.

6. Practical implications: Consider the practical implications of the estimated reliability function R(t) and the
estimated probability P(Y < X). How can these results be used in decision-making processes or applications related
to the failure time of Kevlar 49/epoxy strands under pressure?
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