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Abstract: In this paper we prove that, in three-dimensional Minkowski space, the family of parallel surfaces to a given
surface at a certain distance can be obtained as the discriminant set of a certain family of functions. As consequence, we
obtain that Minkowski spheres with prescribed radius, having contact of order 1 with a surface, have the centers on the
parallel surface at distance equal to the radius. We give an example showing that the parallel surface to a timelike flat
surface admits cuspidal edge as singularity.
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1. Introduction
The global geometric study of sets of a certain type requires results from the theory of singularities of differentiable

mappings. These results, very extensive in present, have been suggested by other problems and have found applications in
numerous fields. Applications of theory of singularities in sciences such as: fluid theory, optics, elasticity, thermodynamics,
laser physics, biology, and ecology) are presented in [1]. Recently, the theory of singularities for surfaces has become a
useful tool for radiology and visual computing (see [2] and references therein).

The theory of singularities also influenced the development of the global geometry of surfaces in Euclidean space
[3–6], as well as in Minkowski space [7–9]. The main problem was the determination of the nature of singularities on
certain classes of surfaces (minimal, respectively constant mean curvature surfaces).

In this paper we deal with the singularities of parallel surfaces and extend some results from [3] to three-dimensional
Minkowski space. We prove that the family of parallel surfaces to a given surface can be obtained as the discriminant set
of a certain family of functions, the key being suggested by contact theory and particular cases from [10].

The rest of the paper is organized as follows. In Section 2 we briefly review the necessary results on the geometry
of surfaces in three-dimensional Minkowski space, and the definitions of discriminant set, front, and frontal. Section 3 is
devoted to proving of the main results. In Section 4 we give an example of a timelike flat surface whose parallel surface
admits the cuspidal edge as a singularity.
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2. Preliminaries
Let R3 be the three-dimensional real vector space.
We recall from [11] some notions from the three-dimensional Minkowski space theory which we will use in the main

part of the paper.
Definition 1 The pair

(
R3, ⟨·, ·⟩1

)
, denotedR3

1, where the pseudo - inner product ⟨·, ·⟩1 is given by ⟨v, w⟩1 =−v1w1+

v2w2 + v3w3 for any v = (v1, v2, v3), w = (w1, w2, w3) ∈ R3, is called three-dimensional Minkowski space.
The notation R3

1 highlights the signature (−, +, +) of the pseudo-inner product ⟨·, ·⟩1.
A useful generalization of the notion of length in Minkowski space is presented in the following, but this is not a

norm in the usual sense, since it is not subadditive.
Definition 2 The pseudo-norm of any arbitrary vector v ∈ R3

1 is defined by ∥v∥1 =
√
| ⟨v, v⟩1 |. v is called a unit

vector if ∥v∥1 = 1.
Definition 3A nonzero vector v ∈R3

1 is called a spacelike vector, a lightlike vector, or a timelike vector if ⟨v, v⟩1 > 0,
⟨v, v⟩1 = 0, or ⟨v, v⟩1 < 0, respectively.

Definition 4Let v=(v1, v2, v3) andw=(w1, w2, w3) be two (spacelike or timelike) vectors inR3
1. The pseudo-cross

product of vectors v şi w, in this order, is the only vector, denoted v∧w, defined by

v∧w =

∣∣∣∣∣∣∣
−e1 e2 e3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣= (−(v2w3 − v3w2), −(v1w3 − v3w1), v1w2 − v2w1)

where {e1, e2, e3} is the canonical basis of R3
1.

Definition 5 Let U be an open domain and S a surface parametrized by

X : U ⊂ R2 → R3
1, (u, v)→ X(u, v) = (x(u, v), y(u, v), z(u, v)). (1)

The unit normal vector field n on S is given by

n =
Xu ∧Xv

∥Xu ∧Xv∥1
.

S is called a timelike surface, a spacelike surface, or a lightlike surface if the unit normal vector n is spacelike,
timelike, or lightlike, respectively, at each point of S.

By non-lightlike surface we mean both the spacelike surface and the timelike surface.
Throughout the following, let S be an orientable non-lightlike surface from R3

1 and n its unit normal vector field.
The Gauss map γ is defined as follows:

γ : S −→ S 2(−1) : =
{
(x, y, z) ∈ R3

1 : − x2 + y2 + z2 =−1
}

if S is spacelike, respectively

γ : S −→ S 2(1) :=
{
(x, y, z) ∈ R3

1 : − x2 + y2 + z2 = 1
}
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if S is timelike.
With the Gauss maps defined above, the operator A =−γ∗,p is called the Weingarten operator of immersion X at the

point p.
In the local parametrization P(u, v) = X(u, v) of the surface S, the Weingarten equations are:


−A(Xu) = nu =

FM−GL
EG−F2 Xu +

FL−EM
EG−F2 Xv

−A(Xv) = nv =
FN −GM
EG−F2 Xu +

FM−EN
EG−F2 Xv

(2)

where {E, F, G} and {L, M, N} are the coefficients of the first, respectively, of the second, fundamental form of surface
S, defined as

E = ⟨Xu, Xu⟩1 , F = ⟨Xu, Xv⟩1 , G = ⟨Xv, Xv⟩1 ,

L =−⟨nu, Xu⟩1 , M =−⟨nu, Xv⟩1 =−⟨nv, Xu⟩1 , N =−⟨nv, Xv⟩1 .

The coefficients of Xu and Xv in (2) determine the matrix of −A.
We recall from [12] the following definition.
Definition 6 Let S be an orientable surface and let δ be a constant positive real number. The surface S̃ is parallel to

S at distance δ if the points P̃(u, v) ∈ S̃ are defined by P̃(u, v) = P(u, v)+δ ·n(u, v), where n is the unit normal vector
field on S in P.

Formally, the parallel surface S̃ to a given surface S is given by the formula

X̃ : (u, v)→ X̃(u, v) = X(u, v)+δ ·n(u, v), (3)

where δ is a real positive constant.
For δ variable, we obtain a family of parallel surfaces with the given surface.
Let f : Rn×Rm →R be a differentiable function. For a point c ∈Rm, the restriction of f toRn×{c} (i.e. x → fc(x)),

denoted fc, is called potential.
Definition 7 The discriminant set of family f , denoted D( f ), is the set of all critical points of all potentials fc in

family f , i.e., the subset M ⊂ Rn ×Rm characterized by



∂ fc

∂x1
(x1, ..., xn) = 0

∂ fc

∂x2
(x1, ..., xn) = 0

...
∂ fc

∂xn
(x1, ..., xn) = 0

,

where (x1, ..., xn) ∈ Rn.
Surfaces with singularities suggested the introduction of more general notions as front and frontal. We recall from

[8] some definitions.
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Definition 8 A smooth map f : M2 → R3
1, where M2 is a two-dimensional differentiable manifold, is called frontal

if there exists a unit vector field ν on f (M2), normal on f∗(T M2).
The field ν can be seen as an application from M2 to the Minkowski sphere S 2.
Definition 9 A frontal f : M2 → R3

1 is called wave front if the mapping ( f , ν) : M2 → R3
1 ×S 2 is an isotropic

immersion.
Definition 10 A frontal f : M2 → R3

1 is called flat if the Gauss map ν : M2 → S 2 is degenerate.

3. Main results
Theorem 1 Let S be a regular non-lightlike surface parametrized by (1) and let S̃ be the family of parallel surfaces

to S at distance δ given by (3). Then, S̃ is the discriminant set of the family of functions

F : U ×R4 → R, (u, v, x, y, z, δ )→−1
2

(
∥(x− x(u, v), y− y(u, v), z− z(u, v))∥2

1 + εδ 2
)

with

ε =

{
+1, if S is spacelike
−1, if S is timelike.

(4)

Proof. The discriminant set is the set of the solutions of the system


∂F
∂u

= 0

∂F
∂v

= 0

,

that is, in our case,

{
−(x− x(u, v))xu +(y− y(u, v))yu +(z− z(u, v))zu = 0
−(x− x(u, v))xv +(y− y(u, v))yv +(z− z(u, v))zv = 0

. (5)

The solution of the indeterminate system (5) is:



x− x(u, v) =−λ

∣∣∣∣∣ yu zu

yv zv

∣∣∣∣∣
y− y(u, v) =−λ

∣∣∣∣∣ zu xu

zv xv

∣∣∣∣∣
z− z(u, v) =−λ

∣∣∣∣∣ xu yu

xv yv

∣∣∣∣∣
with λ ∈ R, arbitrary.
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Choosing λ =
δ

∥n∥1
we obtain


x = x(u, v)+δ ·nx,

y = y(u, v)+δ ·ny,

z = z(u, v)+δ ·nz,

where n = (nx, ny, nz), solution that can be written compactly:

(x, y, z) = X(u, v)+δ ·n.

So, the discriminant set D(F) of family F is

D(F) =
{
(x, y, z, δ ) ∈ R4 : (x, y, z) = X(u, v)+δn(u, v), (u, v) ∈U

}
.

Its intersection with the hyperplane δ = δ0 is the parallel surface to S at distance δ0.
Without loss of generality, it is required that the parameters from the discriminant set to vanish identically the

functions of the family. In our case, after replacing we obtain −1
2
(δ 2(−n2

x + n2
y + n2

z )+ εδ 2) ≡ 0, for ε chosen as in
(4).

Corollary 1 The Minkowski spheres with prescribed radius, which have contact of order 1 with S have the centers
on the parallel surface S̃ at distance equal with that prescribed radius.

Proof. The set F−1(0) can be geometrically seen as a Minkowski sphere (de Sitter space if ε = +1, respectively,
hyperbolic plane if ε =−1) of center (x, y, z), radius |δ |, passing through the pointX(u, v) of the surface S. The conditions
required in Theorem 1 for the discriminant set D(F) shows that this sphere has contact of order 1 with the surface S and
the conclusion of the corollary follows.

The surface (3) has, in generally, singular points. In order to determine them, we need to evaluate the vector field
X̃u ∧ X̃v, where X̃u = Xu +δ ·nu and X̃v = Xv +δ ·nv. It follows that

X̃u ∧ X̃v = Xu ∧Xv +δ (nu ∧Xv +Xu ∧nv)+δ 2nu ∧nv. (6)

From (2), with ∆ = F2 −EG, we have

−∆nu = (FM−GL)Xu +(FL−EM)Xv, −∆nv = (FN −GM)Xu +(FM−EN)Xv.

After computations, equation (6) becomes

X̃u ∧ X̃v = (Xu ∧Xv)

(
1+

EN −2FM+GL
∆

δ +
LN −M2

∆
δ 2

)
.

Since S is a regular surface, we have Xu ∧ Xv ̸= 0 on U . The second factor reminds of the principal curvatures
equation.
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The principal curvatures k1, k2 are always real; they can be equal (umbilical points) or both identically zero (planar
points). The inverses of these functions of (u, v) are called principal radii of curvature. Denoting δ =

1
k
, it follows that

X̃u ∧ X̃v ̸= 0 in (u, v) points in which (EG−F2)k2 +(EN −2FN +GL)k+LN −M2 = 0, which represents the principal
curvatures equation.

Thus, we have the following:
Theorem 2 Let the family X̃(u, v) = X(u, v)+δ ·n(u, v) of parallel surfaces to X(u, v) be.

(i) If δ =
1

k1(u0, v0)
or δ =

1
k2(u0, v0)

are the principal radii of curvature in X(u0, v0), then the point X̃(u0, v0) is

singular on the surface X̃ .
(ii) Let c be a curve on S for which k1(u, v) = k0

1 (constant) or k2(u, v) = k0
2 (constant). The imagine of the curve c

pe X̃ defined by δ = k0
1 or δ = k0

2 is a curve of singular points on X̃ .
Proposition 1 Let S̃ be the parallel surface to S at distance δ given by (3). Then, X̃(u, v), viewed as an application

X̃ : U ⊂ R2 → R3
1, is a flat surface (K ≡ 0).

Proof. From [12], the unit normal vector field on X̃ coincides with n, the unit normal vector field on X(u, v), whence
it follows that it is smooth. So, X̃(u, v), viewed as an application X̃ : U ⊂R2 →R3

1, is a flat surface (K ≡ 0), since X̃ and
X have the same Gauss map, which degenerates when its determinant (= K) is zero.

Singularities of flat fronts in Euclidean space have been studied in [4] and the general result is that they are cuspidal
edge or swallowtail. So, we can say that if a surface is flat, then the parallel surface to it admits as singular points only
the cuspidal edge or the swallowtail.

Next we give an example showing that the parallel surface to a timelike flat surface admits a cuspidal edge singularity.
Example 1 Let the surface S be parametrized by

X(u, v) =
(

u, v2 +
6v√

9v2 +4
, v3 − 4√

9v2 +4

)
. (7)

The unit normal vector field on S is

n =

(
0, − 3v√

9v2 +4
,

2√
9v2 +4

)
.

Since ⟨n, n⟩1 > 0, it follows that S is a timelike surface.
The coefficients of the first and of the second fundamental form are:

E =−1, F = 0, and G =

(
v
√

9v2 +4+
12

9v2 +4

)2

,

respectively,

L = 0, M = 0, and N =
6v
(
9v2 +4

)√
9v2 +4+72

(9v2 +4)2 .

Thus,
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K =
LN −M2

EG−F2 ≡ 0,

so S is flat.
The parallel surface to S at distance δ = 2 is parametrized by

X̃(u, v) = (u, v2, v3), (8)

which represents the equation of a surface that admits the cuspidal edge as singularity.

Figure 1. The flat timelike surface (7) (left) and its parallel surface (8) (right)

4. Conclusion
In this paper we proved that the family of parallel surfaces of a given surface can be obtained as the discriminant set of

a certain family of functions. As a consequence, we obtained that Minkowski spheres with prescribed radius, which have
contact of order 1 with a surface, have the centers on the parallel surface at distance equal with the radius. Furthermore,
we showed that the parallel surface to a flat timelike surface admits cuspidal edge as singularity.

As a further research direction, we intend to study, in three-dimensional Minkowski space, the lightlike situation
of the problem treated in the paper, and also, different non-flat surfaces, which in the Euclidean space, also admit other
singularities, according to [3].
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