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Abstract: Optimum flows in directed planar dynamic networks are essential for several reasons, impacting a variety
of fields. These networks present unique challenges that require advanced optimization techniques to ensure efficient and
reliable performance. In this paper we consider a time-varying directed planar network without parallel arcs and loops,
where a flow must take a certain time to traverse an arc. The problem is to find an optimal (minimal or maximal) solution
to send the optimum (minimum or maximum) flow from the source node to the sink node, within a given time T .
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1. Introduction
The networks are among the most basic and powerful objects to model relations and processes across a diverse array

of disciplines, including sociology, economy, physics, chemistry, computer science, biology, and engineering, as well as
many other fields. It offers a framework for modeling complex systems and interactions, making them indispensable in
both theoretical research and practical applications. This paper is a synthesis of papers [1–3].

The literature on network flow problems is extensive, and over the past 50 years researchers have made continuous
improvement to algorithms for solving several classes of problems. In recent years, there has been an increase in work
focused on the algorithmic aspects of network flow problems. These contributions have highlighted how the use of clever
data structures and careful analysis can improve the theoretical performance of network algorithms.

The planar networks are an important family of networks that has been extensively studied and has many practical
applications in different fields. For instance, they play a crucial role in transportation networks, where they help optimize
routes and reduce congestion. In geographical routing for communication networks, planar networks facilitate efficient
data transmission. In the field of computer vision, they aid in image processing and object recognition. These examples
underscore the wide-ranging utility of planar networks across different domains.

Flow variation over time is an important feature in network flow problems. This temporal dimension is particularly
relevant in applications such as road and air traffic control, where real-time adjustments are necessary to manage flow
effectively. Similarly, in production systems, the timing of material and product flows can significantly impact overall
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efficiency. Communication networks, including the Internet, rely on dynamic flow management to ensure smooth data
transmission. Financial flows also exhibit temporal variation, with the timing of transactions affecting market dynamics.
In these contexts, it is essential to consider not only the amount of flow to be transmitted but also the time required for its
transmission through the network’s arcs.

The study of optimum flows in directed planar dynamic networks has garnered significant attention, given its critical
applications in various fields. Foundational theories such as Ford and Fulkerson’s Max-Flow Min-Cut Theorem laid
the groundwork for understanding network flow optimization [4]. The Maximum Flow-Minimum Cut Theorem is a
fundamental result in network flow theory. It establishes a relationship between two key concepts in a flow network: the
maximum flow that can be sent from a source node to a sink node, and the minimum cut, which represents the smallest
capacity that, if removed, would prevent any flow from reaching the sink. The Maximum Flow-Minimum Cut Theorem
provides a powerful tool for optimizing the flow of resources through networks, as in the example of transportation systems
(e.g., road networks, supply chains). In this case the theorem helps identify bottlenecks that limit the flow of goods. By
identifying the minimum cut (the set of critical links or paths), efforts can be focused on improving infrastructure or
rerouting traffic to maximize the overall flow of goods. Planar networks benefit from unique properties highlighted
by Lipton and Tarjan’s Separator Theorem, which facilitates efficient algorithmic solutions [5]. Dynamic network flow
models, introduced by Cooke and Halsey, consider the time-varying nature of flows, complicating traditional optimization
problems [6].

This paper aims to explore these dimensions of network flow problems, with a particular focus on planar networks.
This paper is structured as follows. Section 2 and Section 3 are presented notations, definitions, and results from general
static and dynamic networks which are necessary for our purposes. These sections lay the groundwork for understanding
the more complex dynamic scenarios discussed later. Section 4 presents the problem of minimum and maximum flow,
respectively in planar static networks. Section 5 delves into the problem of optimum flow in directed planar dynamic
networks, presenting a dynamic approach based on the findings from previous studies. This section synthesizes the
insights from papers [2, 3] offering a comprehensive overview of current methodologies. Finally, Section 6 illustrates the
theoretical concepts with a practical example, demonstrating the application of these principles in a real-world context.
Through this structured approach, the paper aims to contribute to research on network flow problems and their solutions.

2. Optimum flows in general static networks
The notions and the results presented in this section are taken over from works [7–9].
Let G = (N, A, l, u, 1, n) be a general static network with the node set N = {1, . . . , i, . . . , j, . . . , n}, the arc set

A = {a1, . . . , ak, . . . , am}, ak = (i, j), the lower bound function l : A →N, the upper bound (capacity) function u : A →N
where N is the natural set, 1 the source node and n the sink node.

For a given pair of not necessarily disjoint subset X ⊂ N, Y ⊂ N we use the notation (X , Y ) = {(i, j)|(i, j) ∈ A, i ∈
X , j ∈ Y} and for a function f : A → N we use the notation f (X , Y ) = ∑(X ,Y ) f (i, j).

A flow in network G is a function f : A → N satisfying the next conditions:

f (i, N)− f (N, i) =



v, if i = 1

0, if i ̸= 0, n

−v, if i = n

(1)

l(i, j)≤ f (i, j)≤ u(i, j), for all (i, j) ∈ A (2)
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with the value of the flow v ≥ 0 and f (i, j) = 0 for the pairs (i, j) /∈ A.
The optimum (minimum or maximum) flow problem consists in determining a flow f for which v is optimized

(minimized or maximized).
A cut is a partition of N set into two proper subsets S and T = N −S. We represent this cut using the notation [S, T ].

An arc (i, j) ∈ A with i ∈ S and j ∈ T is a forward arc of the cut and an arc ( j, i) with i ∈ S and j ∈ T is a backward arc
of the cut. Let (S, T ) denote the set of forward arcs, and let (T, S) denote the set of backward arcs in the cut. We have
[S, T ] = (S, T )∪ (T, S). We refer to a cut as a 1−n cut if 1 ∈ S and n ∈ T .

If a function f verifies (1) then f is a flow and if it also verifies (2) then f is a feasible flow. Whereas the optimum
flow problem with zero lower bounds always has a feasible solution (since the zero flow is feasible), the problem with
nonnegative lower bounds could be infeasible. Any optimum flow algorithm for problems with nonnegative lower bounds
has two phases:

1. to determine a feasible flow if one exists;
2. converts a feasible flow into an optimum flow.
We transform themaximum flow problem into a circulation problem by adding an arc (n, 1)with l(n, 1)= 0, u(n, 1)=

∞. This arc carries the flow sent from node 1 to node n back to node 1. Clearly, the maximum flow problem admits a
feasible flow if and only if the circulation problem admits a feasible flow.

The feasible circulation problem is to identify a flow f satisfying the following constraints:

f (i, N)− f (N, i) = 0 for all i ∈ N (3)

l(i, j)≤ f (i, j)≤ u(i, j), for all (i, j) ∈ A (4)

Theorem 1 (Circulation Feasibility Conditions) A circulation problem with nonnegative lower bounds on arc flows
is feasible if and only if for every set X of nodes l(X̄ , X)≤ u(X , X̄), X̄ = N −X .

For the minimum flow problem, we define the capacity k[S, T ] of the 1−n cut [S, T ] as:

k[S, T ] = l(S, T )−u(T, S) (5)

We refer to a 1−n cut [S, T ] which has the maximum capacity among all 1−n cuts as a maximum cut.
Theorem 2 (Min-Flow Max-Cut Theorem) If there exists a feasible flow in the network G = (N, A, l, u, 1, n), the

value of the minimum flow from a source node 1 to a sink node n is equal to the capacity of the maximum 1−n cut.
For the maximum flow problem, we define the capacity K[S, T ] of the 1−n cut [S, T ] as:

K[S, T ] = u(S, T )− l(T, S) (6)

A 1−n cut [S, T ] which has the minimum capacity among all 1−n cuts is a minimum cut.
Theorem 3 (Max-Flow Min-Cut Theorem) If there exists a feasible flow in the network G = (N, A, l, u, 1, n), the

value of the maximum flow from a source node 1 to a sink node n is equal to the capacity of the minimum 1−n cut.
The concept of the residual network plays a central role in the development of all the optimum flow algorithms. The

residual capacity of an arc (i, j) for a maximum flow problem is

r(i, j) = u(i, j)− f (i, j)+ f ( j, i)− l( j, i) (7)
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and for minimum flow problem is

r(i, j) = u( j, i)− f ( j, i)+ f (i, j)− l(i, j) (8)

We refer to the network G̃ = (N, Ã, r, 1, n) consisting of the arcs with positive residual capacities of the residual
network (with respect to the flow f ).

The optimum flow algorithms work with only residual capacities [9]. These algorithms end with optimal residual
capacities. From these residual capacities, we can construct optimum flow. For maximum flow, we have:

f (i, j) = l(i, j)+max{0, u(i, j)− r(i, j)− l(i, j)} (9)

and for the minimum flow, we have:

f (i, j) = l(i, j)+max{0, r(i, j)−u( j, i)+ l( j, i)} (10)

Clearly, the results present in this section are also valid for particular networks (planar and bipartite).

3. Optimum flows in general dynamic networks
The notions and the results presented in this section are taken over from works [7, 9–14].
Dynamic network models arise in many problem settings, including production-distribution systems, economic

planning, energy systems, traffic systems, and building evacuation systems.
Let N be the natural number set and let H = {0, 1, . . . , T} be the set of periods, where T ∈ N is a finite time

horizon. Let D = (N, A, h, e, q, H) be a general dynamic network with the node set N = {1, . . . , i, . . . , j, . . . , n}, the
arc set A = {a1, . . . , ak, . . . , am}, ak = (i, j), the transit time function h : A×H → N, the time lower bound function
e : A×H → N, the time upper bound function q : A×H → N, e(i, j; t)≤ q(i, j; t), for all (i, j) ∈ A and for all t ∈ H.

The optimum (minimum or maximum) dynamic flow problem for T time periods is to determine a dynamic flow
function g : A×H → N, which should satisfy the following conditions in dynamic network D = (N, A, h, e, q, H):

T

∑
t=0

(
∑

j
g(1, j; t)−∑

k
∑
τ

g(k, 1; τ)

)
= w (11)

∑
j

g(i, j; t)−∑
k

∑
τ

g(k, i; τ) = 0, i ̸= 1, n, t ∈ H (12)

T

∑
t=0

(
∑

j
g(n, j; t)−∑

k
∑
τ

g(k, n; τ)

)
=−w (13)
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e(i, j; t)≤ g(i, j; t)≤ q(i, j; t), (i, j) ∈ A, t ∈ H (14)

opt w, (15)

where τ = t −h(k, i; τ), w =
T

∑
t=0

v(t), v(t) is the flow value at time t, g(i, j; t) = 0 for all t ∈ {T −h(i, j; t)+1, . . . , T}

and opt is min or max.
In the most general dynamic model, the parameter h(i) = 1 is waiting time at node i and the parameters e(i; t), q(i; t)

are lower bound and upper bound for flow g(i; t) that can wait at node i from time t or t +1. This most general dynamic
model is not discussed in this paper.

Obviously, the problem of finding an optimum flow in a dynamic network D = (N, A, h, e, q, H) is more complex
than the problem of finding an optimum flow in a static network G = (N, A, l, u). Happily, this complication can be
resolved, through static approach, by rephrasing the problem in dynamic network D into a problem in static network
R0 = (V0, E0, l0, u0) with multiple source nodes and multiple sink nodes or in static network R1 = (V1, E1, l1, u1) with a
single source node and a single sink node. The network R1 can be obtained by two methods:

1. using static shortest path [7];
2. using dynamic shortest path [10].
We present only the second method [3].
Let d(1, i; t) be the length of the dynamic shortest path at time t from the source node 1 to the node i, and let

d(i, n; t) be the length of the dynamic shortest path at time t from the node i to the sink node n, with respect to h
in the dynamic network D. Let us consider Hi = {t|t ∈ H, d(1, i; t) ≤ t ≤ T − d(i, n; t)}, i ∈ N, and Hi, j = {t|t ∈
H, d(1, i; t) ≤ t ≤ T − h(i, j; t)− d( j, n; θ)}, (i, j) ∈ A. The multiple source, multiple sinks static reduced expanded
network R0 = (V0, E0, l0, u0) has V0 = {it |i ∈ N, t ∈ Hi}, E0 = {(it , jθ )|(i, j) ∈ A, t ∈ Hi, j}, l0(it , jθ ) = e(i, j; t),
u0(it , jθ ) = q(i, j; t), (it , jθ ) ∈ E0. The static reduced expanded network R1 = (V1, E1, l1, u1) is constructed from the
network R0 as follows: V1 =V0 ∪{0, n+1}, E1 = E0 ∪{0, 1t |1t ∈V0}∪{(nt , n+1)|nt ∈V0}, l(0, 1t) = l(nt , n+1) = 0,
u(0, 1t) = u(nt , n+1) = ∞, 1t , nt ∈V0 and l(it , jθ ) = l0(it , jθ ), u(it , jθ ) = u0(it , jθ ), (it , jθ ) ∈ E0.

The optimum flow problem for T time periods in the dynamic network D as stated in the conditions (11)-(15) is
equivalent with the maximum flow problem in the static reduced expanded network R1, as follows:

∑
jθ

f1 (it , jθ )−∑
kτ

f1 (kτ , it) =



v1, if it = 0

0, if it ̸= 0, n+1

−v1, if it = n+1

(16)

l1(it , jθ )≤ f1(it , jθ )≤ u1(it , jθ ), (it , jθ ) ∈ E1 (17)

opt v1, (18)

where by convention it = 0 for t =−1 and it = n+1 for t = T +1.
If T is very large, then the static reduced expanded network R1 becomes very large and the number of calculations

required to find an optimum flow in the network R1 becomes prohibitively large. Happily, Ford and Fulkerson [9] have
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devised an algorithm that generates a correct flow in a dynamic network D. This algorithm works only when e = 0 and
h, q are constant over time. If h, e, q are constant over time, then a dynamic network D is said to be stationary.

The algorithm for maximum dynamic flow in stationary dynamic network D = (N, A, h, 0, q) is presented below.
Algorithm 1 Algorithm for maximum dynamic flow in a stationary dynamic network.
1: MDFSDN
2: BEGIN
3: AMVMCSF(G,

∗
f ∗);

4: ADSFEF(
∗
f ∗, r(P1), . . . , r(Pk);

5: ARPF(r(P1), . . . , r(Pk));
6: END.
The procedure AMVMCSF performs the algorithm for maximum value and minimum cost flow

∗
f ∗ in static network

G = (N, A, c, u), where c(i, j) = h(i, j), u(i, j) = q(i, j), (i, j) ∈ A. For statements, we suppose that Klein’s algorithm
variant is used (minimum mean cycle canceling algorithm, see [7]). This algorithm has the complexity O(n2m3 logn).

The procedure ADSFEF performs the algorithm for decomposition of static flow
∗
f ∗ in elementary flows (path flows) with

r(Ps) the flow along of path Ps, s = 1, . . . , k from source node 1 to sink node n. This algorithm has the complexity O(m2).
We remark that c(Ps)≤ T, s = 1, . . . , k is necessary. The procedure ARPF performs the algorithm to repeat each path flow,
starting out from source node 1 at time periods 0 and repeating it after each time period as long as there is enough time left
in the horizon for the flow along the path to arrive at the sink node n. This algorithm has complexity O(nT ). Hence, the
algorithmMDFSDN has complexity O(max{n2m3 logn, nT}). The dynamic flow obtained with the algorithmMDFSDN
is called temporally repeated flow and has the value:

∗
v1 = (T +1)

∗
v−∑

A
h(i, j)

∗
f ∗(i, j) (19)

where ∗
v is value of maximum flow and minimum cost static flow

∗
f ∗.

In stationary case the dynamic distances d(1, i; t), d(i, n; t) become static distances d(1, i), d(i, n).
We remark that the papers [11, 12] treat two particular cases of minimum flows in general dynamic networks.

4. Optimum flows in planar static networks
The notions and the results presented in this section are taken over from works [1, 7, 9, 15–19].
In this section we consider that the static network G = (A, N, l, u, 1, n) is planar.
A digraph G = (N, A) is said to be planar if we can draw it in a two dimensional plane so that no two arcs intersect

each other. For more explanations see the works [1, 9, 15, 18]. Researchers have developed very efficient algorithms (in
fact, linear time algorithms) for testing the planarity of a digraph. A face of G is a region of the plane bounded by arcs
that satisfies the condition that any two points in the region can be connected by a continuous curve that meets no nodes
and arcs. The boundary of a face x is the set of all arcs that enclose it. The face x and y are said to be adjacent if their
boundaries contain a common arc. The planar digraph G has an unbounded face. We recall two well known properties of
planar digraphs.

Theorem 4 (Euler’s Formula) If a connected planar digraph has n nodes, m arcs, and φ faces, then φ = m−n+2.
Theorem 5 If a connected planar digraph has n nodes, and m arcs, then m < 3n.
Theorem 5 shows that every planar digraph is very sparse i.e., m = O(n). This result, by itself, improves the running

times for most network flow algorithms.
Our discussion in this paper applies to a special class of planar digraphs known as (1, n) planar digraphs. This class

has the property that the source node 1 and the sink node n lie on the boundary of unbounded face.
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We make the following assumption: if (i, j) ∈ A, then ( j, i) /∈ A. This assumption is nonrestrictive because if ( j, i)
∈ A, then we replace the arc ( j, i) with two arcs ( j, k) and (k, i) with l( j, k) = l(k, i) = l( j, i), u( j, k) = u(k, i) = u( j, i).

We define the dual directed network G
′
= (N

′
, A

′
, l

′
, u

′
) of a directed (1, n) planar network G = (N, A, l, u) as

follows. We first draw an arc (n, 1) with l(n, 1) = u(n, 1) = 0. The arc (n, 1) divides the unbounded face of G into
two faces: a new unbounded face and a new bounded face. Then we place a node i

′ inside each face x of the network
G. Let 1

′ and n
′ , respectively, denote the nodes in the network G

′ corresponding to the new bounded face and the new
unbounded face. Each arc (i, j) ∈ A lies on the boundary of the two faces x and y. Corresponding to this arc, the dual
directed network contains two opposite arcs (i′ , j

′
) and ( j

′
, i

′
). For minimum flow problem, if the arc (i, j) is a clockwise

arc in the face x, we define l
′
(i

′
, j

′
) = l(i, j) and u

′
( j

′
, i

′
) = −u(i, j). We define l

′ and u
′ in the opposite manner if arc

(i, j) is a counterclockwise arc in the face x. The dual directed network G
′ contains the arcs (1′

, n
′
) and (n′

, 1
′
) which we

delete from the network G
′ . We have N

′
= {1

′
, . . . , i

′
, . . . , n

′}, A
′
= {(i′ , j

′
), ( j

′
, i

′
)|(i, j) ∈ A} with n

′
= |N ′ |= m−n+3

and m
′
= |A′ |= 2m.

The algorithm for minimum flow
◦
f in a static (1, n) planar network G = (N, A, l, u) is presented below ([1]):

Algorithm 2 The algorithm for minimum flow in a static (1, n) planar network G = (N, A, l, u).
1: mFSPN
2: BEGIN
3: BELLMAN-FORD (G

′
, d

′
);

4: for (i, j) ∈ A do
5:

◦
f (i, j): = d

′
( j

′
)−d

′
(i

′
);

6: end for
7: END.
The procedure BELLMAN-FORD performs the algorithm of Bellman-Ford to determine the distance vector d

′ for
longest path problem from node 1

′ to node n
′ in network G

′ . We can obtain a maximum 1− n cut for minimum flow
problem in the network G by determining a longest path from node 1

′ to node n
′ in network G

′ .
From paper [1] we present the following theorems.
Theorem 6 If the flow

◦
f determined with the algorithm mFSPN satisfies the conditions

◦
f (i, j) ≤ u(i, j) for all

(i, j) ∈ A, then the flow
◦
f is a minimum feasible flow.

Theorem 7 The algorithm mFSPN has complexity O(n2).

i j
l(i, j),

◦
f (i, j), u(i, j)

2

1

3

4

2,
5,
4

1, 1, 4

3, 3, 4

2,2,4

3,
3,
4

Figure 1. The minimum flow f̊ is infeasible

We remark that if the minimum flow
◦
f obtained with the algorithm mFSPN is infeasible (u(i, j) <

◦
f (i, j)) for

one or more arcs ((i, j) ∈ A), then there is no the feasible flow in the network G. For example, the minimum flow,
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from Figure 1,
◦
f obtained with the algorithm mFDPN is infeasible because u(1, 2) = 4 < 5 = f (1, 2). If we consider

X = {1, 3, 4}, X̄ = {2} we have u(X , X̄) = 4 < 5 = l(X̄ , X) and from Theorem 1 we obtain that in network G there is not
a feasible flow.

For maximum flow problem, if the arc (i, j) is a clockwise arc in the face x, we define u
′
(i

′
, j

′
) = u(i, j) and

l
′
( j

′
, i

′
) =−l(i, j). We define l

′ and u
′ in the opposite manner if arc (i, j) is a counterclockwise arc in the face x.

The algorithm for maximum flow in a static (1, n) planar network G = (N, A, l, u) is presented below.
Algorithm 3 The algorithm for maximum flow in a static (1, n) planar network G = (N, A, l, u).
1: MFSPN
2: BEGIN
3: DIJKSTRA (G

′
, d

′
);

4: for (i, j) ∈ A do
5:

∗
f (i, j): = d

′
( j

′
)−d

′
(i

′
);

6: end for
7: END.
The procedure DIJKSTRA performs the algorithm of Dijkstra to determine the distance vector d

′ for the shortest
path problem from node 1

′ to node n
′ in the network G

′ . We can obtain a minimum 1−n cut for maximum flow problem
in the network G by determining a shortest path from node 1

′ to node n
′ in the network G

′ .
For the maximum flow problem in planar static network G, we have two theorems similarly with Theorem 6 and

Theorem 7.

5. Optimum flows in planar dynamic networks. The dynamic approach
In this section we consider the optimum flows in (1, n) stationary dynamic networks [2, 3]. There are two

inconveniences for this problem. The first is that although in (1, n) planar static network D = (N, A, c = h, l, Q) exists
a feasible flow, it is possible that in the static reduced expanded network R1 = (V1, E1, l1, u1) will not be any feasible
flow. The second inconvenience consists in the fact that it is possible that the temporally repeated flow of a feasible
and minimum time flow in network D, will not be feasible in network R0 although in R0 there is a feasible flow. These
inconveniences are shown in the example presented in Section 6.

Firstly, we present an algorithm for the determination of a feasible flow in static network R0 = (V0, E0, l0, u0).
We suppose that the flow f =

◦
f , determined with the algorithm mFSPN presented in Section 4 in the static network

D = (N, A, c = h, l, q), is feasible. Let Ps be any path determined with procedure ADSFEF from the algorithm
MDFSDN presented in algorithm 1 from Section 3 with r(Ps) the flow, h(Ps) the transit time and ν(Ps) = (T +1)−h(Ps)

the number of repetitions of path Ps, s = {1, . . . , k}. We consider that h(P1) ≤ . . . ≤ h(Pk). If the path Ps is Ps =

((1, x), . . . , (y, i), (i, j), . . . , (z, n)), then we define hi(Ps) = h(1, x)+ . . .+h(y, i) and h̄i(Ps) = h(Ps)−hi(Ps). Obviously,
hn(Ps) = h(Ps). Let Hi, i ∈ N be the sets defined in Section 3 with the specification that dynamic network D is stationary.
We define the sets Hs

i = {t|t ∈ Hi, hi(Ps)≤ t ≤ T − h̄i(Ps)}= {hi(Ps), hi(Ps)+1, . . . , T − ¯hi(Ps)}with |Hs
i |= ν(Ps), i ∈ Ps

and Hs
i = Ø for i /∈ Ps, s = 1, . . . , k. The accordingly path in network R0 are Pt

s = (1t , . . . , iγ+t , . . . , nη+t), t = 0, . . . , ks,
ks = ν(Ps)− 1, γ = hi(Ps), η = hn(Ps) = h(Ps), s = 1, . . . , k. If the dynamic network is stationary, then we have
d(1, i; t) = d(1, i), d(i, n; t) = d(i, n) for all i ∈ N and are performing with usual shortest path algorithm.

We consider that the arcs in A and in E0 are arranged in some order. The e = (e(i, j)), q = (q(i, j)), g = (g(i, j; t))
and l0 = (l0(it , jθ )), u0 = (u0(it , jθ )), f0 = ( f0(it , jθ )) denote the lower bound vector, upper bound vector and flow
vector in which these components are ordered in the same order as arcs are in A and respectively in E0. Our generation of
g is keyed to the static flow in static network D = (N, A, c = h, e, q) and we don’t actually construct the static network
R0 but we frequently refer to its existence.

We define the list E
′
0 = (a

′
1, a

′
2, . . . , a

′
α) with property that a

′
i ∈ E0, f0(a

′
i) < l0(a

′
i), i = 1, 2, . . . , α , where f0 is a

temporally repeated flow in network R0 generate of feasible and minimum time flow f ∗. The flow f0 is generated by
algorithm MDFSDN presented in Section 3 in which the procedure AMVMCSF uses the algorithm mFSPN presented
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in Section 4 which determines a feasible flow f =
◦
f and the minimum mean cycle canceling algorithm for determines

a feasible and minimum time flow f ∗ in static network D = (N, A, c = h, e, q). Let k
′
i the number of paths Pt

s which
contain the arc a

′
i, i = 1, 2, . . . , α . If exist arc a

′
j ∈ E

′
0 and a

′
j /∈ Pt

s , s = 1, 2, . . . , k, t = 0, . . . , ks, then we can determine
easily the path Pt

k+1 which contains the arc a
′
j. We select the arcs a

′
i from E

′
0 in breeder order of numbers k

′
i . Let P0 be

P0 = {Pt
s |(it , jθ ) ∈ Pt

s , (it , jθ ) ∈ E
′
0}.

If E
′
0 = Ø the f0 is a feasible flow in network R0, else we determine a feasible flow

◦
f 0 in network R0 with the

procedure AFFR0 presented in Algorithm 4.
Algorithm 4 The algorithm for a feasible flow in R0.
1: AFFR0(l0, u0, f0, E

′
0, P0, k

′
1, . . . , k

′
α);

2: BEGIN
3:

◦
f 0: = f0; β : = 1;

4: repeat
5: select a

′
i from E

′
0 with k

′
i minim;

6: select Pt
s from P0 with a

′
i ∈ Pt

s ;
7: let P̂t

s : = Pt
s −{a

′
i};

8: r(P̂t
s ): = min{u0(it , jθ )− f0(it , jθ )|(it , jθ ) ∈ P̂t

s};
9: if l0(a

′
i)− f0(a

′
i)≤ r(P̂t

s )

10: then BEGIN
11: r(Pt

s ): = l0(a
′
i)− f0(a

′
i);

12: augment
◦
f 0 with r(Pt

s ) along the path Pt
s ;

13: eliminate from E
′
0 the arcs a

′
i with l0(a

′
i)≤

◦
f 0(a

′
i);

14: END
15: else β : = 0;
16: if β = 0
17: then Exit;
18: until E

′
0 = /0;

19: if β = 1

20: then
◦
f 0 is a feasible flow in R0

21: else there is no feasible flow in R0;
22: END
In paper [3] we prove the following two theorems.
Theorem 8 If E

′
0 ̸= Ø and exist a feasible flow in (1, n) directed planar dynamic network D = (N, A, h, e, q) then

the procedure AFFR0 determines a feasible flow in D, else this procedure specifies that there is not feasible flow in D.
Theorem 9 The procedure AFFR0 has the complexity O(n2T 2).
In paper [2] we prove the following theorem.
Theorem 10 The feasible flow determined with the procedure AFFR0 is a minimum feasible flow in (1, n) directed

planar dynamic network D = (N, A, h, e, q).
Below we present an algorithm for the maximum and minimum time feasible flow

∗
f ∗ in the static network G =

(N, A, c = h, e, q) which generates a maximum feasible flow
∗
f 0 in the static network R0. The algorithm for the maximum

and minimum time feasible flow
∗
f ∗ in the static network D = (N, A, c = h, e, q) is basically the same as the algorithm of

Ahuja-Orlin of layered networks for maximum flow problem [7]. We make the following modification to the algorithm
of Ahuja-Orlin of layered networks: the exact distance labels d(i) are the distances from node 1 concerning the cost
c = h, which can be solved by a classical algorithm. We remark that this algorithm is a variant of successive shortest
path algorithm [7] which has the complexity O(nq̄ ·O(n, m)) with q̄ = max{q(i, j)|((i, j) ∈ A)} and O(n, m) denotes the
complexity of algorithm used to solve the shortest path problem. The algorithm to generate a maximum feasible flow

∗
f 0
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in the static network R0 is basically the same as the algorithm of Wilkinson algorithm [13]. The variant of the Wilkinson
algorithm (VWA) is presented in algorithm 5.

Algorithm 5 The variant of Wilkinson algorithm.
1: VWA;
2: BEGIN
3:

∗
f ∗: = f ∗;

∗
f 0: = f0;

4: construct the residual network G̃ concerning
∗
f ∗;

5: obtain the exact distance labels d(i) in G̃;
6: for i ∈ N do
7: b(i): = true;
8: i: = 1;
9: while d(n)≤ T do
10: if b(1) = true
11: then
12: if exists an admissible arc(i, j)
13: then BEGIN
14: ADVANCE (i);
15: if i = n
16: then BEGIN
17: AUGUMENT;
18: i: = 1;
19: END;
20: END
21: else RETREAT(i)
22: else BEGIN
23: determine the exact distance labels d(i) in G̃;
24: for i ∈ N do
25: b(i): = true;
26: i: = 1;
27: END;
28: END.

1: PROCEDURE ADVANCE(i);
2: BEGIN
3: p̃( j): = i;
4: i: = j;
5: END;

1: PROCEDURE RETREAT(i);
2: BEGIN
3: b(i): = f alse;
4: if i ̸= 1
5: then i: = p̃(i);
6: END;
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1: PROCEDURE AUGMENT;
2: BEGIN
3: identify an augmenting path P̃ using the predecessor vector p̃;
4: r(P̃): = min{r(i, j)|(i, j) ∈ Ã};
5: update the residual network G̃;
6: identify the chainsCt

0 in R0 corresponding to path P̃;
7: determine r(Ct

0) for all t;

8: augment the flow
∗
f 0 with r(Ct

0) along chainCt
0 for all t;

9: END.
The network D̃ is the residual network of the static network D = (N, A, c = h, e, q). We recall that an arc (i, j) in

the residual network D̃ is admissible if it satisfies the conditions that d( j) = d(i)+ 1 and node j is not blocked (b( j) =
true) with d(i), d( j) the distances concerning the cost c = h. The chainsCt

0 in static network R0 are identified in the same
way as the paths Pt

s corresponding to path Ps which is shown above.
In paper [3] we prove the following two theorems.
Theorem 11 The VWA determines a maximum feasible flow in a (1, n) planar dynamic network D = (N, A, h, e, q).
Theorem 12 The VWA has the complexity O(n2T 2q̄), where q̄ = max{q(i, j)|(i, j) ∈ A}.
Now we present, below, the complete algorithm for maximum feasible flow in the (1, n) planar dynamic network

(CAMFPDN) problem.
Algorithm 6 The complete algorithm for maximum feasible flow in (1, n) planar dynamic network.
1: CAMFFPDN
2: BEGIN
3: MDFSDN(G,

◦
f , f ∗, f0);

4: if f0 is not feasible
5: then AFFR0(R0, f0, E

′
0, P0, k

′
1, . . . , k

′
α)

6: VWA(G, f ∗, R0, f0,
∗
f ∗,

∗
f 0);

7: END.
The procedureMDFSDNpresented in algorithm 1 from Section 3 uses the algorithmmFSPN presented in algorithm 2

from Section 4 which determines a feasible flow f =
◦
f and the minimummean cycle canceling algorithm. This algorithm

determines a feasible and minimum cost (time) flow f ∗ in the static network D = (N, A, c = h, e, q). Also, the procedure
MDFSDN generates the flow f0 in the static network R0 from feasible and minimum time f ∗. If the flow f0 is not feasible,
then it is performed the procedure AFFR0 which supplies a feasible flow f0. The procedure VWA provides a maximum
and minimum time feasible flow f ∗ in the static network G = (N, A, h, e, q) and a maximum flow

∗
f 0 in the static network

R0. Obviously, if f =
◦
f is not feasible then f0 is not feasible as well.

In paper[3] we prove the following two theorems.
Theorem 13 The CAMFFPDN algorithm determines a maximum feasible flow in (1, n) planar dynamic network

D = (N, A, h, e, q).
Theorem 14 The CAMFFPDN algorithm has the complexity O(n2T 2q̄).

6. Example
The support graph of (1, 6) planar stationary dynamic network D = (N, A, h, e, q) is presented in Figure 2 and the

time horizon set to T = 5, therefore H = {0, 1, 2, 3, 4, 5}. The transit times h(i, j), the lower bounds e(i, j), and the
upper bounds q(i, j) for all arcs (i, j) ∈ A are indicated in Table 1.
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Figure 2. The support graph of (1, 6) planar dynamic network

Table 1. The transit time h, the lower bound e, the upper bound q, the flow f =
◦
f and

∗
f ∗ for all (i, j) ∈ A

(i, j) h(i, j) e(i, j) q(i, j)
◦
f (i, j)

∗
f ∗ (i, j)

(1, 2) 1 4 8 4 8

(1, 3) 1 1 6 2 6

(2, 3) 1 1 2 2 2

(2, 4) 2 0 4 1 4

(2, 5) 2 1 4 1 2

(3, 5) 1 4 8 4 8

(4, 6) 1 1 6 3 6

(5, 4) 1 1 6 2 2

(5, 6) 2 3 8 3 8

We obtain the vector d
′
= (0, 2, 4, 5, 3, 6) and the minimum flow

◦
f is presented in Table 1.

Because the minimum flow
◦
f is a feasible flow we further determine with minimummean cycle canceling algorithm,

a feasible and minimum time flow f ∗ = f =
◦
f . The results of procedure ADSFEF are presented in Table 2.

Table 2. The results of procedure ADSFEF

Ps r(Ps) h(Ps) ν(Ps)

P1 = ((1, 2), (2, 4), (4, 6)) 1 4 2

P2 = ((1, 3), (3, 5), (5, 6)) 2 4 2

P3 = ((1, 2), (2, 5), (5, 6)) 1 5 1

P4 = ((1, 2), (2, 3), (3, 5), (5, 4), (4, 6)) 2 5 1

Figure 3 shows the support graph of (1, 6) planar static network G = (N, A, c = h, l = e, u = q) and the attache dual
network G

′
= (N

′
, A

′
, l

′
, u

′
).
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Figure 3. The support graph G = (N, A) and the dual network G
′

We obtain d(1, 1) = 0, d(1, 6) = 4, d(1, 2) = 1, d(2, 6) = 3, d(1, 3) = 1, d(3, 6) = 3, d(1, 4) = 3, d(4, 6) = 1,
d(1, 5) = 2, d(5, 6) = 2, d(6, 6) = 0 and H1 = {0, 1}, H2 = {1, 2}, H3 = {1, 2}, H4 = {3, 4}, H5 = {2, 3}, H6 = {4, 5},
H1, 2 = {0, 1}, H1, 3 = {0, 1}, H2, 3 = {1}, H2, 4 = {1, 2}, H2, 5 = {1}, H3, 5 = {1, 2}, H4, 6 = {3, 4}, H5, 4 = {2, 3},
H5, 6 = {2, 3}.

The support graph of static network R0 = (V0, E0, l0, u0) is presented in Figure 4.
For q(2, 4) = 3 the flow

◦
f presented in Figure 4 is a feasible flow in static network D = (N, A, c = h, l, q). If

q(2, 4) = 3 then for Y0 = {22}, Ȳ0 =V0 −Y0 we have u0(Y0, Ȳ0) = u0(22, 44) = q(2, 4) = 3 < 4 = e0(1, 2) = l0(11, 22) =

l0(Ȳ0, Y0). From Theorem 1 we obtain that the flow problem in static network R0 (dynamic network D) is infeasible.
The procedure ARPF from MDFSDN generates the flow f0 in static network R0 and is given in Figure 4 in the form

◦
k. We have: k1 = 1, k2 = 1, k3 = 0, k4 = 0; P0

1 = ((10, 21), (21, 43), (43, 64)), P1
1 = ((11, 22), (22, 44), (44, 65)), P0

2 =
((10, 31), (31, 52), (52, 64)), P1

2 = ((11, 32), (32, 53), (53, 65)), P0
3 = ((10, 21), (21, 53), (53, 65)), P0

4 = ((10, 21), (21, 32),
(32, 53), (53, 44), (44, 65)). The list E

′
0 is E

′
0 = (a

′
1, a

′
2, a

′
3, a

′
4) = ((11, 22), (31, 52), (52, 43), (52, 64)) with (11, 22)

∈ P1
1 , (31, 52) ∈ P0

2 , P0
5 = ((10, 31), (31, 52), (52, 43), (43, 64)), (52, 43) ∈ P0

2 , (52, 64) ∈ P0
2 and k

′
1 = 1, k

′
2 = 2, k

′
3 = 1,

k
′
4 = 1. The results of procedure AFFR0 are: r(P1

1 ) = 3, E
′
0 = (a

′
2, a

′
3, a

′
4), r(P0

2 ) = 1, E
′
0 = (a

′
2, a

′
4), r(P0

5 ) = 1, E
′
0 = ø.

The minimum feasible flow f0 = f̄0 in network R0 is given in Figure 4 in the form k̄. In network R0 for maximum cut we

have
◦

Y0 = {10, 11, 31, 32}, [
◦

Y0,
◦

Ȳ0] = (
◦

Y0,
◦

Ȳ0)∪ (
◦

Ȳ0,
◦

Y0) = {(10, 21), (11, 22), (31, 52), (32, 53)}∪{(21, 32)}. The value

of flow
◦
f is

◦
w0 = l0(

◦
Y0,

◦
Ȳ0)−u0(

◦
Ȳ0,

◦
Y0) = l0(10, 21)+ l0(11, 22)+ l0(31, 52)+ l0(32, 53)−u0(21, 32) =

◦
f0 (10, 21) +

◦
f0

(11, 22) +
◦
f0 (31, 52) +

◦
f0 (32, 53) −

◦
f0 (21, 32) = 4+4+4+4−2 = 14.

The execution of procedure VWA supplies the follows results: r(P1) = 3, r(P0
1 ) = 3, r(P1

1 ) = 0, r(P5) = 4, r(P0
5 ) = 2,

r(P1
5 ) = 4, r(P3) = 1, r(P0

3 ) = 1. The flow
∗
f ∗ is presented in Table 1 and the flow

∗
f 0 is presented in Figure 4 and is given

in the form
∗
k. In the network G we have

∗
X = {1},

∗
X̄ = N−

∗
X , [

∗
X ,

∗
X̄ ] = (

∗
X ,

∗
X̄)∪ (

∗
X̄ ,

∗
X) = (

∗
X ,

∗
X̄) = {(1, 2), (1, 3)} and

∗
v =

∗
f ∗(

∗
X ,

∗
X̄) −

∗
f ∗(

∗
X̄ ,

∗
X) =

∗
f (

∗
X ,

∗
X̄) =

∗
f ∗(1, 2)+

∗
f ∗(1, 3) = 8+6 = u(1, 2)+u(1, 3) = u(

∗
X ,

∗
X̄)− l(

∗
X̄ ,

∗
X) = κ[

∗
X ,

∗
X̄ ].

In network R0 we have [
∗

Y0,
∗

Ȳ0] = (
∗

Y0,
∗

Ȳ0)∪ (
∗

Ȳ0,
∗

Y0) = (
∗

Y0,
∗

Ȳ0) = {(10, 21), (10, 31), (11, 32), (22, 44)} and
∗
w0 = u0

(
∗

Y0,
∗

Ȳ0)− l0(
∗

Ȳ0,
∗

Y0) =
∗
f 0 (

∗
Y0,

∗
Ȳ0) −

∗
f 0 (

∗
Ȳ0,

∗
Y0) = f (

∗
Y0,

∗
Ȳ0) = 24. From (19) we obtain

∗
w0 = (5+1) ·14− (8 ·1+6 ·1+

2 ·1+2 ·2+4 ·2+8 ·1+6 ·1+2 ·1+8 ·2) = 24.
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Figure 4. The support graph of static network R0

7. Conclusions
In conclusion, the study of network flow problems, especially in the context of planar networks and the dynamic

approach, reveals their critical importance in a diverse range of disciplines and practical applications. From optimizing
transport routes and real-time traffic management to improving data transmission efficiency and market dynamics, the
complexities of flow dynamics underscore the need for effective algorithmic solutions.

Flows in directed planar dynamic networks have multiple interdisciplinary practical applications due to their ability
to model and optimize processes involving flows of resources, information, or objects between different nodes in a
network. Some areas where these directed planar dynamic networks may have applications are: transportation and
logistics, financial and economic systems, medicine and computational biology, telecommunications and data networks,
applications in artificial intelligence and machine learning, and of course in other domains.

Transport route optimization can be used to optimize the flow of vehicles (cars, trains, trucks, etc.) in transport
networks (highways, railways) to minimize travel times and optimize costs. Dynamic elements account for changes
in traffic or network capabilities over time. In logistics, flows can be used to optimize deliveries and the distribution
route through a network of warehouses and distribution centers so as to minimize costs and maximize delivery efficiency.
Modeling capital flows in an interconnected economy can help optimize the allocation of funds between different financial
institutions or capital markets. Directed planar networks can simulate how funds move over time and how market
dynamics affect transactions.
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In economics and management, flows of goods and services can be optimized in a dynamic network of suppliers and
distributors, given changing demand over time and the need to maintain optimal inventory levels.

In the management of medical institutions, dynamic flows can model the movements of patients between different
departments of hospitals, optimizing the waiting time and the allocation of resources (beds, doctors). In molecular biology
studies, directed flows can dynamically model biological processes, such as chemical reactions in metabolic networks or
genetic information flows in protein interaction networks.

With the help of directed dynamic planar networks we can model communication networks, optimizing data flows
between routers and servers to minimize latency times and maximize transfer speed. Dynamic flows can also optimize
communication between geographically distributed IoT devices, ensuring efficient data flows and minimizing power
consumption and network congestion.

In artificial neural networks (such as those used in deep learning), dynamic flows can model the propagation of
information through the nodes (neurons) of the network, optimizing learning processes and updating synapse weights.

This paper has highlighted the evolution and advances in addressing these challenges, using advanced algorithms
and data structures to improve theoretical performance and practical results. By integrating theoretical insights with real-
world applications, the research makes a meaningful contribution to the subject of network flow problems, paving the
way for future innovations and advances in this field of study.

Many interesting flows problem in planar dynamic networks are still open: the minimum flows in directed planar
dynamic networks with arcs and nodes capacities in dynamic approach, the maximum flows in directed planar dynamic
networks with arcs and nodes capacities in static approach and in dynamic approach. Other research directions are possible,
such as expanding the scope of the study by focusing on networks that include loops and parallel arcs. This extensionwould
allow a deeper investigation of the behavior of these complex structures, providing opportunities for the development
of new theoretical models and practical applications in various related fields. Other future research directions include
problems like:

• Maximum flows in directed (1, n) planar dynamic networks, where the transit times, the capacities of arcs are all
time-varying.

• The maximum flow in directed (1, n) planar dynamic networks with lower bounds in stationary case and in dynamic
case.
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