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1. Introduction
In 1983, Blyth and Varlet [1] introduced the class MS of MS-algebras and, in [2], they obtained all the subclasses of

MS. This class is an abstraction of the classes of de Morgan and Stone algebras. Many results on MS-algebras and related
structures are established in [3–8].

In 1996, Ševcovic [9] dropped the distributive property of MS-algebras to get a new more general class the so
called generalized MS-algebras (GMS-algebras). Badawy [10] introduced and characterized modular GK2-algebras with
distributive skeletons in terms of quadruples. In 2015, Badawy [11] considered a subclassGK2 (GK2-algebras) of the class
GMS (of all generalized MS-algebras) which contains the class K2. He constructed PGK2-algebras from PGK2-triples
and defined the isomorphism between two PGK2-triples. Also, he proved a full correspondence between PGK2-algebras
and the associated PGK2-triples. In [12], Badawy et al. studied 2-Permutability, n-Permutability, and strong extensions
for PGK2-algebras by using the congruence pair technique.

The present work build upon the previous as follows: In section 3, we introduce and characterize many special
cases of principal GK2-algebras. We introduce and constructed principal GK2-algebras with distributive skeletons (PGK2-
algebras). Also, PGK2-triples are defined and utilised to reveal many properties of PGK2-algebras. Also, we determine
S-algebras, principal S-algebras (PS-algebras) and modular S-algebras and study their properties. Also, we introduce and
characterize S-triple, principal S-triples and principal Stone triples, then we construct principal S-algebras and principal
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Stone algebras via principal S-triples (PS-triples) and principal Stone triples, respectively. Finally, we determine and
describe the largest principal S-algebras and principal Stone algebras. In section 4, perfect extensions of PGK2-algebras
are considered. We proved that a PGK2-algebra C is a perfect extension of its d-subalgebra C1 if and only if C◦◦ is a
perfect extension of C◦◦

1 and F(C) is a perfect extension of F(C1).

2. Preliminaries
This section contains the background material which we need in this paper. For details on lattices we refer to [13]

and [14]; for details on MS-algebras and GMS-algebras see [1, 2, 9], and [15] and for details on GK2-algebras and PGK2-
algebras we refer to [10–12].

A generalized De Morgan algebra (GM-algebra) is an algebra (C; ∨, ∧, −, 0, 1) of type (2, 2, 1, 0, 0) where
(C; ∨, ∧, 0, 1) is a bounded lattice and for every i, j ∈C the unary operation − of involution satisfies:

¯̄i = i,

(i∨ j) = ī∧ j̄,

1̄ = 0.

A generalized Kleene algebra (GK-algebra) is a generalized De Morgan algebra with

i∧ i◦ ≤ j∨ j◦, for every i, j ∈C.

A universal algebra (C; ∨, ∧, ◦, 0, 1) where (C; ∨, ∧, 0, 1) is a bounded lattice is called a generalized MS-algebra
(GMS-algebras) if:

i ≤ i◦◦,

(i∧ j)◦ = i◦∨ j◦,

1◦ = 0.

Lemma 1 [13] Let C be a GMS-algebra, then for any elements i, j of C, we have
(1) 0◦ = 1,
(2) i ≤ j ⇒ i◦ ≥ j◦,
(3) i◦ = i◦◦◦,
(4) (i∨ j)◦ = i◦∧ j◦,
(5) (i∧ j)◦◦ = i◦◦∧ j◦◦,
(6) (i∨ j)◦◦ = i◦◦∨ j◦◦.
Definition 1 [11] A GK2-algebra C is a GMS-algebra satisfying
(1) i∧ j◦ = i◦◦∧ i◦,
(2) i∧ i◦ ≤ j∨ j◦.
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For any elements i, j of C.
Definition 2 [12] An algebra (C; ∨, ∧, ∗, 0, 1) is called an S-algebra if (C; ∨, ∧, 0, 1) is a bounded lattice and a

unary operation ∗ satisfying
(1) i∧ i∗ = 0,
(2) (i∨ j)∗ = i∗∧ j∗,
(3) 1∗ = 0,
(4) i∨ i∗∗ = 1.
It is known that an S-algebra (C; ∗) is pseudo-complemented lattice (p-algebra) satisfying the Stone identity i∗∨ i∗∗ =

1, where ∗ is called the pseudo-complementation and i∗ = max{ j ∈C : i∧ j = 0}.
Lemma 2 [11] Let C be a GK2-algebra. Then
(1) C◦◦ = {i ∈C : i = i◦◦} is a GK-algebra,
(2) F(C) = {i ∈C : i◦ = 0} is a filter of C.
The algebra C◦◦ is called the skeleton of C and F(C) is called the filter of dense elements of L.
Definition 3 [11] A GK2-algebra (C; ∨, ∧, ◦, 0, 1) is said to be a PGK2-algebra if:
(1) F(C) = [d) for some d ∈C, that is, F(C) is a principal filter of C,
(2) The generator d is a distributive element of C, that is, d ∨ (i∧ j) = (d ∨ i)∧ (d ∨ j) for any i, j ∈C,
(3) i = i◦◦∧ (i∨d) for any i ∈C.
Definition 4 [11] A PGK2-triple is (N, F, ϑ), where
(1) N is a GK-algebra,
(2) F is a bounded lattice,
(3) ϑ : N −→ F is a (0, 1)-lattice homomorphism from N into F and ϑ(n) = 0F for any n ∈ K∧.
Theorem 1 [11] Let (N, F, ϑ) be a PGK2-triple.Then

I = {(q, m) : q ∈ N, m ∈ F, m ≤ ϑ(q)};

is a PGK2-algebra with F(I) = [(1N , 0F)) if we define

(q, m)∨ (w, n) = (q∨w, m∨n)

(q, m)∧ (w, n) = (q∧w, m∧n)

(q, m)◦ = (q◦, ϑ(m◦))

1I = (1N , 1F)

0I = (0N , 0F).

Moreover, I◦◦ ∼= N and F(I)∼= F.
Theorem 2 [11] Let C be a principal GK2-algebra with a smallest dense element d. Then any congruence relation

θ of C determines a congruence pair (θC◦◦ , θF(C)). Conversely, every congruences pair (θ1, θ2) uniquely determines a
congruence relation θ onC satisfies θC◦◦ = θ1 and θF(C) = θ2, by the rule i ≡ j(θ)⇔ i◦◦ ≡ j◦◦(θ1) and i∨d ≡ j∨d(θ2).

Lemma 3 [11] LetC be a principal GK2-algebra and A(C) be the set of all congruence pairs ofC. Then the following
statements hold:

(1) (∀β ∈ Con(F(C)))(△C◦◦ , β ) ∈ A(C),
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(2) (∀α ∈ Con(C◦◦))(α, ∇F(C)) ∈ A(C).

In this section, we construct certain PGK2-algebras via certain PGK2-triples and study their related properties. We
determine S-algebras, PS-algebras and modular S-algebras and study their properties. Also, we introduce and characterize
S-triples, PS-triples and principal Stone triples. Then we construct PS-algebras and principal Stone algebras via PS-triples
and principal Stone triples, respectively. Finally, we determine and describe the d-S-subalgebra and the largest d-Stone
subalgebra of a modular PGK2

3. Basic properties of PGK2-algebras

-algebra.
Definition 5 If a PGK2-algebra C has a distributive skeleton, that is, C◦◦ is a Kleene algebra, we call it a PGK2-

algebra.
Definition 6 A PGK2-triple (N, F, ϑ) is called a PGK2-triple if N is a Kleene algebra.
Example 1 Figure 1 represents PGK2-algebra C with F(C) = [d).

Figure 1. C is a PGK2-algebra

It is clear that F(C) = [d) is a modular lattice and C◦◦ = {0, n, 1} is a Kleene algebra which is isomorphic to K.
Theorem 3 Let (N, F, ϑ) be a PGK2-triple. Then

C = {(n, i) : n ∈ N, ∈ F, i ≤ ϑ(n)}

is a PGK2-algebra.
Proof. We know that C is a PGK2-algebra from Theorem 1 such that C◦◦ ∼= N. Since N is a Kleene algebra, then

C◦◦ is distributive. Thus C◦◦ is a Kleene algebra. Hence, C is a PGK2-algebra.
Let (C; ∨, ∧, ◦, 0, 1) be a Kleene algebra. An element j ∈C is called a central element ofC if j∨ j◦ = 1. Then the

set T (C) = { j ∈C : j∨ j◦ = 1} is the greatest Boolean subalgebra of C and T (C) is called the center of C.
Definition 7 A PGK2-triple (N, F, ϑ) is called a modular PGK2-triple if F is a bounded modular lattice. Theorem

4 describes the greatest d-S-subalgebra of a modular PGK2-algebra which is constructed from a modular PGK2-triple
(N, F, ϑ).

Theorem 4 Let (N, F, ϑ) be a modular PGK2-triple, T (N) the center of N and F1 = F . Then the PGK2-algebra
which associated with (N, F, ϑ) is a modular GK2-algebra and the following statements hold:

(1) T (C◦◦) = {(n, ϑ(n)) : n ∈ T (N)} ∼= T (N),
(2) C1 = {(n, i) ∈C : n ∈ T (N)} is the largest d-S-subalgebra of C,
(3) F(C1)∼= F(C) and T (C◦◦)∼=C◦◦

1 .
Proof. We have to prove that the PGK2-algebra

Contemporary Mathematics 620 | Ahmed Gaber, et al.



C = {(n, i) : n ∈ N, i ∈ F, i ≤ ϑ(n)}

which is found from the PGK2-triple (N, F, ϑ) is a modularGK2-algebra. Let (n, i), (m, j), (s, k)∈C and (n, i)≥ (s, k).
Then, we have

(n, i)∧ ((m, j)∨ (s, k)) = (n, i)∧ (m∨ s, j∨ k)

= (n∧ (m∨ s), i∧ (m∨ s)) by the modularity of N and F

= ((n∧m)∨ s, (i∧ j)∨ k) as n ≥ s, i ≥ k

= (n∧m, i∧ j)∨ (s, k).

Therefore, C is a modular lattice. Thus, C is a modular GK2-algebra.
(i) We have

T (C◦◦) = {(n, ϑ(n)) ∈C◦◦ : (n, ϑ(n))◦∨ (n, ϑ(n))◦◦ = (1, 1)}

= {(n, ϑ(n)) ∈C◦◦ : (n◦, ϑ(n◦))∨ (n, ϑ(n)) = (1, 1)}

= {(n, ϑ(n)) ∈C◦◦ : (n∨n◦, ϑ(n∨n◦)) = (1, 1)}

= {(n, ϑ(n)) ∈C◦◦ : n∨n◦ = 1}

= {(n, ϑ(n)) ∈C◦◦ : n ∈ T (N)}

∼= T (N).

(ii) We need to show that the Stone identity j◦∨ j◦◦ = 1 holds for any j = (n, i) ∈C1.

(n, i)◦∨ (n, i)◦◦ = (n◦, ϑ(n◦))∨ (n, ϑ(n))

= (n∨n◦, ϑ(n∨n◦))

= (1, 1) as n ∈ T (N).
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Thus C1 is an S-subalgebra of a PGK2-algebra. Since (0, d) ∈C, then C1 is an d-S-subalgebra of C. Let W be any
d-S-subalgebra ofC. Let (n, i) ∈W . Then, (n, i)◦∨ (n, i)◦◦ = (1, 1). Then n∨n◦ = 1 and so n ∈ T (N). Then (n, i) ∈C1.
Therefore, W ⊆C1.

(iii) We notice that

F(C1) = {(n, i) ∈C1 : (n, i)◦ = (0N , 0F)}

= {(n, i) ∈C1 : (n, ϑ(n))◦ = (0N , 0F)}

= {(n, i) ∈C1 : n = 1N , i ∈ F, i ≤ ϑ(n)}

= {(1, i) : i ∈ F}

∼= F(C),

and

C◦◦
1 = {(n, i)◦◦ : (n, i) ∈C1}

= {(n, ϑ(n)) : n ∈ T (N)}

∼= T (C◦◦).

Remark 1 A GK2-algebra C satisfying the Stone identity

i◦∨ i◦◦ = 1,

for all i ∈C need not to be an S-algebra as explained in the next example.
Example 2 In the following algebra, we see that C satisfies the Stone identity but C is not a pseudo-complemented

lattice (p-algebra) as each of the elements n, m, s, q, α, β , γ and µ does not have a pseudo-complement on C.
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Figure 2. C is not a pseudo-complemented lattice

Remark 2 IfC is a GK2-algebra, then the identity i∧ i◦ = i◦∧ i◦◦ is not equivalent to the identity i = i◦◦∧ (i∨ i◦), for
all i ∈C. For example, consider the GK2-algebra C as in Figure 3.

Figure 3. C is a GK2-algebra

We observe that γ◦◦∧ (γ ∨ γ◦) = s ̸= γ but C satisfies the identity i∧ i◦ = i◦◦∧ i◦ for all i ∈C.
Definition 8 A PS-algebra is a PGK2-algebra C with i∧ i◦ = 0, for every i ∈C.
Example 3 Figure 4 represents a modular PS-algebra C with F(C) = [d).

Figure 4. C is a modular PS-algebra

Definition 9 A principal S-triple (briefly PS-triple) is a PGK2-triple (N, F, ϑ), whenever N is a Boolean algebra.
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Example 4 Figure 5 describes a PS-algebra. Also, we notice that C◦◦ = {0, a, b, 1} is a Boolean subalgebra of C.

Figure 5. C is a non-modular PS-algebra

Now, we describe the ideal C∧ and the filter C∨ of a PGK2-algebra from the PGK2-triple (N, F, ϑ) as follows.
Lemma 4 Let C be a PGK2-algebra found from the PGK2-triple (N, F, ϑ). Then
(1) C∧ = {(n, 0F) ∈C : n ∈ N∧},
(2) C∨ = {(n, i) ∈C : n ∈ N∨}. Moreover F(C)⊆C∨,
(3) C◦◦∨ =C◦◦∩C∨, where C◦◦∨ is a filter of C◦◦ .
Proof. (1) Let (N, F, ϑ) be a PGK2-triple. Using Theorem 1, we obtain the PGK2-algebra C = {(n, i) : n ∈ N, i ∈

F, i ≤ ϑ(n)}. Now,

C∧ = {(n∧n◦, i∧ϑ(n◦)) : n ∈ N, i ∈ F, i ≤ ϑ(n)}

= {(n∧n◦, i∧ϑ(n)∧ϑ(n◦)) : n ∈ N, i ∈ F, i ≤ ϑ(n)}

= {(n∧n◦, i∧ϑ(n∧n◦)) : n∧n◦ ∈ N∧, i ≤ ϑ(n)}

= {(n∧n◦, i∧0F)} as ϑ(n∧n◦) = 0F by definition 3.5(3) of [1]

= {(m, 0F) ∈C : m = n∧n◦ ∈ N∧}.

(2) We have

C∨ = {(n∨n◦, i∨ϑ(n◦)) : n ∈ N, i ∈ F, i ≤ ϑ(n)}

= {(n∨n◦, í) : n ∈ N, í ∈ F, í ≤ ϑ(n∨n◦)}

= {(ń, í) ∈C : ń = n∨n◦ ∈ N∨}.

Now, let (1, i) ∈ F(C). Then (1, i) = (1, i)∨ (1, i)◦ ∈C∨, as (1, i)◦ = (0N , 0F). Therefore, F(C)⊆C∨.
(3) We have
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C◦◦∨ = {(n, i) ∈C : (n, i) ∈C◦◦, (n, i) = (m, ϑ(m))∨ (m, ϑ(m))◦ for some (m, ϑ(m)) ∈C◦◦}

= {(n, i) ∈C : (n, i) ∈C◦◦, (n, i) = (m∨m◦, ϑ(m∨m◦)), m∨m◦ ∈ N∨}

= {(n, i) : (n, i) ∈C◦◦}∩{(n, i) : n = m∨m◦ ∈ N∨}

=C◦◦∩C∨.

Theorem 5 Let (N, F, ϑ) be a PS-triple. Then

C = {(n, i) : n ∈ N, i ∈ F, i ≤ ϑ(n)}

is a PS-algebra such that T (C) =C◦◦ and C∨ = F(C) = [(0, 1)).
Proof. Let (n, i) ∈C. Then

(n, i)∧ (n, i)◦ = (n, i)∧ (n◦, ϑ(n◦))

= (n∧n◦, ϑ(n∧n◦))

= (0N , 0F) as i∧ i◦ = 0.

Hence C is a PS-algebra. Now,

C◦◦ = {(n, i) ∈C : (n, i)◦◦∨ (n, i)◦ = (n, i)∨ (n, i)◦}

= {(n, i) ∈C : ((n, i)◦∧ (n, i))◦ = (n, i)∨ (n, i)◦}

= {(n, i) ∈C : (0, 0)◦ = (n, i)∨ (n, i)◦}

= {(n, i) ∈C : (1, 1) = (n, i)∨ (n, i)◦}

= T (C),

where (n, i)∧ (n, i)◦ = (0, 0). By lemma 4, we obtain
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C∨ = {(n, i) ∈C : n ∈ N∨}

= {(1N , i) ∈C : i ∈ F}

= F(C).

Definition 10 An S-algebra C is called a modular S-algebra (Stone algebra) if C is a modular (distributive) lattice.
Definition 11 A PS-triple (N, F, ϑ) is called a modular PS-triple (principal Stone triple) if F is a bounded modular

(distributive) lattice.
Corollary 1 Let (N, F, ϑ) be a modular PS-triple (principal Stone triple). Then

C = {(n, i) : n ∈ N, i ∈ F, i ≤ ϑ(n)}

is a modular PS-algebra (principal Stone algebra) such that T (C) =C◦◦ and F(C) =C∨.
Proof. By Theorem 5, C is a PS-algebra. Now, we need only to show that C is modular. Indeed, let (n, i), (m, j),

(s, k) ∈C and (n, i)≥ (s, k). Then we have

(n, i)∧ ((m, j)∨ (s, k)) = (n, i)∧ (m∨ s, j∨ k)

= (n∧ (m∨ s), i∧ ( j∨ k)) by the modularity of N and F

= ((n∧m)∨ s, (i∧ j)∨ k) as n ≥ s, i ≥ k

= (n∧m, i∧ j)∨ (s, k).

Thus,C is a modular PS-algebra. On the other hand, if (N, F, ϑ) is a principal Stone triple, then we have to prove that
a PS-algebra which constructed by Theorem 5 is a Stone algebra, that is, C is distributive. Let (n, i), (m, j), (s, k) ∈C.
Then, we have

(n, i)∧ ((m, j)∨ (s, k)) = (n∧ (m∨ s), i∧ ( j∨ k))

= ((n∧m), (i∧ j))∨ ((n∧ s), (i∧ k))

= ((n, i)∧ (m, j))∨ ((n, i)∧ (s, k)).

Thus, C is a principal Stone algebra such that T (C) =C◦◦ and F(C) =C∨ = [(0, 1)).
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In this section, a full description of perfect extensions of PGK2-algebras is given in Theorem 6. Also, examples are

4. Perfect extensions of PGK2-algebras

provided to illustrate all concepts and results.
Definition 12A subalgebraC1, with F(C1) = [d1), of a PGK2-algebraC with F(C) = [d) is a d-subalgebra if d1 = d,

that is, F(C1) is a bounded sublattice of F(C).
Definition 13 A PGK2-algebra C1 is an extension of a PGK2-algebras if C is a d-subalgebra of C1. If every

congruence on C has exactly one extension to C1, we say that C1 is a perfect extension of C.
Example 5 Figure 6 represents a PGK2-algebra C with F(C) = [d).

Figure 6. C is a PGK2-algebra

Consider the d-subalgebra C1 of a PGK2-algebra C (see Figure 7: C1).

Figure 7. C1 is a PGK2-algebra

Now, we describe Con(C) and Con(C1) as in follows:
▽C =C×C,

△C = {(i, i) : i ∈C},
ΦC = {{0}, {n, γ}, {e, α}, {m, β}, {s}, {i, j, k, d, 1}},
θC = {{0, n, γ}, {e, α, s}, {i, j, k, d, m, β , 1}},
ϑC = {{0, s, m, β}, {i, j, k, d, n, e, α, γ, 1}},

and
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▽C1 =C1 ×C1,
△C1 = {(i, i) : i ∈C1},
ΦC1 = {{0}, {n, γ}, {m, β}, {d, i, j, k, 1}},
θC1 = {{0, n, γ}, {m, β , d, i, j, k, 1}},
ϑC1 = {{0, m, β}, {i, j, k, d, n, γ, 1}}.
The description of restrictions is summarized in Table 1.

Table 1. Description of restrictions

| C1

▽C ▽C1

△C △C1

ΦC ΦC1

θC θC1

ϑC ϑC1

We observe that
▽C is a unique extension of▽C1 ,
△C is a unique extension of△C1 ,
ΦC is a unique extension of ΦC1 ,
θC is a unique extension of θC1 ,
ϑC is a unique extension of ϑC1 .
Therefore every congruence on C1 has exactly one extension to C. Thus C is a perfect extension of C1.
Theorem 6 Let C be a PGK2-algebra and let C1 be a d-subalgebra of C. Then C is a perfect extension of C1 if and

only if
(1) F(C) is a perfect extension of F(C1),
(2) C◦◦ is a perfect extension of C1

◦◦.

Proof. LetC be a perfect extension ofC1. Let β2 ∈ Con(F(C1)). Now we assume that β́2, β̄2 ∈ Con(F(C)) such that
β́2F(C1)

= β̄2F(C1)
= β2. Then, by Lemma 3, we get (△C◦◦ , β́2), (△C◦◦ , β̄2) ∈ A(C) and (△C◦◦

1
, β2) ∈ A(C1). According to

Theorem 3, there exist β́ , β̄ ∈ Con(C) and β ∈ Con(C1) corresponding to (△C◦◦ , β́2), (△C◦◦ , β̄2) and β = (△C◦◦
1
, β ),

respectively. We have β́C1 = β̄C1 = β . SinceC is a perfect extension ofC1, then β́ = β̄ . Hence, β́2 = β̄2, proving (1). On
the other hand, we need to show that C◦◦ is a perfect extension of C◦◦

1 , let β1 ∈ Con(C1
◦◦) and β1 has an extension to a

congruence of C◦◦.
To show this extension is unique. Let β́1, β̄1 ∈ Con(C◦◦) with β́1C◦◦

1
= β̄1C◦◦

1
= β1. Then, we have

(β́1, ▽F(C)), (β̄1, ▽F(C)) ∈ A(C)

and

(β , ▽F(C1)) ∈ A(C1).

Again, we see that there exist β́ , β̄ ∈ Con(C) and β ∈ Con(C) corresponding to (β́1, ▽F(C)), (β̄1, ▽F(C)) and β =

(β , ▽F(C1)), respectively. We see that
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β́C1 = β̄C1 = β .

As C is a perfect extension of C1, then

β́ = β̄ .

Therefore

β́1 = β̄1.

This proves (2). Conversely, let β ∈ Con(C1). If β is extended toC, then we will prove that this extension is unique.
Let β́ , β̄ are extensions of β in Con(C). Then, the congruences β́ , β̄ and β can be represented by the congruence pairs
(β́1, β́2), (β̄1, β̄2) and (β1, β2), respectively. Where

β́1C1
◦◦ = β̄1C1

◦◦ = β1

and

β́2F(C1)
= β̄2F(C1)

= β2.

By (1) and (2), we get

β́1 = β̄1 and β́2 = β̄2.

Therefore, β́ = β̄ .
The next examples show how Theorem 6 can be applied.
Example 6 Consider the Kleene algebra C◦◦ in Figure 8. From Table 2, we show that C◦◦ is a perfect extension of

C1
◦◦. Also, Table 3 shows that F(C) is a perfect extension of F(C1), respectively.

Figure 8. C◦◦ and F(C)
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Also, we describe C1
◦◦ and F(C1) as follows:

Figure 9. C◦◦ and F(C1)

Now, we introduce Con(C◦◦) and Con(C1
◦◦) in Table 2.

Table 2. Con(C◦◦) and Con(C1
◦◦)

Con(C◦◦) Con(C1
◦◦)

▽C◦◦ =C◦◦×C◦◦ ▽C1
◦◦ =C1

◦◦×C1
◦◦

△C◦◦ = {(i, i) : i ∈C◦◦} △C1
◦◦ = {(i, i) : i ∈C1

◦◦}
θC◦◦ = {{0, m, s}, {n, e, 1}} θC◦◦

1
= {{0, m}, {n, 1}}

ψC◦◦ = {{0, n}, {e, s}, {m, 1}} ψL◦◦1
= {{0, n}, {m, 1}}

and again we deduce Con(F(C)) and Con(F(C1)) in Table 3.

Table 3. Con(F(C)) and Con(F(C1))

Con(F(C)) Con(F(C1))

▽F(C) = F(C)×F(C) ▽F(C1) = F(C1)×F(C1)

△F(C) = {(i, i) : i ∈ F(C)} △F(C1) = {(i, i) : i ∈ F(C1)}

Table 4 contains the restrictions.

Table 4. Restrictions

| C1
◦◦

▽C◦◦ ▽C1
◦◦

△C◦◦ △C1
◦◦

θC◦◦ θC◦◦
1

ψC◦◦ ψC◦◦
1

We observe from Table 4 that
▽C◦◦ is a unique extension of▽C◦◦

1
,

△C◦◦ is a unique extension of△C◦◦
1
,

θC◦◦ is a unique extension of θC◦◦
1
,

ψC◦◦ is a unique extension of ψC◦◦
1
.
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Therefore every congruence on C◦◦
1 has exactly one extension to C◦◦. Thus C◦◦ is a perfect extension of C◦◦

1 .
and

Table 5. F(C1)

| F(C1)

▽F(C) ▽F(C1)

△F(C) △F(C1)

We observe from Table 5 that
▽F(C) is a unique extension of▽F(C1),
△F(C) is a unique extension of△F(C1),
Therefore every congruence on F(C1) has exactly one extension to F(C). Thus F(C) is a perfect extension of F(C1).
In the following example, we give a PGK2-algebraC which has not perfect extensions ofC1 as well as F(C) has not

also perfect extension of F(C1).
Example 7 Figure 10 represents a PGK2-algebra L with F(C) = [d).

Figure 10. C is a PGK2-algebra with F(C) = [d)

The set of all congruences on C are:
θ1 =▽C =C×C,

θ2 =△C = {(n, n) : n ∈C},
θ3 = {{0}, {n}, {m}, {α, γ, s}, {β , µ, q}, {1, i, d}},
θ4 = {{0}, {n}, {m}, {α, γ}, {β , µ}, {s}, {q}, {d, i}, {1}},
θ5 = {{0}, {n}, {m}, {α}, {β}, {γ, s}, {µ, q}, {d}, {i, 1}},
θ6 = {{0}, {m, n}, {α, β , γ, µ, s, q}, {d, i, 1}},
θ7 = {{0}, {m, n}, {α, β}, {γ, µ, s, q}, {d}, {i, 1}},
θ8 = {{0}, {m, n}, {s, q}, {α, β , µ, γ}, {d, i}, {1}},
θ9 = {{0}, {n, m}, {γ, µ}, {α, β}, {s, q}, {d}, {i}, {1}},
θ10 = {{0}, {s, α, γ}, {β , µ, q}, {m}, {n}, {1, d, i}},
θ11 = {{0, n, m}, {1, i, d, α, β , γ, µ, s, q}},
θ12 = {{1, d, i,m, n}, {0, α, β , γ, µ, s, q}},
θ13 = {{0, m, n}, {d, α, β}, {i, γ, µ}, {s, q, 1}},
θ14 = {{0, n, m}, {d, i, α, β , γ, µ}, {q, s, 1}},
θ15 = {{0, n, m}, {d, α, β}, {i, γ, µ, s, q,1}},
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Consider the d-subalgebra C1 of a PGK2-algebra C as in Figure 11.

Figure 11. C1 is a d-subalgebra of C

The set of all congruences on C1 are:
ψ1 =▽C1 =C1 ×C1,

ψ2 =△C1 = {(i, i) : i ∈C1},
ψ3 = {{1, d}, {m, n}, {α, β , s, q}, {0}},
ψ4 = {{1, d}, {n}, {m}, {α, s}, {β , q}, {0}},
ψ5 = {{1}, {d}, {n, m}, {α, β}, {s, q}, {0}},
ψ6 = {{1, d, α, β , s, q}, {0, n, m}},
ψ7 = {{1, d, m, n}, {0, α, β , s, q},
ψ8 = {{1, s, q}, {d, α, β}, {0, n, m}}.
It is clear that

F(C) = {d, i, 1}, F(C1) = {1, d}.

d

i

1

F(C)

The set of all lattice congruences on F(C) are:
ϕ1 =▽F(C),
ϕ2 =△F(C),
ϕ3 = {{d, i}, {1}},
ϕ4 = {{d}, {i, 1}}.

d

1

F(C1)
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The set of all lattice congruences on F(C1) are:
ω1 =△F(C1),

ω2 =▽F(C1).

To clarify thatC has not perfect extensions ofC1 as well as F(C) has not also perfect extension of F(C1). We consider
θ8, θ9, θ10 ∈ Con(C) and ψ5, ψ8 ∈ Con(C1) as follows:

θ8 = {{0}, {n, m}, {s, q}, {α, β , µ, γ}, {d, i}, {1}},

θ9 = {{0}, {n, m}, {γ, µ}, {α, β}, {s, q}, {d}, {i}, {1}},

and

ψ5 = {{0}, {n, m}, {s, q}, {α, β}, {1}, {d}},

We observe that the restrictions θ8 | C1 = ψ5 and θ9 | C1 = ψ5. Then we say that C has not perfect extension of C1

as a congruence on C1 has more than one extension to C. On the other hand, we again consider ϕ3, ϕ4 ∈ Con(F(C)) and
ω1, ω2 ∈ Con(F(C1)) as follows:

ϕ3 = {{d, i}, {1}},

ϕ4 = {{d}, {i, 1}}.

and

ω1 =△F(C1),

ω2 =▽F(C1).

Weobserve that the restrictions ϕ3 |F(C1)=ω1 and ϕ4 |F(C1)=ω1. Thenwe say thatF(C) has not perfect extension
of F(C1) as a congruence on F(C1) has more than one extension to F(C).

5. Conclusions
In this paper, we focused on the construction PGK2-algebras via certain PGK2-triples and studied their related

properties. We determined S-algebras, principal S-algebras, modular S-algebras and studied their main properties.
Also, S-triples, principal S-triples and principal Stone triples are introduced and explained. Principal S-algebras and
principal Stone algebras were constructed via principal S-triples and principal Stone triples, respectively. In addition, we
determined and described the d-S-subalgebras and the largest d-Stone subalgebra of a modular PGK2-algebra. Finally, we
characterized perfect extensions of PGK2-algebras in terms of congruence pairs. The present paper motivates many points
for future work. For example, many aspects of PGK2-algebras as ideals, and filters of PGK2-algebras can be investigated
using the findings of the paper. Also, permutability of PGK2-algebras can be considered via the triple technique that we
modified.
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