

On <u>PGK2</u>-algebras and Perfect Extensions

Mohiedeen Ahmed¹, Abd El-Mohsen Badawy²⁰, Essam El-Seidy¹⁰, Ahmed Gaber^{1,3*0}

¹Department of Mathematics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt

²Department of Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt

³Mathematics Education Program, Faculty of Education and Arts, Sohar University, Sohar 3111, Oman

E-mail: a.gaber@sci.asu.edu.eg

Received: 25 July 2024; Revised: 15 August 2024; Accepted: 15 August 2024

Abstract: The purpose of this paper is threefold. First, We study some basic features of principal GK_2 -algebras with distributive skeletons (<u>PGK_2</u>-algebras). The S-algebras, PS-algebras and modular S-algebras are determined with many properties. Second, the interplay between <u>PGK_2</u>-algebras and <u>PGK_2</u>-triples is revealed. PS-triples and principal Stone triples are used to build PS-algebras and principal Stone algebras respectively. We round off with perfect extensions of principal GK_2 -algebras.

Keywords: *MS*-algebras, K_2 -algebras, *GMS*-algebras, *GK*₂-algebras, *PGK*₂-algebras, *PGK*₂-algebras, *d*-subalgebras, perfect extensions

MSC: 08A05, 08A30

1. Introduction

In 1983, Blyth and Varlet [1] introduced the class **MS** of *MS*-algebras and, in [2], they obtained all the subclasses of **MS**. This class is an abstraction of the classes of de Morgan and Stone algebras. Many results on *MS*-algebras and related structures are established in [3-8].

In 1996, Ševcovic [9] dropped the distributive property of *MS*-algebras to get a new more general class the so called generalized *MS*-algebras (*GMS*-algebras). Badawy [10] introduced and characterized modular *GK*₂-algebras with distributive skeletons in terms of quadruples. In 2015, Badawy [11] considered a subclass **GK**₂ (*GK*₂-algebras) of the class **GMS** (of all generalized *MS*-algebras) which contains the class **K**₂. He constructed <u>*PGK*₂</u>-algebras from *PGK*₂-triples and defined the isomorphism between two *PGK*₂-triples. Also, he proved a full correspondence between *PGK*₂-algebras and the associated *PGK*₂-triples. In [12], Badawy et al. studied 2-Permutability, *n*-Permutability, and strong extensions for *PGK*₂-algebras by using the congruence pair technique.

The present work build upon the previous as follows: In section 3, we introduce and characterize many special cases of principal GK_2 -algebras. We introduce and constructed principal \underline{GK}_2 -algebras with distributive skeletons (\underline{PGK}_2 -algebras). Also, \underline{PGK}_2 -triples are defined and utilised to reveal many properties of \underline{PGK}_2 -algebras. Also, we determine S-algebras, principal S-algebras (*PS*-algebras) and modular S-algebras and study their properties. Also, we introduce and characterize S-triple, principal S-triples and principal Stone triples, then we construct principal S-algebras and principal S-algebras.

DOI: https://doi.org/10.37256/cm.6120255369 This is an open-access article distributed under a CC BY license

(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

Copyright ©2025 Ahmed Gaber, et al.

Stone algebras via principal S-triples (*PS*-triples) and principal Stone triples, respectively. Finally, we determine and describe the largest principal S-algebras and principal Stone algebras. In section 4, perfect extensions of <u>*PGK*</u>₂-algebras are considered. We proved that a <u>*PGK*</u>₂-algebra C is a perfect extension of its d-subalgebra C_1 if and only if $C^{\circ\circ}$ is a perfect extension of $F(C_1)$.

2. Preliminaries

This section contains the background material which we need in this paper. For details on lattices we refer to [13] and [14]; for details on *MS*-algebras and *GMS*-algebras see [1, 2, 9], and [15] and for details on *GK*₂-algebras and *PGK*₂-algebras we refer to [10–12].

A generalized De Morgan algebra (*GM*-algebra) is an algebra (C; \lor , \land , $^-$, 0, 1) of type (2, 2, 1, 0, 0) where (C; \lor , \land , 0, 1) is a bounded lattice and for every $i, j \in C$ the unary operation $^-$ of involution satisfies:

$$\overline{\overline{i}} = i,$$
$$\overline{(i \lor j)} = \overline{i} \land \overline{j},$$
$$\overline{\overline{i}} = 0.$$

A generalized Kleene algebra (GK-algebra) is a generalized De Morgan algebra with

$$i \wedge i^{\circ} \leq j \vee j^{\circ}, \text{ for every } i, \ j \in C.$$

A universal algebra $(C; \lor, \land, \circ, 0, 1)$ where $(C; \lor, \land, 0, 1)$ is a bounded lattice is called a generalized *MS*-algebra (*GMS*-algebras) if:

$$i \le i^{\circ\circ},$$

 $(i \land j)^{\circ} = i^{\circ} \lor j^{\circ},$
 $1^{\circ} = 0.$

Lemma 1 [13] Let *C* be a *GMS*-algebra, then for any elements *i*, *j* of *C*, we have (1) $0^{\circ} = 1$, (2) $i \le j \Rightarrow i^{\circ} \ge j^{\circ}$, (3) $i^{\circ} = i^{\circ \circ \circ}$, (4) $(i \lor j)^{\circ} = i^{\circ} \land j^{\circ}$, (5) $(i \land j)^{\circ \circ} = i^{\circ \circ} \land j^{\circ \circ}$, (6) $(i \lor j)^{\circ \circ} = i^{\circ \circ} \lor j^{\circ \circ}$. Definition 1 [11] A *GK*₂-algebra *C* is a *GMS*-algebra satisfying (1) $i \land j^{\circ} = i^{\circ \circ} \land i^{\circ}$, (2) $i \land i^{\circ} \le j \lor j^{\circ}$.

Contemporary Mathematics

For any elements i, j of C.

Definition 2 [12] An algebra $(C; \lor, \land, *, 0, 1)$ is called an *S*-algebra if $(C; \lor, \land, 0, 1)$ is a bounded lattice and a unary operation * satisfying

(1) $i \wedge i^* = 0$,

- $(2) (i \lor j)^* = i^* \land j^*,$
- $(3) 1^* = 0,$
- (4) $i \lor i^{**} = 1$.

It is known that an S-algebra (C; *) is pseudo-complemented lattice (*p*-algebra) satisfying the Stone identity $i^* \vee i^{**} = 1$, where * is called the pseudo-complementation and $i^* = \max\{j \in C : i \land j = 0\}$.

Lemma 2 [11] Let C be a GK_2 -algebra. Then

(1) $C^{\circ\circ} = \{i \in C : i = i^{\circ\circ}\}$ is a *GK*-algebra,

(2) $F(C) = \{i \in C : i^\circ = 0\}$ is a filter of *C*.

The algebra $C^{\circ\circ}$ is called the skeleton of *C* and *F*(*C*) is called the filter of dense elements of *L*.

Definition 3 [11] A *GK*₂-algebra (C; \lor , \land , $^{\circ}$, 0, 1) is said to be a *PGK*₂-algebra if:

(1) F(C) = [d) for some $d \in C$, that is, F(C) is a principal filter of C,

(2) The generator d is a distributive element of C, that is, $d \lor (i \land j) = (d \lor i) \land (d \lor j)$ for any $i, j \in C$,

(3) $i = i^{\circ \circ} \land (i \lor d)$ for any $i \in C$.

Definition 4 [11] A *PGK*₂-triple is (N, F, ϑ) , where

(1) N is a GK-algebra,

(2) F is a bounded lattice,

(3) $\vartheta : N \longrightarrow F$ is a (0, 1)-lattice homomorphism from N into F and $\vartheta(n) = 0_F$ for any $n \in K^{\wedge}$.

Theorem 1 [11] Let (N, F, ϑ) be a *PGK*₂-triple. Then

$$I = \{(q, m) : q \in N, m \in F, m \le \vartheta(q)\};$$

is a *PGK*₂-algebra with $F(I) = [(1_N, 0_F))$ if we define

 $(q, m) \lor (w, n) = (q \lor w, m \lor n)$ $(q, m) \land (w, n) = (q \land w, m \land n)$ $(q, m)^{\circ} = (q^{\circ}, \vartheta(m^{\circ}))$ $1_{I} = (1_{N}, 1_{F})$ $0_{I} = (0_{N}, 0_{F}).$

Moreover, $I^{\circ\circ} \cong N$ and $F(I) \cong F$.

Theorem 2 [11] Let *C* be a principal *GK*₂-algebra with a smallest dense element *d*. Then any congruence relation θ of *C* determines a congruence pair ($\theta_{C^{\circ\circ}}$, $\theta_{F(C)}$). Conversely, every congruences pair (θ_1 , θ_2) uniquely determines a congruence relation θ on *C* satisfies $\theta_{C^{\circ\circ}} = \theta_1$ and $\theta_{F(C)} = \theta_2$, by the rule $i \equiv j(\theta) \Leftrightarrow i^{\circ\circ} \equiv j^{\circ\circ}(\theta_1)$ and $i \lor d \equiv j \lor d(\theta_2)$.

Lemma 3 [11] Let *C* be a principal GK_2 -algebra and A(C) be the set of all congruence pairs of *C*. Then the following statements hold:

(1) $(\forall \beta \in \operatorname{Con}(F(C)))(\triangle_{C^{\circ\circ}}, \beta) \in A(C),$

(2) $(\forall \alpha \in \operatorname{Con}(C^{\circ\circ}))(\alpha, \nabla_{F(C)}) \in A(C).$

3. Basic properties of <u>PGK₂</u>-algebras

In this section, we construct certain $\underline{PGK_2}$ -algebras via certain $\underline{PGK_2}$ -triples and study their related properties. We determine *S*-algebras, *PS*-algebras and modular *S*-algebras and study their properties. Also, we introduce and characterize *S*-triples, *PS*-triples and principal Stone triples. Then we construct *PS*-algebras and principal Stone algebras via *PS*-triples and principal Stone triples, respectively. Finally, we determine and describe the *d*-*S*-subalgebra and the largest *d*-Stone subalgebra of a modular $\underline{PGK_2}$ -algebra.

Definition 5 If a *PGK*₂-algebra *C* has a distributive skeleton, that is, $C^{\circ\circ}$ is a Kleene algebra, we call it a <u>*PGK*</u>₂-algebra.

Definition 6 A *PGK*₂-triple (*N*, *F*, ϑ) is called a <u>*PGK*</u>₂-triple if *N* is a Kleene algebra.

Example 1 Figure 1 represents <u>*PGK*</u>₂-algebra *C* with F(C) = [d].

Figure 1. C is a <u>PGK</u>₂-algebra

It is clear that F(C) = [d) is a modular lattice and $C^{\circ\circ} = \{0, n, 1\}$ is a Kleene algebra which is isomorphic to *K*. **Theorem 3** Let (N, F, ϑ) be a <u>*PGK*</u>₂-triple. Then

$$C = \{(n, i) : n \in N, \in F, i \le \vartheta(n)\}$$

is a <u>PGK</u>₂-algebra.

Proof. We know that *C* is a PGK_2 -algebra from Theorem 1 such that $C^{\circ\circ} \cong N$. Since *N* is a Kleene algebra, then $C^{\circ\circ}$ is distributive. Thus $C^{\circ\circ}$ is a Kleene algebra. Hence, *C* is a <u>*PGK*_2</u>-algebra.

Let $(C; \lor, \land, \circ, 0, 1)$ be a Kleene algebra. An element $j \in C$ is called a central element of *C* if $j \lor j^\circ = 1$. Then the set $T(C) = \{j \in C : j \lor j^\circ = 1\}$ is the greatest Boolean subalgebra of *C* and T(C) is called the center of *C*.

Definition 7 A <u>*PGK*</u>₂-triple (*N*, *F*, ϑ) is called a modular <u>*PGK*</u>₂-triple if *F* is a bounded modular lattice. Theorem 4 describes the greatest *d*-*S*-subalgebra of a modular <u>*PGK*</u>₂-algebra which is constructed from a modular <u>*PGK*</u>₂-triple (*N*, *F*, ϑ).

Theorem 4 Let (N, F, ϑ) be a modular <u>*PGK*</u>₂-triple, T(N) the center of N and $F_1 = F$. Then the <u>*PGK*</u>₂-algebra which associated with (N, F, ϑ) is a modular <u>*GK*</u>₂-algebra and the following statements hold:

(1) $T(C^{\circ\circ}) = \{(n, \vartheta(n)) : n \in T(N)\} \cong T(N),$

(2) $C_1 = \{(n, i) \in C : n \in T(N)\}$ is the largest *d*-*S*-subalgebra of *C*,

(3) $F(C_1) \cong F(C)$ and $T(C^{\circ\circ}) \cong C_1^{\circ\circ}$.

Proof. We have to prove that the PGK_2 -algebra

$$C = \{(n, i) : n \in N, i \in F, i \le \vartheta(n)\}$$

which is found from the <u>PGK</u>₂-triple (N, F, ϑ) is a modular <u>GK</u>₂-algebra. Let $(n, i), (m, j), (s, k) \in C$ and $(n, i) \ge (s, k)$. Then, we have

$$(n, i) \wedge ((m, j) \vee (s, k)) = (n, i) \wedge (m \vee s, j \vee k)$$
$$= (n \wedge (m \vee s), i \wedge (m \vee s)) \text{ by the modularity of } N \text{ and } F$$
$$= ((n \wedge m) \vee s, (i \wedge j) \vee k) \text{ as } n \ge s, i \ge k$$
$$= (n \wedge m, i \wedge j) \vee (s, k).$$

Therefore, *C* is a modular lattice. Thus, *C* is a modular \underline{GK}_2 -algebra. (i) We have

$$\begin{split} T(C^{\circ\circ}) &= \{(n, \ \vartheta(n)) \in C^{\circ\circ} : (n, \ \vartheta(n))^{\circ} \lor (n, \ \vartheta(n))^{\circ\circ} = (1, \ 1)\} \\ &= \{(n, \ \vartheta(n)) \in C^{\circ\circ} : (n^{\circ}, \ \vartheta(n^{\circ})) \lor (n, \ \vartheta(n)) = (1, \ 1)\} \\ &= \{(n, \ \vartheta(n)) \in C^{\circ\circ} : (n \lor n^{\circ}, \ \vartheta(n \lor n^{\circ})) = (1, \ 1)\} \\ &= \{(n, \ \vartheta(n)) \in C^{\circ\circ} : n \lor n^{\circ} = 1\} \\ &= \{(n, \ \vartheta(n)) \in C^{\circ\circ} : n \in T(N)\} \\ &\cong T(N). \end{split}$$

(ii) We need to show that the Stone identity $j^{\circ} \vee j^{\circ \circ} = 1$ holds for any $j = (n, i) \in C_1$.

$$(n, i)^{\circ} \vee (n, i)^{\circ \circ} = (n^{\circ}, \vartheta(n^{\circ})) \vee (n, \vartheta(n))$$
$$= (n \vee n^{\circ}, \vartheta(n \vee n^{\circ}))$$
$$= (1, 1) as n \in T(N).$$

Thus C_1 is an S-subalgebra of a <u>PGK</u>₂-algebra. Since $(0, d) \in C$, then C_1 is an d-S-subalgebra of C. Let W be any d-S-subalgebra of C. Let $(n, i) \in W$. Then, $(n, i)^{\circ} \vee (n, i)^{\circ \circ} = (1, 1)$. Then $n \vee n^{\circ} = 1$ and so $n \in T(N)$. Then $(n, i) \in C_1$. Therefore, $W \subseteq C_1$.

(iii) We notice that

$$F(C_1) = \{ (n, i) \in C_1 : (n, i)^\circ = (0_N, 0_F) \}$$
$$= \{ (n, i) \in C_1 : (n, \vartheta(n))^\circ = (0_N, 0_F) \}$$
$$= \{ (n, i) \in C_1 : n = 1_N, i \in F, i \le \vartheta(n) \}$$
$$= \{ (1, i) : i \in F \}$$
$$\cong F(C),$$

and

$$C_1^{\circ\circ} = \{ (n, i)^{\circ\circ} : (n, i) \in C_1 \}$$
$$= \{ (n, \vartheta(n)) : n \in T(N) \}$$
$$\cong T(C^{\circ\circ}).$$

Remark 1 A *GK*₂-algebra *C* satisfying the Stone identity

$$i^{\circ} \vee i^{\circ \circ} = 1,$$

for all $i \in C$ need not to be an *S*-algebra as explained in the next example.

Example 2 In the following algebra, we see that C satisfies the Stone identity but C is not a pseudo-complemented lattice (*p*-algebra) as each of the elements n, m, s, q, α , β , γ and μ does not have a pseudo-complement on C.

Figure 2. C is not a pseudo-complemented lattice

Remark 2 If *C* is a *GK*₂-algebra, then the identity $i \wedge i^\circ = i^\circ \wedge i^{\circ\circ}$ is not equivalent to the identity $i = i^{\circ\circ} \wedge (i \vee i^\circ)$, for all $i \in C$. For example, consider the *GK*₂-algebra *C* as in Figure 3.

Figure 3. *C* is a *GK*₂-algebra

We observe that $\gamma^{\circ\circ} \wedge (\gamma \vee \gamma^{\circ}) = s \neq \gamma$ but *C* satisfies the identity $i \wedge i^{\circ} = i^{\circ\circ} \wedge i^{\circ}$ for all $i \in C$. **Definition 8** A *PS*-algebra is a <u>*PGK*</u>₂-algebra *C* with $i \wedge i^{\circ} = 0$, for every $i \in C$. **Example 3** Figure 4 represents a modular *PS*-algebra *C* with F(C) = [d].

Figure 4. *C* is a modular *PS*-algebra

Definition 9 A principal S-triple (briefly PS-triple) is a <u>PGK</u>₂-triple (N, F, ϑ) , whenever N is a Boolean algebra.

Example 4 Figure 5 describes a *PS*-algebra. Also, we notice that $C^{\circ\circ} = \{0, a, b, 1\}$ is a Boolean subalgebra of *C*.

Figure 5. C is a non-modular PS-algebra

Now, we describe the ideal C^{\wedge} and the filter C^{\vee} of a <u>PGK</u>₂-algebra from the <u>PGK</u>₂-triple (N, F, ϑ) as follows. **Lemma 4** Let *C* be a *PGK*₂-algebra found from the <u>*PGK*</u>₂-triple (*N*, *F*, ϑ). Then

(1) $C^{\wedge} = \{(n, 0_F) \in C : n \in N^{\wedge}\},\$

(2) $C^{\vee} = \{(n, i) \in C : n \in N^{\vee}\}$. Moreover $F(C) \subseteq C^{\vee}$, (3) $C^{\circ\circ\vee} = C^{\circ\circ} \cap C^{\vee}$, where $C^{\circ\circ\vee}$ is a filter of $C^{\circ\circ}$.

Proof. (1) Let (N, F, ϑ) be a <u>PGK</u>₂-triple. Using Theorem 1, we obtain the <u>PGK</u>₂-algebra $C = \{(n, i) : n \in N, i \in \mathbb{N}\}$ $F, i \leq \vartheta(n)$. Now,

$$C^{\wedge} = \{ (n \wedge n^{\circ}, i \wedge \vartheta(n^{\circ})) : n \in N, i \in F, i \leq \vartheta(n) \}$$

= $\{ (n \wedge n^{\circ}, i \wedge \vartheta(n) \wedge \vartheta(n^{\circ})) : n \in N, i \in F, i \leq \vartheta(n) \}$
= $\{ (n \wedge n^{\circ}, i \wedge \vartheta(n \wedge n^{\circ})) : n \wedge n^{\circ} \in N^{\wedge}, i \leq \vartheta(n) \}$
= $\{ (n \wedge n^{\circ}, i \wedge \vartheta_{F}) \}$ as $\vartheta(n \wedge n^{\circ}) = \vartheta_{F}$ by definition 3.5(3) of [1]
= $\{ (m, \vartheta_{F}) \in C : m = n \wedge n^{\circ} \in N^{\wedge} \}.$

(2) We have

$$\begin{split} C^{\vee} &= \{ (n \lor n^{\circ}, \, i \lor \vartheta(n^{\circ})) : n \in N, \, i \in F, \, i \le \vartheta(n) \} \\ &= \{ (n \lor n^{\circ}, \, \hat{i}) : n \in N, \, \hat{i} \in F, \, \hat{i} \le \vartheta(n \lor n^{\circ}) \} \\ &= \{ (\hat{n}, \, \hat{i}) \in C : \hat{n} = n \lor n^{\circ} \in N^{\vee} \}. \end{split}$$

Now, let $(1, i) \in F(C)$. Then $(1, i) = (1, i) \lor (1, i)^{\circ} \in C^{\lor}$, as $(1, i)^{\circ} = (0_N, 0_F)$. Therefore, $F(C) \subseteq C^{\lor}$. (3) We have

Contemporary Mathematics

624 | Ahmed Gaber, et al.

$$\begin{split} C^{\circ\circ\vee} &= \{(n, i) \in C : (n, i) \in C^{\circ\circ}, \ (n, i) = (m, \ \vartheta(m)) \lor (m, \ \vartheta(m))^{\circ} \text{ for some } (m, \ \vartheta(m)) \in C^{\circ\circ} \} \\ &= \{(n, i) \in C : (n, i) \in C^{\circ\circ}, \ (n, i) = (m \lor m^{\circ}, \ \vartheta(m \lor m^{\circ})), \ m \lor m^{\circ} \in N^{\vee} \} \\ &= \{(n, i) : (n, i) \in C^{\circ\circ} \} \cap \{(n, i) : n = m \lor m^{\circ} \in N^{\vee} \} \\ &= C^{\circ\circ} \cap C^{\vee}. \end{split}$$

Theorem 5 Let (N, F, ϑ) be a *PS*-triple. Then

$$C = \{(n, i) : n \in N, i \in F, i \le \vartheta(n)\}$$

is a *PS*-algebra such that $T(C) = C^{\circ\circ}$ and $C^{\vee} = F(C) = [(0, 1))$. **Proof.** Let $(n, i) \in C$. Then

$$(n, i) \wedge (n, i)^{\circ} = (n, i) \wedge (n^{\circ}, \vartheta(n^{\circ}))$$

= $(n \wedge n^{\circ}, \vartheta(n \wedge n^{\circ}))$
= $(0_N, 0_F)$ as $i \wedge i^{\circ} = 0$.

Hence C is a PS-algebra. Now,

$$C^{\circ\circ} = \{(n, i) \in C : (n, i)^{\circ\circ} \lor (n, i)^{\circ} = (n, i) \lor (n, i)^{\circ}\}$$
$$= \{(n, i) \in C : ((n, i)^{\circ} \land (n, i))^{\circ} = (n, i) \lor (n, i)^{\circ}\}$$
$$= \{(n, i) \in C : (0, 0)^{\circ} = (n, i) \lor (n, i)^{\circ}\}$$
$$= \{(n, i) \in C : (1, 1) = (n, i) \lor (n, i)^{\circ}\}$$
$$= T(C),$$

where $(n, i) \wedge (n, i)^{\circ} = (0, 0)$. By lemma 4, we obtain

Volume 6 Issue 1|2025| 625

$$C^{\vee} = \{(n, i) \in C : n \in N^{\vee}\}$$

= $\{(1_N, i) \in C : i \in F\}$
= $F(C).$

Definition 10 An *S*-algebra *C* is called a modular *S*-algebra (Stone algebra) if *C* is a modular (distributive) lattice. **Definition 11** A *PS*-triple (N, F, ϑ) is called a modular *PS*-triple (principal Stone triple) if *F* is a bounded modular (distributive) lattice.

Corollary 1 Let (N, F, ϑ) be a modular *PS*-triple (principal Stone triple). Then

$$C = \{(n, i) : n \in N, i \in F, i \le \vartheta(n)\}$$

is a modular *PS*-algebra (principal Stone algebra) such that $T(C) = C^{\circ \circ}$ and $F(C) = C^{\vee}$.

Proof. By Theorem 5, C is a PS-algebra. Now, we need only to show that C is modular. Indeed, let (n, i), (m, j), $(s, k) \in C$ and $(n, i) \ge (s, k)$. Then we have

$$(n, i) \land ((m, j) \lor (s, k)) = (n, i) \land (m \lor s, j \lor k)$$
$$= (n \land (m \lor s), i \land (j \lor k)) \text{ by the modularity of } N \text{ and } F$$
$$= ((n \land m) \lor s, (i \land j) \lor k) \text{ as } n \ge s, i \ge k$$
$$= (n \land m, i \land j) \lor (s, k).$$

Thus, C is a modular PS-algebra. On the other hand, if (N, F, ϑ) is a principal Stone triple, then we have to prove that a PS-algebra which constructed by Theorem 5 is a Stone algebra, that is, C is distributive. Let (n, i), (m, j), $(s, k) \in C$. Then, we have

$$(n, i) \wedge ((m, j) \vee (s, k)) = (n \wedge (m \vee s), i \wedge (j \vee k))$$
$$= ((n \wedge m), (i \wedge j)) \vee ((n \wedge s), (i \wedge k))$$
$$= ((n, i) \wedge (m, j)) \vee ((n, i) \wedge (s, k)).$$

Thus, *C* is a principal Stone algebra such that $T(C) = C^{\circ \circ}$ and $F(C) = C^{\vee} = [(0, 1))$.

4. Perfect extensions of <u>PGK₂</u>-algebras

In this section, a full description of perfect extensions of $\underline{PGK_2}$ -algebras is given in Theorem 6. Also, examples are provided to illustrate all concepts and results.

Definition 12 A subalgebra C_1 , with $F(C_1) = [d_1)$, of a <u>PGK</u>₂-algebra C with F(C) = [d) is a d-subalgebra if $d_1 = d$, that is, $F(C_1)$ is a bounded sublattice of F(C).

Definition 13 A <u>*PGK*</u>₂-algebra C_1 is an extension of a <u>*PGK*</u>₂-algebras if C is a d-subalgebra of C_1 . If every congruence on C has exactly one extension to C_1 , we say that C_1 is a perfect extension of C.

Example 5 Figure 6 represents a <u>*PGK*</u>₂-algebra C with F(C) = [d).

Figure 6. *C* is a <u>*PGK*</u>₂-algebra

Consider the *d*-subalgebra C_1 of a <u>*PGK*</u>₂-algebra *C* (see Figure 7: C_1).

Figure 7. C_1 is a <u>*PGK*</u>₂-algebra

Now, we describe Con(C) and $Con(C_1)$ as in follows: $\nabla_C = C \times C$, $\Delta_C = \{(i, i) : i \in C\},\$ $\Phi_C = \{\{0\}, \{n, \gamma\}, \{e, \alpha\}, \{m, \beta\}, \{s\}, \{i, j, k, d, 1\}\},\$ $\theta_C = \{\{0, n, \gamma\}, \{e, \alpha, s\}, \{i, j, k, d, m, \beta, 1\}\},\$ $\vartheta_C = \{\{0, s, m, \beta\}, \{i, j, k, d, n, e, \alpha, \gamma, 1\}\},\$

Volume 6 Issue 1|2025| 627

and

 $\nabla_{C_1} = C_1 \times C_1,$ $\triangle_{C_1} = \{(i, i) : i \in C_1\},$ $\Phi_{C_1} = \{\{0\}, \{n, \gamma\}, \{m, \beta\}, \{d, i, j, k, 1\}\},$ $\theta_{C_1} = \{\{0, n, \gamma\}, \{m, \beta, d, i, j, k, 1\}\},$ $\vartheta_{C_1} = \{\{0, m, \beta\}, \{i, j, k, d, n, \gamma, 1\}\}.$

The description of restrictions is summarized in Table 1.

Table 1. Description of restrictions

	C_1
∇c	∇C_1
\triangle_C	\triangle_{C_1}
Φ_C	Φ_{C_1}
θ_C	θ_{C_1}
ϑ_C	ϑ_{C_1}

We observe that

 ∇_C is a unique extension of ∇_{C_1} ,

 \triangle_C is a unique extension of \triangle_{C_1} ,

 Φ_C is a unique extension of Φ_{C_1} ,

 θ_C is a unique extension of θ_{C_1} ,

 ϑ_C is a unique extension of ϑ_{C_1} .

Therefore every congruence on C_1 has exactly one extension to C. Thus C is a perfect extension of C_1 .

Theorem 6 Let *C* be a <u>*PGK*</u>₂-algebra and let C_1 be a *d*-subalgebra of *C*. Then *C* is a perfect extension of C_1 if and only if

(1) F(C) is a perfect extension of $F(C_1)$,

(2) $C^{\circ\circ}$ is a perfect extension of $C_1^{\circ\circ}$.

Proof. Let *C* be a perfect extension of *C*₁. Let $\beta_2 \in \text{Con}(F(C_1))$. Now we assume that $\hat{\beta}_2, \bar{\beta}_2 \in \text{Con}(F(C))$ such that $\hat{\beta}_{2_{F(C_1)}} = \bar{\beta}_{2_{F(C_1)}} = \beta_2$. Then, by Lemma 3, we get $(\triangle_{C^{\circ\circ}}, \hat{\beta}_2), (\triangle_{C^{\circ\circ}}, \bar{\beta}_2) \in A(C)$ and $(\triangle_{C_1^{\circ\circ}}, \beta_2) \in A(C_1)$. According to Theorem 3, there exist $\hat{\beta}, \bar{\beta} \in \text{Con}(C)$ and $\beta \in \text{Con}(C_1)$ corresponding to $(\triangle_{C^{\circ\circ}}, \hat{\beta}_2), (\triangle_{C^{\circ\circ}}, \bar{\beta}_2)$ and $\beta = (\triangle_{C_1^{\circ\circ}}, \beta)$, respectively. We have $\hat{\beta}_{C_1} = \bar{\beta}_{C_1} = \beta$. Since *C* is a perfect extension of *C*₁, then $\hat{\beta} = \bar{\beta}$. Hence, $\hat{\beta}_2 = \bar{\beta}_2$, proving (1). On the other hand, we need to show that $C^{\circ\circ}$ is a perfect extension of $C_1^{\circ\circ}$, let $\beta_1 \in \text{Con}(C_1^{\circ\circ})$ and β_1 has an extension to a congruence of $C^{\circ\circ}$.

To show this extension is unique. Let $\hat{\beta}_1$, $\bar{\beta}_1 \in \text{Con}(C^{\circ\circ})$ with $\hat{\beta}_{1_{C_1^{\circ\circ}}} = \bar{\beta}_{1_{C_1^{\circ\circ}}} = \beta_1$. Then, we have

$$(\hat{\beta}_1, \bigtriangledown_{F(C)}), (\bar{\beta}_1, \bigtriangledown_{F(C)}) \in A(C)$$

and

$$(\boldsymbol{\beta}, \nabla_{F(C_1)}) \in A(C_1).$$

Again, we see that there exist $\hat{\beta}$, $\bar{\beta} \in \text{Con}(C)$ and $\beta \in \text{Con}(C)$ corresponding to $(\hat{\beta}_1, \bigtriangledown_{F(C)})$, $(\bar{\beta}_1, \bigtriangledown_{F(C)})$ and $\beta = (\beta, \bigtriangledown_{F(C_1)})$, respectively. We see that

Contemporary Mathematics

$$\hat{\beta}_{C_1} = \bar{\beta}_{C_1} = \beta.$$

á

As *C* is a perfect extension of C_1 , then

 $\hat{\beta} = \bar{\beta}.$

Therefore

 $\hat{\beta}_1 = \bar{\beta}_1.$

This proves (2). Conversely, let $\beta \in \text{Con}(C_1)$. If β is extended to *C*, then we will prove that this extension is unique. Let $\hat{\beta}$, $\bar{\beta}$ are extensions of β in Con(C). Then, the congruences $\hat{\beta}$, $\bar{\beta}$ and β can be represented by the congruence pairs $(\hat{\beta}_1, \hat{\beta}_2), (\bar{\beta}_1, \bar{\beta}_2)$ and (β_1, β_2) , respectively. Where

$$\dot{\beta}_{1_{C_1}\circ\circ}=\bar{\beta}_{1_{C_1}\circ\circ}=\beta_1$$

and

By (1) and (2), we get

$$\hat{\beta}_1 = \bar{\beta}_1$$
 and $\hat{\beta}_2 = \bar{\beta}_2$

 $\dot{\beta}_{2_{F(C_1)}} = \bar{\beta}_{2_{F(C_1)}} = \beta_2.$

Therefore, $\hat{\beta} = \bar{\beta}$.

The next examples show how Theorem 6 can be applied.

Example 6 Consider the Kleene algebra $C^{\circ\circ}$ in Figure 8. From Table 2, we show that $C^{\circ\circ}$ is a perfect extension of $C_1^{\circ\circ}$. Also, Table 3 shows that F(C) is a perfect extension of $F(C_1)$, respectively.

Also, we describe $C_1^{\circ\circ}$ and $F(C_1)$ as follows:

Figure 9. $C^{\circ\circ}$ and $F(C_1)$

Now, we introduce $\operatorname{Con}(C^{\circ\circ})$ and $\operatorname{Con}(C_1^{\circ\circ})$ in Table 2.

Table 2. $\operatorname{Con}(C^{\circ\circ})$ and $\operatorname{Con}(C_1^{\circ\circ})$

$Con(C^{\circ\circ})$	$Con(C_1^{\circ\circ})$
$\bigtriangledown_{C^{\circ\circ}} = C^{\circ\circ} \times C^{\circ\circ}$	$\bigtriangledown_{C_1^{\circ\circ}} = C_1^{\circ\circ} \times C_1^{\circ\circ}$
$ riangle_{C^{\circ\circ}} = \{(i, i) : i \in C^{\circ\circ}\}$	$\triangle_{C_1^{\circ\circ}} = \{(i, i) : i \in C_1^{\circ\circ}\}$
$\theta_{C^{\circ\circ}} = \{\{0, m, s\}, \{n, e, 1\}\}$	$\theta_{C_1^{\circ\circ}} = \{\{0, m\}, \{n, 1\}\}\$
$\psi_{C^{\circ\circ}} = \{\{0, n\}, \{e, s\}, \{m, 1\}\}$	$\Psi_{L_1^{\circ\circ}} = \{\{0, n\}, \{m, 1\}\}$

and again we deduce Con(F(C)) and $Con(F(C_1))$ in Table 3.

Table 3. Con(F(C)) and $Con(F(C_1))$

Con(F(C))	$Con(F(C_1))$
$\bigtriangledown_{F(C)} = F(C) \times F(C)$ $\bigtriangleup_{F(C)} = \{(i, i) : i \in F(C)\}$	$\nabla_{F(C_1)} = F(C_1) \times F(C_1)$ $\triangle_{F(C_1)} = \{(i, i) : i \in F(C_1)\}$

Table 4 contains the restrictions.

Table 4.	Restrictions
----------	--------------

	$C_1^{\circ\circ}$
$\nabla C^{\circ\circ}$	$\nabla C_1^{\circ\circ}$
$\triangle_{C^{\circ\circ}}$	$\triangle_{C_1^{\circ\circ}}$
$ heta_{C^{\circ\circ}}$	$ heta_{C_1^{\circ\circ}}$
$\psi_{C^{\circ\circ}}$	$\psi_{C_1^{\circ\circ}}$

We observe from Table 4 that

 $\nabla_{C^{\circ\circ}}$ is a unique extension of $\nabla_{C_1^{\circ\circ}}$, $\triangle_{C^{\circ\circ}}$ is a unique extension of $\triangle_{C_1^{\circ\circ}}$,

 $\theta_{C^{\circ\circ}}$ is a unique extension of $\theta_{C_1^{\circ\circ}}$,

 $\psi_{C^{\circ\circ}}$ is a unique extension of $\psi_{C_1^{\circ\circ}}$.

Contemporary Mathematics

Therefore every congruence on $C_1^{\circ\circ}$ has exactly one extension to $C^{\circ\circ}$. Thus $C^{\circ\circ}$ is a perfect extension of $C_1^{\circ\circ}$. and

Table 5. $F(C_1)$	
$F(C_1)$	
$\nabla F(C_1)$ $\triangle F(C_1)$	

We observe from Table 5 that

 $\nabla_{F(C)}$ is a unique extension of $\nabla_{F(C_1)}$,

 $\triangle_{F(C)}$ is a unique extension of $\triangle_{F(C_1)}$,

Therefore every congruence on $F(C_1)$ has exactly one extension to F(C). Thus F(C) is a perfect extension of $F(C_1)$. In the following example, we give a <u>PGK</u>₂-algebra C which has not perfect extensions of C_1 as well as F(C) has not also perfect extension of $F(C_1)$.

Example 7 Figure 10 represents a <u>*PGK*</u>₂-algebra *L* with F(C) = [d).

Figure 10. *C* is a <u>*PGK*</u>₂-algebra with F(C) = [d)

The set of all congruences on *C* are:

$$\begin{split} \theta_1 &= \bigtriangledown_C = C \times C, \\ \theta_2 &= \bigtriangleup_C = \{(n, n) : n \in C\}, \\ \theta_3 &= \{\{0\}, \{n\}, \{m\}, \{\alpha, \gamma, s\}, \{\beta, \mu, q\}, \{1, i, d\}\}, \\ \theta_4 &= \{\{0\}, \{n\}, \{m\}, \{\alpha, \gamma\}, \{\beta, \mu\}, \{s\}, \{q\}, \{d, i\}, \{1\}\}, \\ \theta_5 &= \{\{0\}, \{n\}, \{m\}, \{\alpha, \beta, \gamma, \mu, s, q\}, \{d, i, 1\}\}, \\ \theta_6 &= \{\{0\}, \{m, n\}, \{\alpha, \beta, \gamma, \mu, s, q\}, \{d, i, 1\}\}, \\ \theta_7 &= \{\{0\}, \{m, n\}, \{\alpha, \beta\}, \{\gamma, \mu, s, q\}, \{d\}, \{i, 1\}\}, \\ \theta_8 &= \{\{0\}, \{m, n\}, \{\alpha, \beta\}, \{\gamma, \mu, s, q\}, \{d\}, \{i\}, \{1\}\}, \\ \theta_9 &= \{\{0\}, \{m, n\}, \{s, q\}, \{\alpha, \beta, \mu, \gamma\}, \{d, i\}, \{1\}\}, \\ \theta_{10} &= \{\{0\}, \{s, \alpha, \gamma\}, \{\beta, \mu, q\}, \{m\}, \{n\}, \{1, d, i\}\}, \\ \theta_{11} &= \{\{0, n, m\}, \{1, i, d, \alpha, \beta, \gamma, \mu, s, q\}\}, \\ \theta_{12} &= \{\{1, d, i, m, n\}, \{0, \alpha, \beta, \gamma, \mu\}, \{s, q, 1\}\}, \\ \theta_{15} &= \{\{0, n, m\}, \{d, \alpha, \beta\}, \{i, \gamma, \mu, s, q, 1\}\}, \end{split}$$

Consider the *d*-subalgebra C_1 of a <u>*PGK*</u>₂-algebra *C* as in Figure 11.

Figure 11. C_1 is a *d*-subalgebra of *C*

$$F(C) = \{d, i, 1\}, F(C_1) = \{1, d\}.$$

$$\begin{array}{c}
1\\
i\\
d\\
F(C)
\end{array}$$

1

d $F(C_1)$

The set of all lattice congruences on F(C) are: $\phi_1 = \bigtriangledown_{F(C)},$ $\phi_2 = \land$

.

$$egin{aligned} & arphi_2 = riangle_{F(C)}, \ & arphi_3 = \{\{d,\,i\},\,\{1\}\} \ & arphi_4 = \{\{d\},\,\{i,\,1\}\} \end{aligned}$$

Contemporary Mathematics

632 | Ahmed Gaber, et al.

The set of all lattice congruences on $F(C_1)$ are:

 $\boldsymbol{\omega}_1 = \triangle_{F(C_1)},$

$$\omega_2 = \bigtriangledown_{F(C_1)}$$

To clarify that *C* has not perfect extensions of C_1 as well as F(C) has not also perfect extension of $F(C_1)$. We consider θ_8 , θ_9 , $\theta_{10} \in \text{Con}(C)$ and ψ_5 , $\psi_8 \in \text{Con}(C_1)$ as follows:

$$\theta_8 = \{\{0\}, \{n, m\}, \{s, q\}, \{\alpha, \beta, \mu, \gamma\}, \{d, i\}, \{1\}\},$$

$$\theta_9 = \{\{0\}, \{n, m\}, \{\gamma, \mu\}, \{\alpha, \beta\}, \{s, q\}, \{d\}, \{i\}, \{1\}\},$$

and

$$\psi_5 = \{\{0\}, \{n, m\}, \{s, q\}, \{\alpha, \beta\}, \{1\}, \{d\}\},\$$

We observe that the restrictions $\theta_8 | C_1 = \psi_5$ and $\theta_9 | C_1 = \psi_5$. Then we say that *C* has not perfect extension of C_1 as a congruence on C_1 has more than one extension to *C*. On the other hand, we again consider ϕ_3 , $\phi_4 \in \text{Con}(F(C))$ and ω_1 , $\omega_2 \in \text{Con}(F(C_1))$ as follows:

$$\phi_3 = \{\{d, i\}, \{1\}\},$$

 $\phi_4 = \{\{d\}, \{i, 1\}\}.$
 $\omega_1 = riangle_{F(C_1)},$

and

We observe that the restrictions $\phi_3 | F(C_1) = \omega_1$ and $\phi_4 | F(C_1) = \omega_1$. Then we say that F(C) has not perfect extension of $F(C_1)$ as a congruence on $F(C_1)$ has more than one extension to F(C).

 $\omega_2 = \nabla_{F(C_1)}$.

5. Conclusions

In this paper, we focused on the construction $\underline{PGK_2}$ -algebras via certain $\underline{PGK_2}$ -triples and studied their related properties. We determined S-algebras, principal S-algebras, modular S-algebras and studied their main properties. Also, S-triples, principal S-triples and principal Stone triples are introduced and explained. Principal S-algebras and principal Stone algebras were constructed via principal S-triples and principal Stone triples, respectively. In addition, we determined and described the d-S-subalgebras and the largest d-Stone subalgebra of a modular $\underline{PGK_2}$ -algebra. Finally, we characterized perfect extensions of PGK_2 -algebras in terms of congruence pairs. The present paper motivates many points for future work. For example, many aspects of $\underline{PGK_2}$ -algebras as ideals, and filters of $\underline{PGK_2}$ -algebras can be investigated using the findings of the paper. Also, permutability of $\underline{PGK_2}$ -algebras can be considered via the triple technique that we modified.

Acknowledgement

We are indebted to the anonymous reviewers for their instructive comments. Thanks are due to the editors for helping with the final draft proofreading.

Conflict of interest

The authors declare no competing interest.

References

- [1] Blyth TS, Varlet JC. On a common abstraction of De Morgan algebras and Stone algebras. *Proceedings of the Royal Society of Edinburgh*. 1983; 94: 301-308.
- [2] Blyth TS, Varlet JC. Subvarieties of the class of *MS*-algebras. *Proceedings of the Royal Society of Edinburgh*. 1983; 95(1-2): 157-169.
- [3] Badawy A, Haviar M. Congruence pairs of principal *MS*-algebras and perfect extensions. *Mathematica Slovaca*. 2020; 70: 1275-1288.
- [4] Badawy A, Helmy A. Permutabitity of principal MS-algebras. Aims Mathematics. 2023; 8(9): 19857-19875.
- [5] Badawy A, Hussein S, Gaber A. Quadruple construction of decomposable double *MS*-algebras. *Mathematica Slovaca*. 2020; 70(5): 1041-1056.
- [6] Blyth TS, Varlet JC. Ockham Algebras. New York: Oxford University Press; 1994.
- [7] Gaber A, Badawy A, Hussein S. On decomposable *MS*-algebras. *Italian Journal of Pure and Applied Mathematics*. 2020; 43: 617-626.
- [8] Haviar M, Ploscica M. Perfect extensions of de Morgan algebras. Algebra Universalis. 2021; 82(2): 1364-1377.
- [9] Ševcovic D. Free non-distributive Morgan-Stone algebras. New Zealand Journal of Mathematics. 1996; 25: 85-94.
- [10] Badawy A. On a construction of modular GMS-algebras. Acta Universitatis Palackianae Olomucensis: Facultas Rerum Naturalium: Matematika. 2015; 54(1): 19-31.
- [11] Badawy A. On a certain triple construction of *GMS*-algebras. *Applied Mathematics and Information Sciences Letters*. 2015; 3: 115-121.
- [12] Badawy A, Ahmed M, El-Seidt E, Gaber A. On Congruences of principal *GK*₂-Algebras. *Information Sciences Letters*. 2023; 12(6): 2623-2632.
- [13] Blyth TS. Lattices and Ordered Algebraic Structures. London: Springer-Verlag; 2005.
- [14] Grätzer G. Lattice Theory, First Concepts and Distributive Lattices. California: Freeman; 1971.
- [15] Ramalho M, Sequeira M. On generalized MS-algebras. Portugaliae Mathematica. 1987; 44(3): 315-328.