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Abstract: We revisit the idea of using elements of information geometry for decoding low-density parity-check (LDPC)
codes, as introduced by Ikeda et al. In this work, we explicitly compute the m-projection to an e-flat submanifold, in
the case of a binary symmetric channel and the Gaussian channel. We exemplify the algorithm by testing moderate
size Gallager codes. To approach decoding problems, we show general theorems based on alternating projections in the
framework of information geometry, inspired by von Neumann’s theorem for the convergence of alternating projections
in Hilbert spaces. More precisely, consider the manifold S of the probability distributions on the n-dimensional hypercube
(i.e., the set of binary sequences of length n). Let p be in S. In the case of two intersecting m-flat or e-flat submanifolds,
the method of alternating projections on the two submanifolds converges to the projection of p on their intersection. This
result is also generalized to a finite family of submanifolds of S.
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1. Introduction
The LDPC codes have generated a rich and varied type of research (construction, performance analysis, etc. see, for

example, the references [1–4]). Here, we restrict ourselves to decoding binary codes. Iterative decoding algorithms play
a central role in coding theory [5, 6]. Some theoretical works such as [7, 8] investigates the excellent performances of
LDPC codes [5, 9] and turbo codes [6], in terms of geometrical concepts. We are especially interested in the fundamental
and unifying work of [10] which interprets iterative decoding or belief propagation (BP) algorithms [11] using information
geometry [12, 13].

We describe the contributions of this paper. Consider the manifold S of the probability distributions on the n-
dimensional hypercube (i.e., the set of binary sequences of length n). The BP algorithm of [10] uses m-projections onto
e-flat submanifolds of S (see Section 2.2 for formal definitions). In the first part of our work, we explicitly compute the
m-projection to an e-flat submanifold, in the case of a binary symmetric channel and the Gaussian channel. Furthermore,
we exemplify the algorithm by testing moderate size Gallager codes. In the second part of this paper, to approach decoding
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problems for block codes, we show general theorems based on alternating projections in the framework of information
geometry, inspired by von Neumann’s theorem for the convergence of alternating projections in Hilbert spaces. More
precisely, let p be in S. In the case of two intersecting m-flat or e-flat submanifolds, the method of alternating projections
on the two submanifolds converges to the projection of p on their intersection. This result is also generalized to a finite
family of submanifolds of S. The usefulness of these results is to allow the design of iterative decoding algorithms taking
advantage of information geometry methods. For example, we propose a general methodology in Section 5 to approach
the decoding problem, where we include projections to the product submanifold M0, because the m-projection to M0 does
not change the expectation of a probability distribution.

The method of alternating projections has been widely studied in the framework of Hilbert spaces. It consists of
finding a point at the intersection of several closed subspaces by projecting sequentially onto each of the sets (see [14–
19]). The first major result relating to the method of alternating projections is due to von Neumann in 1949 [18]. Early
works of [20–22] show existence and uniqueness of m or e-projections in a more general setting. It must be noted that the
work of [7] relates cross-entropy minimization and iterative decoding for product codes and turbo decoding using mainly
e-projections. The works of [23–25] use Dykstra’s algorithm and (symmetric) Bregman’s projections to capture modified
BP algorithms which use extrinsic information.

The rest of the paper is organized as follows. In Section 2, we recall MPM (abbreviation of maximization of the
posterior marginals) decoding problem, followed by information geometry concepts. Section 3 presents MPM decoding
of LDPC codes, an exact expression for m-projection, and examples to test the BP algorithm. In Section 4, we show some
general theorems concerning the method of alternating projections. Section 5 presents a methodology to approach the
decoding of linear block codes. Section 6 concludes the paper with brief comments.

2. Related theorems
We formulate in this section the decoding problem of interest, followed by a short background on information

geometry; we adopt the notations and conventions of [10] with minor modifications.

2.1 MPM decoding problem

For a vector x = (x1, . . . , xN)
T ∈ {−1, +1}N , we consider probability distributions given by:

q(x) =Cexp (c0(x)+ · · ·+ cK(x)) . (1)

The function c0(x) consists of linear terms, and cr(x), r = 1, . . . , K, consists of higher order terms of the variables
{xi}. The constant C is the normalization constant. MPM decoding is to estimate the information bits, x, based on q(x).
Let η = (η1, . . . , ηN)

T be the expectation of x, and x̃ be the decoded MPM estimator. Then

η = ∑
x

q(x)x, η = (η1, . . . , ηN) .

The sign of each ηi is the decoding result x̃i. Let q(xi) be the marginal distribution of one component xi in q(x), and
let Π denote the operator of marginalization, which maps q(x) to an independent distribution having the same marginal
distribution:

Π◦q(x) =
N

∏
i=1

q(xi) .
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The soft bit ηi depends only on the marginal distribution q(xi). Since q(xi) is a binary distribution, ηi has one-to-
one correspondence to q(xi). Therefore, soft decoding is equivalent to the marginalization of q(x). Computation of the
expectation η is equivalent to the computation of the marginalization operator [10].

2.2 Information geometry background

We consider the family of all probability distributions over the variable x. We denote it by:

S =

{
q/q(x)> 0, x ∈ {−1, +1}N , ∑

x
q(x) = 1

}
.

We define a submanifold

M0 =
{

p0(x; θ) = exp(c0(x)+θ · x−φ0(θ)) ; θ ∈ RN} ,
where φ0(θ) is a normalization factor known as free energy. Each component is independent for the distributions of M0

and Π ◦ q(x) = ∏N
i=1 q(xi) ∈ M0. We define e-flat and m-flat submanifold of S. The submanifold M ⊂ S is said to be

e-flat when the following r(x, t) belongs to M for all t ∈ [0, 1], q(x), p(x) ∈ M where

lnr(x, t) = (1− t)lnq(x)+ tlnp(x)+ c(t),

with c(t) a normalization term. The submanifold M ⊂ S is said to be m-flat when the following r(x, t) belongs to M for
all t ∈ [0, 1], q(x), p(x) ∈ M where

r(x, t) = (1− t)q(x)+ t p(x).

From its definition, we see that M0 is e-flat. Next, we define m-projection to an e-flat submanifold, after defining the
divergence between probability distributions. Let D[q(x), p(x)] be the Kullback-Leibleir (KL) divergence for p, q ∈ S
defined as

D[q(x), p(x)] = ∑
x

q(x)ln
q(x)
p(x)

.

The KL divergence is nonnegative and verifies D[q, p] = 0 if and only if q = p. Note that, in general, the KL
divergence is not symmetric.

Definition 1 Let M be an e-flat (resp. m-flat) submanifold in S, and let q(x)∈ S. The distribution in M that minimizes
the Kl-divergence from q(x) on M is denoted by
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Πm
Moq(x) = argmin

p(x)∈M
D[q(x), p(x)],

(resp. Πe
Moq(x) = argmin

p(x)∈M
D[p(x), q(x)])

and is called the m-projection (resp. e-projection) of q(x) to M.
Theorem 1 [10] Let M be an e-flat (resp. m-flat) submanifold in S and let q(x) ∈ S. The m-projection (resp. e-

projection) of q(x) to M is unique.
It is a fundamental fact [10] that the computation of the marginalization operator is equivalent to the m-projection of

q ∈ S to M0, ΠM0 ◦q(x) = Π◦q(x) = ∏N
i=1 q(xi).

Theorem 2 (Pythagorean theorem [10, 12]). Let p(x), q(x) and r(x) be three distributions in S. Suppose that the
m-geodesic connecting r(x) and q(x) is orthogonal at q(x) to the e-geodesic connecting q(x) and p(x). Then we have:

D[p(x), r(x)] = D[p(x), q(x)]+D[q(x), r(x)].

3. MPM decoding for LDPC codes
In this section we present the relevant information geometry (IG) formulation of [10] for belief propagation algorithm.

In the second subsection, we give an explicit expression for computing projections on relevant submanifolds.

3.1 LDPC codes

The structure of LDPC codes is shown in Figure 1. Let s = (s1, s2, . . . , sM)T , si ∈ {0, 1}, be the information bits.
The parity check aligned is H = (hi j) ∈ {0, 1}K×N . The code u = (u1, . . . , uN)

T is generated with GT s mod 2, and u
is sent through a channel. We assume a binary symmetric channel BSC with bit error σ , code word u is disturbed and
received as ũ = u+ x mod 2, x = (x1, . . . , xN)

T , xi ∈ {−1, +1}, be the noise vector.

Figure 1. Structure of LDPC code: encoding and decoding

We consider an LDPC code given by its binary control aligned H = (h jr) ∈ {0, 1}K×N , over BSC(σ), where the bit
error rate is σ = (1− tanhβ )/2.

Let x = (x1, . . . , xN)
T ∈ {−1, +1}N be the noise vector and ỹ = (ỹ1, . . . , ỹK) the observed syndrome vector.

The decoding is to infer x such that ỹ = Hx = y(x) mod 2 = (y1(x), . . . , yK(x)), where yr(x) = ∏ j∈Lr
x j and Lr ={

j : h jr = 1
}
.
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Let c0(x) = α · x, where α = (β , . . . , β ). Then the posterior distribution p(x | ỹ) is of the form given in Equation
(1). LDPC decoding approximates the computation of Π ◦ p(x | ỹ) by introducing parameterized distributions pr (x; ςr)

for each parity check equation of the code, ςr ∈ RN , r = 1, . . . , K:

pr (x; ςr) = p(x | ỹr, ςr) = exp(c0(x)+ cr(x)+ ςr · x−φr (ςr)) (2)

with cr(x) = ρ ỹryr(x), and φr (ςr) = ln∑x exp(c0(x)+ cr(x)+ ςr · x). The parameter ρ governs the quality of decoding: it
is a positive real number which may be taken in the case of regular LDPC to be at least N/(4KQ) where Q is the number
per row of 1 s in H (see Appendix II of [10]).

In the language of information geometry, we consider the e-flat submanifold Mr = {pr (x; ςr)}, for r = 1, . . . , K and
the product e-flat submanifold:

M0 =
{

p0(x; θ) = exp(c0(x)+θ · x−φ0(θ)) ; θ ∈ RN
}

(3)

to which the Mr will project.

3.2 Explicit m-projection computation

For the purpose of implementing belief propagation algorithm, information geometry version, we explicitly compute
the m-projection of pr (x, ςr) , r = 1, . . . , K, to the e-flat submanifold M0 in the case of a binary symmetric channel
BSC(σ).

Theorem 3 On a BSC(σ), with β = arctanh(1−2σ), if θ = θ(r) = Πm
M0

◦ pr (x; ςr), then

θi = arctanh(∑x pr (x, ςr)xi)−β , i = 1, . . . , N (4)

Proof. We have

θ = Πm
M0

opr (x; ςr)

= arg min
θ∈RN

D [pr (x; ςr) , p0(x; θ)]

= arg min
θ∈RN ∑

x

(
pr (x, ςr) ln

pr (x, ςr)

p0(x; θ)

)

= arg min
θ∈RN ∑

x
(pr (x, ςr) lnpr (x, ςr))−arg min

θ∈RN ∑
x

(pr (x, ςr) lnp0(x; θ))

= arg min
θ∈RN

(
−∑

x
(pr (x, ςr) lnp0(x; θ))

)
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= arg min
θ∈RN

(
−∑

x
(pr (x, ςr)(c0(x)+θ · x−φ0(θ)))

)

= arg min
θ∈RN

(
∑
x

(pr (x, ςr)(φ0(θ)−θ · x))
)
.

Let gx(θ) = φ0(θ)−θ · x and G = G(θ) = ∑x (pr (x, ςr)gx(θ)). Since the free energy function φ0 is convex, then
gx is convex (it is the difference of two convex functions). Then we have the following:

∂G(θ)
∂θ

= ∑
x

pr (x, ςr)
∂

∂θ
(gx(θ))

∂G(θ)
∂θi

= 0 ⇔ ∑
x

pr (x, ςr)
∂

∂θi
(φ0(θ)) = ∑

x
pr (x, ςr)

∂
∂θi

(θ · x)

⇔ ∂
∂θi

(φ0(θ)) = ∑
x

pr (x, ςr)xi.

Let α = (β , . . . , β ) ∈ RN , and c0(x) = α · x. We make the variable change:

θold = θ +α and φ0(θ) = φ(θ +α).

We have

φ (θold ) =
N

∑
i=1

φ (θi) =
N

∑
i=1

ln
(

e−θ i + eθ i
)
, θold ∈ RN

and

∂θiφ (θold ) =
(
eθ i − e−θ i

)
(eθ i + e−θ i)

= tanh((θold )i) ,

tanh((θold )i) = ∑
x

pr (x, ςr)xi.

Thus

(θold)i = arctanh
(

∑
x

pr (x, ςr)xi

)
.
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Finally,

θi = arctanh
(

∑
x

pr (x, ςr)xi

)
−β , i = 1, . . . , N.

With the same argument, we have:
Theorem 4 On a binary white Gaussian additive channel, with σ2 =

N0

2
representing the variance of noise and

β =
1

σ2 , if θ = Πm
M0

opr (x; ςr), then

θi = arctanh(∑x pr (x, ςr)xi)−β , i = 1, . . . , N (5)

Now, the interpretation of LDPC decoding by information geometry [10] is: Initialization: For t = 0; set ξ t
r = 0, ς t

r =

0, (r = 1, . . . , K).
For t = 0, 1, 2, . . . do compose pr (x, ς t

r) ∈ Mr,
Horizontal step: Compute the m-projection θ t of pr (x, ς t

r) to M0 with

θ t
i = arctanh

(
∑
x

pr
(
x, ς t

r
)

xi

)
−β i = 1, . . . , N

and define ξ t+1
r by ξ t+1

r = θ t − ς t
r , r = 1, . . . , K.

Vertical step: Update
{

ς t+1
r
}
, ς t+1

r = θ t+1 −ξ t+1
r ; r = 1, . . . , K.

Convergence: if θ t does not converge (that is θ t ̸= θ t+1), repeat the steps by incrementing t by 1.

3.3 Examples

We give examples of LDPC decoding via IG to test its quality and efficiency based on the computation of Theorem
3 for small dimensions of LDPC matrices H. The algorithms are implemented in C language.

Example 1We consider the regular parity check aligned with small number of one’sK = 15, N = 20, and amaximum
of 100 iterations; the number of frames is 10 (Gallager’s LDPC code construction):
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1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1



Let s = (1; 1; 1; 1; 1)T be the information vector, note that 0 in the binary form correspond to +1 in the bipolar form
and 1 correspond to −1, and vice versa.

Let u = (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1)T be the encoded message, and ũ = u+ x mod 2.
Since sign(ηi) = sign(θi) we have:

x̃i =


1 if θi > 0

−1 if θi < 0.

For example, if ρ = 3 we construct Table 1, where ũ is the received word and x̃ is the decoded word:
Table 1 shows the word x̃ for different σ if ρ = 3 and u = (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1).
For example if σ = 0.3 we have ũ = (1; 1; 1; −1; 1; 1; 1; −1; −1; −1; 1; −1; −1; 1; 1; 1; 1; 1; 1; 1) and

x̃ = (−1; −1; −1; −1; −1; −1; −1; −1; −1; −1; −1; −1; −1; −1; −1; −1; −1; −1; −1; −1), if σ = 0.2 we have
ũ= (1; 1; 1; 1; 1; 1; 1; −1; 1; −1; 1; 1; 1; −1; 1; −1; 1; 1; 1; 1) and x̃= (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;
1; 1; 1).

The efficiency of the decoder (15, 20) LDPC depends on the parameter ρ .
If we change ρ , for example ifσ = 0.3, ρ = 3 and u=(1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1)we have

ũ=(1; 1; 1; −1; 1; 1; 1; −1; −1; −1; 1; −1; −1; 1; 1; 1; 1; 1; 1; 1) and x̃=(1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;
1; 1; 1; 1).
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Table 1. Decoder (15, 20) LDPC code to recover the information word fixing ρ = 3

σ ũ x̃ Number of
iterations

0.3 (1; 1; 1; −1; 1; 1; 1; −1; −1; −1; 1; −1; −1; 1; 1; 1; 1; 1; 1; 1)
(−1; −1; −1; −1; −1; −1; −1; −1;

−1; −1; −1; −1; −1; −1;
−1; −1; −1; −1; −1; −1)

1

0.29 (−1; 1; 1; 1; 1; 1; 1; 1; 1; 1;
1; 1; 1; 1; 1; 1; −1; −1; 1; 1)

(1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;
1; 1; 1; 1; 1; 1; −1; −1) 1

0.28 (−1; −1; −1; −1; 1; 1; 1; 1; −1;
1; −1; −1; −1; −1; 1; 1; 1; 1; −1; 1) (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 53

0.27 (1; 1; 1; 1; 1; −1; 1; 1; 1; 1; −1; 1; 1; 1; −1; 1; 1; −1; −1; 1) (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; −1; 1) 30
0.26 (1; 1; 1; 1; 1; 1; 1; 1; 1; −1; 1; −1; −1; 1; 1; 1; 1; 1; 1; 1) (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 55

0.25 (1; −1; 1; −1; 1; 1; 1; 1; −1; 1; 1; −1; −1; 1; 1; 1; −1; 1; 1; 1)
(−1; −1; −1; −1; −1; −1; −1; −1;

−1; −1; −1; −1; −1; −1; −1;
−1; −1; −1; −1; −1)

1

0.24 (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; −1; 1; 1; 1; 1; 1; −1; −1; 1; 1) (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 58
0.23 (1; 1; −1; 1; 1; 1; −1; 1; 1; 1; 1; 1; −1; 1; 1; −1; 1; −1; 1; 1) (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 100
0.22 (1; 1; −1; 1; 1; 1; −1; 1; 1; 1; 1; −1; 1; 1; 1; 1; −1; 1; 1; 1) (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 100
0.21 (1; 1; 1; 1; −1; −1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; −1) 100
0.2 (1; 1; 1; 1; 1; 1; 1; −1; 1; −1; 1; 1; 1; −1; 1; −1; 1; 1; 1; 1) (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 16
0.19 (−1; 1; −1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; −1; −1; 1; 1; 1; 1) (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 21
0.18 (1; 1; 1; −1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; −1) (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 100
0.17 (−1; 1; 1; 1; 1; −1; 1; 1; 1; 1; 1; −1; −1; 1; 1; 1; 1; 1; 1; 1) (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 3

0.16 (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; −1; −1; 1; 1; −1; 1; 1; 1; 1)
(−1; −1; −1; −1; −1; −1; −1;
−1; −1; −1; −1; −1; −1; −1;
−1; −1; −1; −1; −1; −1)

23

0.15 (1; −1; 1; −1; 1; 1; 1; 1; 1; 1; −1; 1; 1; 1; 1; 1; 1; 1; 1; 1) (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 6
0.14 (1; 1; 1; 1; 1; 1; 1; 1; −1; 1; 1; 1; 1; 1; 1; 1; −1; 1; 1; 1) (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 39
0.13 (1; 1; −1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 24
0.12 (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; −1; 1; 1; 1; 1; 1; 1; 1; 1) (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 7

0.11 (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; −1; 1; 1; 1; 1; 1; 1; 1; 1; 1)
(−1; −1; −1; −1; −1; −1;

−1; −1; −1; −1; −1; −1; −1; −1;
−1; −1; −1; −1; −1; −1)

1

0.1 (1; −1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; −1; 1; 1; 1; 1; −1; 1; 1) (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 33

Table 2 shows the word x̃ if we change ρ .

Table 2. The word x̃ of a (15, 20) LDPC decoder if we change ρ

σ x̃ ρ Number of iterations

0.3 (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 1 1
0.28 (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 1 1
0.27 (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 1 23
0.25 (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 1 72
0.21 (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 0.5 54
0.16 (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 1 48
0.11 (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 1 6

Often, the quality of decoding is measured by the bit error rate (BER) defined as:

BER=
Number of bit errors

(N −K)× Number of frames (6)
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For 10 frames we have Table 3:

Table 3. BER for 10 frames and 100 iterations

ρ
σ

0.5 1 2 3

0.3 1 0 0 0.5
0.29 0.7 0 0.8 0
0.28 0 0 0 0
0.27 0 0 0 0
0.26 0.1 0 0.1 0
0.25 0 0.1 0 0.3
0.24 0 0 0 0
0.23 0 0 0 0
0.22 0 0 0 0
0.21 0 0 0 0.3

Table 3 shows the convergence and efficiency of LDPC decoding by information geometry for different values of σ
depending on the aligned H and the value of ρ . Recall that the parameter ρ intervenes in the local distributions as:

pr (x; ςr) = p(x | ỹr, ςr) = exp(c0(x)+ cr(x)+ ςr · x−φr (ςr)) , r = 1, . . . , K

with, cr(x) = ρ ỹr · yr(x), ρ ∈ R, and ρ > 0. For example, for σ = 0.26 if ρ = 0.5, the BER for 10 frames of one decoder
is 0.1 and if ρ = 1 the BER is 0.

Example 2 We consider the regular parity check aligned has small number of one’s, K = 10, N = 15. (Gallager’s
LDPC code construction):



1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1



s = (1; 1; 1; 1; 1)T is the message sent, u = (1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;)T is the encoded message, for
1,000 frames we have Table 4.
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Table 4. BER for 1,000 frames and 100 iterations

ρ
σ

0.5 1 2 3

0.3 1 0.736 0.518 1
0.29 0 0.003 0.87 0.243
0.28 1 0.281 1 0.908
0.27 0.437 0.71 0.108 0
0.26 0.299 1 1 1
0.25 0 0 0 0.7
0.24 1 0.31 1 0.923
0.23 0 0.63 0 0.63
0.22 0.001 0.064 0.001 0.178
0.21 0.014 0 0.32 0.014

Table 4 shows the convergence and efficient of LDPC decoding by information geometry if we change the parameter
ρ for different σ . For example, for σ = 0.29 if ρ = 1, the BER of one decoder is 0.003, and if ρ = 0.5, the BER is 0.

Example 3 For a Gallager’s LDPC code of size (20, 25) with ρ = 1, let s = (1; 1; 1; 1; 1)T be the information
vector; we obtain Table 5.

Table 5. Number of bit errors with (20, 25) LDPC decoder for ρ = 1

σ Number of bit errors

0.2 0
0.19 0
0.18 0
0.17 0
0.16 0
0.15 0
0.14 0
0.13 0
0.12 0
0.11 0

Table 5 shows the number of bit errors of Gallager’s LDPC code (20, 25) for different σ and for ρ = 1.
Remark 1 The same implementation is valid for turbo decoding with K = 2. As shown in [10], we can also compute

the error correction for LDPC aligned, which vanishes for large girths. That is, any two columns of the parity check
aligned have at most one overlapping positions of 1.

4. Alternating projections: Information geometry view
This section concerns the derivation of general results in the framework of the information geometry of the manifold

S, where Theorems 1 and 2 are extensively used.
The following proposition shows that projections on the intersection are the same (recall that the KL divergence is

asymmetric).
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Proposition 1 Suppose thatM1, M2 are two submanifolds such thatM1 is e-flat andM2 ism-flat in SwithM1∩M2 ̸=∅.
Let p0 ∈ S.

Then we have Πm
M1∩M2

op0 = Πe
M1∩M2

op0, where Πm
M1∩M2

op0 is the m-projection of p0 to M1 ∩M2 and Πe
M1∩M2

op0

is the e-projection of p0 to M1 ∩M2.
Proof. Let p∗ = Πm

M1∩M2
op0 and q∗ = Πe

M1∩M2
op0. Then, for all p ∈ M1 ∩M2, by the Pythagorean theorem we have:

D [p0, q∗]+D [q∗, p] = D [p0, p] .

By taking p = p∗, we have:

D [p0, q∗]+D [q∗, p∗] = D [p0, p∗] (7)

Similarly, for all q ∈ M1 ∩M2, by the Pythagorean theorem we have:

D [p0, p∗]+D [p∗, q] = D [p0, q] (8)

If q = q∗, we have:

D [p0, p∗]+D [p∗, q∗] = D [p0, q∗] (9)

By using Equation (7) + Equation (8), we have:

D [p0, q∗]+D [q∗, p∗]+D [p0, p∗]+D [p∗, q∗] = D [p0, p∗]+D [p0, q∗] .

Then,

D [q∗, p∗]+D [p∗, q∗] = 0.

But D [q∗, p∗]≥ 0 and D [p∗, q∗]≥ 0. Thus, we deduce p∗ = q∗.
Theorem 5 Suppose that M1, M2 are two submanifolds such that M1 is e-flat and M2 is m-flat in S where M1

corresponds to m-projections Πm and M2 corresponds to e-projections Πe. Suppose that M1 ∩M2 ̸=∅ and p0 ∈ S. Then
the sequence of alternating projections generated by:

p1(x) = Πm
M1

op0(x); q1(x) = Πe
M2

op1(x); p2(x) = Πm
M1

oq1(x), . . .

converges to a point p∗ equal to p∗∗ the m-projection of p0 onto M1 ∩M2 (see Figure 2).
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Figure 2. Von Neumann’s theorem in S for an e-flat submanifolds M1 and an m-flat submanifold M2 (Information geometry view)

Proof. Let p0 ∈ S and p1 the m-projection of p0 to M1. For t = 1, 2, . . . , pt ∈ M1, search for qt ∈ M2 that minimizes
D [qt , pt ], this is given by the e-projection of pt to M2, let it be qt ∈M2; then search for the point pt+1 in M1 that minimizes
D [qt , pt+1], let it be pt+1; this is given by the m-projection of qt to M1. Thus, we have

qt = Πe
M2

opt(x) = argminD
q∈M2

[q(x), pt(x)] ,

pt+1 = Πm
M1

oqt(x) = argminD
p∈M1

[qt(x), p(x)] .

Let p∗ and q∗ be the pair of minimizers of D [qt , pt+1], then the m-projection of q∗ to M1 is p∗ and the e-projection
of p∗ to M2 is q∗. Since we have

D [qt , pt ]≥ D [qt , pt+1]≥ D [qt+1, pt+1]≥ . . .≥ D [p∗, q∗] ,

D [p∗, q∗] = argmin
p∈M1

argmin
q∈M2

D[p, q],

and p∗ ∈ M1 ∩M2, q∗ ∈ M1 ∩M2, we deduce that D [p∗, q∗] = 0, and consequently p∗ = q∗. As a conclusion of the first
part of the proposition, the sequence of alternating projections converges to p∗.

Let p∗∗ be them-projection of p0 toM1∩M2 and p∗∗ =Πm
M1∩M2

op0. For all p∈M1∩M2, by the Pythagorean theorem
we have:

D [p0, p∗∗]+D [p∗∗, p] = D [p0, p] (10)

If we set p = p∗, in Equation (10), we have:
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D [p0, p∗∗]+D [p∗∗, p∗] = D [p0, p∗] (11)

where p∗ ∈ M1 ∩M2 and p∗∗ ∈ M1 ∩M2. Then D [p∗∗, p∗] = 0, and D [p0, p∗∗] = D [p0, p∗]. We deduce that p∗ = p∗∗ =
Πm

M1∩M2
op0.

The three points p0, p∗ and p form an orthogonal triangle, because them-geodesic connecting p∗ and p0 is orthogonal
to the e-geodesic connecting p and p∗. Hence, the Pythagorean theorem shows D [p0, p∗] +D [p∗, p] = D [p0, p] . We
conclude that for p0 ∈ S, the point p∗ is the m-projection of p0 to M1 ∩M2.

With the same argument, we have:
Theorem 6 Suppose that M1, M2 are two submanifolds such that M1 is m-flat and M2 is e-flat in S where M1

corresponds to e-projections Πm and M2 corresponds to m-projections Πe. Suppose that M1 ∩M2 ̸=∅ and p0 ∈ S. Then
the sequence of alternating projections generated by:

p1(x) = Πe
M1

op0(x); q1(x) = Πm
M2

op1(x); p2(x) = Πe
M1

oq1(x), . . .

converges to a point p∗ equal to p∗∗ the e-projection of p0 to M1 ∩M2.
Theorem 7 [7] Suppose that M1, M2 are two m-flat submanifolds in S corresponding to e-projections Πe. Suppose

that M1 ∩M2 ̸= ∅ and p0 ∈ S. Then the sequence of alternating e-projections converges to p∗ the eprojection of p0 on
M1 ∩M2.

Proof. Let p0 ∈ S and pt+1 the e-projection of pt to Mi, i = 1, 2:

Πe
Mi

opt(x) = argmin
pt+1(x)∈Mi

D [pt+1(x), pt(x)]

We have:

D [p1, p0]≥ D [p2, p1]≥ . . .≥ D [pt+1, pt ]

This implies:

D [p∗, pt ]≥ D [p∗, pt+1] , p∗ ∈ M1 ∩M2.

When t → ∞, D [p∗, pt+1] = 0.
Since the e-projection p∗ of p0 is unique and satisfies the Pythagorean theorem, p∗ is the e-projection of p0 to

M1 ∩M2.
Remark 2 The m-flat submanifolds are convex sets.
Theorem 8 Suppose that M1, M2 are two e-flat submanifolds in S corresponding to m-projections Πm. Suppose

that M1 ∩M2 ̸=∅ and p0 ∈ S. Then the sequence of alternating m-projections converges to p∗, the m-projection of p0 to
M1 ∩M2.

Proof. Let p0 ∈ S and let pt+1 be the m-projection of pt to Mi, i = 1, 2:
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Πm
Mi

opt(x) = argmin
pt+1(x)∈Mi

D [pt(x), pt+1(x)]

We have

D [p0, p1]≥ D [p1, p2]≥ . . .≥ D [pt , pt+1]

This implies

D [pt , p∗]≥ D [pt+1, p∗] , p∗ ∈ M1 ∩M2.

When t → ∞, D [pt+1, p∗] = 0. Since the m-projection p∗ of p0 is unique and satisfies the Pythagorean theorem, p∗

is the m-projection of p0 to M1 ∩M2.
Theorem 9 Let M1, M2, . . . , Mr be m-flat submanifolds of the manifold S with M = ∩r

i=1Mi ̸=∅.
Let q0 ∈ S and consider the sequence q1, q2, . . . defined by

qn = Πe
Mnoqn−1, for n = 1, . . . , r−1 ;

qn = Πe
Mnmodroqn−1, for n ≥ r .

Then qn converges to the e-projection q∗ of q0 to M.
Proof. Under the hypotheses of the theorem, it follows that the e-projections q1, q2, . . . and q∗ exist andD [p, qn−1] =

D [p, qn]+D [qn, qn−1] for any p ∈ Mn, n = 1, 2, . . .. In particular, setting p = q∗, we obtain by induction:

D [q∗, q0] = D [q∗, qn]+
n

∑
i=1

D [qi, qi−1] , n = 1, 2, . . .

By the same argument, we obtain:
Theorem 10 Let M1, M2, . . . , Mr be e-flat submanifolds of the manifold S with M = ∩r

i=1Mi ̸= ∅. Let q0 ∈ S and
consider the sequence q1, q2, . . . defined by

qn = Πm
Mnoqn−1, for n = 1, . . . , r−1 ;

qn = Πm
Mnmodr o qn−1, for n ≥ r.

Then qn converges to the m-projection q∗ of q0 to M.
Theorem 11 Let M1, . . . , Mk be a set of submanifolds, where Mi is e-flat or m-flat, with M = ∩k

i=1Mi ̸=∅. Let σ be
a permutation on {1, . . . , k},
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σ =


1 . . . k

i1 . . . ik


Set

fi =


m if Mi is e− flat

e if Mi is m− flat
for i = 1, . . . , k

Then, if p0 ∈ S, we have

lim
n→∞

(
Π

fik
Mik

o . . .oΠ
fi1
Mi1

)n
op0 = Πm

Mop0

Proof. Let Dmin = mini̸= j D [Mi, M j], then

lim
n→∞

(
Π

fik
Mik

o . . .oΠ
fi1
Mi1

)n
op0 = Dmin (Mi)

Since M ̸=∅, we get Dmin = 0. Then, there exists p∗ ∈ M, such that, for all p ∈ Mi, D [p, p∗] = 0. Set Πm
Mop0 = p∗∗.

For all p ∈ M, by Pythagorean theorem, we have:

D [p0, p∗∗]+D [p∗∗, p] = D [p0, p] .

If p = p∗ we have:

D [p0, p∗∗]+D [p∗∗, p∗] = D [p0, p∗] (12)

Then D [p∗∗, p∗] = 0 and D [p0, p∗∗] = D [p0, p∗].
We conclude that p∗ = p∗∗ = Πm

Mop0.

5. Interpretation of iterative decoding
The aim of this section is to show the possibility to devise decoding techniques for block codes, based on the general

results of the preceding section. Recall from Section 2.2 that the computation of the marginalization operator is equivalent
to the m-projection of q ∈ S to a product submanifold M0.

We consider two submanifolds in S, M1 and M2, where M1 is m-flat and M2 is e-flat of the form:
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M1 = {p/∑x p(x) fi(x) = γi, i = 1, . . . , K} (13)

and

M2 =
{

p/p(x) =Cq(x)exp
(
∑K

i=1 θi fi(x)
)}

(14)

In M2, q is a given distribution and C is a normalization factor. The m-flat submanifold M1 is completely defined
by the functions f1, . . . , fK and the scalars γ1, . . . , γK . Similarly, the e-flat submanifold M2 is completely defined by the
distribution q, the functions f1, . . . , fK and the parameters θi.

The m-projection p∗ of q ∈ S to M2 is unique and satisfies the Pythagorean identity:

D[p(x), q(x)] = D [p(x), p∗(x)]+D [p∗(x), q(x)] .

The e-projection q∗ of p onto M1 is unique and satisfies the Pythagorean identity:

D[p(x), q(x)] = D [p(x), q∗(x)]+D [q∗(x), q(x)] .

The e-projection q∗ of q onto the m-flat submanifold M1 is given by:

q∗(x) = q(x)exp

(
−

K

∑
i=1

µi ( fi(x)− γi)

)

where the {µi} are Lagrange multiplies determined from the constraints.
In the decoding problem the functions { fi} correspond to the parity-check equations of the code and if {γi = 0}, then

the e-projection is given by [7]:

q∗(x) = q(x)exp(−µ0) I1(x) . . . IK(x)

where Ii(x) is the indicator function and exp(−µ0) is a normalization constant:

Ii(x) =


1 if fi(x) = 0

0 if fi(x) ̸= 0.

The m-projection p∗ of p onto the e-flat submanifold M2 is given by:

Volume 6 Issue 1|2025| 659 Contemporary Mathematics



p∗(x) = ∏
i

pi (xi)

where pi (xi) is the marginal distribution on xi. In the following theorem, the notation p(x, θ) signify a probability
distribution with e-affine coordinates θ .

Theorem 12We consider two m-flat submanifolds M1, M2, and an e-flat product manifold M0 in S given by:

M1 =

{
p/∑

x
p(x) fi(x) = 0, i = 1, . . . , r

}
,

M2 =

{
p/∑

x
p(x) fi(x) = 0, i = r+1, . . . , K

}
,

M0 =

{
p(x, θ)/p(x, θ) =

K

∏
i=1

p(xi, θi)

}
.

Let p0 ∈ S and p1 the m-projection of p0 to M1. Suppose that M1 ∩M2 ̸= ∅. Then the sequence of alternating
projections generated by:

p1(x) = Πe
M1

op0(x); p
′
1(x) = Πm

M0
op1(x); q1(x) = Πe

M2
op

′
1(x) ;

q
′
1(x) = Πm

M0
oq1(x); p2(x) = Πe

M1
oq

′
1(x) . . .

converges to p∗ ∈ M1 ∩M2.
Proof. Let p0 ∈ S and p1 the e-projection of p0 to M1. We have:

D
[

p1, p
′
1

]
+D

[
q1, p

′
1

]
≥ D

[
p2, p

′
2

]
+D

[
q2, p

′
2

]
≥ . . .≥ D

[
pt , p

′
t

]
+D

[
qt , p

′
t

]

when t → ∞, D
[

pt , p
′
t

]
+D

[
qt , p

′
t

]
= D [pt , p∗]+D

[
p∗, p

′
t

]
, with p∗ ∈ M1 ∩M2 .

Then,

Πe
M1∩M2

op
′
t(x) = Πe

M1∩M2
opt(x) = p∗.

Corollary 1With the same notations as the above theorem, let p∗∗ = Πm
M0

op. Then, we have p∗∗ = Πm
M0

op∗.
Indeed, we have D [p∗, p∗∗]+D [p∗∗, p0] = D [p∗, p0].
Let us consider an error-correcting code C given by its K ×N parity-check aligned H = H(C). The rows of H

correspond to linear forms. We may associate to the code C a submanifold in S, by the operator T (C) = T (H) of the
form (13) defined by
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T (C) =

{
p/∑

x
p(x) fi(x) = 0, i = 1, . . . , K

}

where the fi are the linear forms of H and the γi are null. Let 1 ≤ r ≤ K. We partition the rows as

H =

(
H1

H2

)

where H1 is an r × N subaligned and H2 is an (K − r)× N subaligned of H. Then C = C1 ∩C2 is non empty, by
construction, and the codesC1, C2 correspond to the submatricesH1, H2 respectively. Thus, sinceT (C1)∩T (C2) ̸=∅, it
is possible to apply Theorem 12.

6. Conclusions
In this paper, our main sources of inspiration are (1) the von Neumann’s theorem [19] on the convergence of

alternating projection method in the case of Hilbert spaces, and (2) the work of Ikeda et al. [10] interpreting belief
propagation algorithm in the frame of information geometry (IG). After a presentation of LDPC decoding, version IG, we
explicitly compute the m-projection to an e-flat submanifold, in the case of a binary symmetric channel and the Gaussian
channel. Moreover, we give moderate tests by implementing the algorithm. In a second part, we give general results
on the convergence of IG alternating projections on e-flat and m-flat submanifolds. Towards decoding problems [7], in
Section 5, we see how to transform the decoding problem by introducing convenient submanifolds.

Further work include (1) the study of the rate of convergence of our proposals by taking account of the angle between
submanifolds (see [14, 15, 26]) in our case; (2) the quality of decoding linear block codes and performance analysis; (3)
the search for the types of error-correcting codes adapted to IG alternating projections by using Theorem 11 or 12 for
example.
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