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Abstract: New oscillation criteria for the fourth-order delay differential equation are presented. An essential feature
of our results is that oscillation of the studied equation is ensured via some conditions. Furthermore, new criteria are
provided to delay differential equations by using the Riccati transform technique, the integrated averaging approach,
and the comparison method with second order. Our results essentially improve, extend, and simplify some known ones
reported in the literature. The results are illustrated with examples.
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1. Introduction
This work focuses on the oscillatory behaviours expressed through a fourth-order delay differential equation.

(
r(v)

(
y′′′(v)

)α
)′
+q(v)yβ (σ(v)) = 0, (1)

where v ≥ v0. We consider the following presumptions to be hold throughout this paper:
• β , α , are quotient of odd positive integers,
• r, q ∈C [v0, ∞) , r(v)> 0, r′(v)≥ 0, q(v)> 0, σ ∈C [v0, ∞) , σ(v)≤ v, limv→∞ σ(v) = ∞, and

∫ ∞

v0

1
r1/α(s)

ds = ∞. (2)
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In the study of differential equations, oscillation theory is essential. It is used in many disciplines, including
physics, engineering, biology, and economics. It helps with the comprehension of wave phenomena and mechanical
vibrations in physics, which is important for the stability and design of structures. Oscillation theory is used in engineering
applications, particularly in control systems and signal processing, to guarantee system stability and efficient signal
manipulation. It aids in the modelling of population dynamics and biological cycles in biology, shedding light on
phenomena such as circadian rhythms and predator-prey relationships. It is useful in economics for examining market
dynamics and business cycles, forecasting trends, and evaluating the effects of legislation.

Comprehending oscillations is essential for evaluating nonlinear dynamics, which is prevalent in real-world
systems, and for forecasting resonant events and stability studies. Oscillation theory makes it possible to comprehend
and control complicated system behaviours, which promotes improvements in economic modelling, scientific study, and
technology. Because of this, it is a crucial component of differential equation research and application. Due to
the importance of nonlinear differential equations in numerous disciplines, research on oscillatory and non-oscillatory
solutions to these problems has been conducted [1]. The use of fourth-order differential equations allows for the
mathematical modelling of a wide variety of biochemical, physical, and biological phenomena.

Many physical, chemical, and biological processes frequently use fourth-order differential equations in their
mathematical models [1, 2]. Applications include issues with soil settlement, elasticity, and structural deformation, among
other things. In mechanical and engineering problems, questions about the existence of oscillatory and nonoscillatory
solutions are crucial [3]. In particular, the oscillatory behaviour of ordinary differential equations plays a crucial role
in these applications. Non-linear ordinary differential equations of fractional and non-fractional order in series forms
were thoroughly analyzed, see [4]. The authors provided a novel approach to solve non-linear non-integer differential
equations, in which ST and Adomian polynomials are combined in this algorithm.

An extensive analysis of the oscillation requirements for fourth-order linear delay differential equations was given
by Jadlovska et al. [5]. The authors contributed to the theoretical knowledge required for real-world applications in a
variety of fields by providing insights into the circumstances under which solutions oscillate.

Karpuz [6] introduced the Hille-Nehari nonoscillation/oscillation test and examined the nonoscillation and oscillation
characteristics of solutions to the second-order linear dynamic problem.

(
rx∆
)∆

(t)+ p(t)x(t) = 0 for t ∈ [t0, ∞)T .

Fourth-order nonlinear advanced differential equations, which are used to solve challenging real-world situations, were
the subject of the study’s investigation of oscillation [7]

(
r(v)

(
y′′′(v)

)α
)′
+ p(v) f

(
y′′′(v)

)
+q(v)g(y(σ(v))) = 0.

They applied the Riccati transformation technique to produce new oscillation criteria.
Using a Philos-type technique, additional oscillation conditions are formulated for third-order mixed neutral

differential equations with distributed deviating arguments. Three Riccati transformation approaches were combined
with the integral averaging methodology by Kumar et al. [8]. Furthermore, the oscillating characteristics of solutions to
a class of third-order differential equations

(
a(t)

((
r(t)x′(t)

)′)α)′
+
(

p(t)
((

r(t)x′(t)
))′)α

+q(t) f (x(σ(t))) = 0,

were investigated by using the generalized Riccati technique by Wang and Dong [9], where f (y)/yρ ≥ k > 0 and α and β
are quotients of odd positive integers. Atta et al. [10] presented a spectral tau solution to the heat conduction equation in
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order to convert the issue and its underlying conditions into a suitable system of equations that may be solved successfully
by the Gaussian elimination method.

Bohner et al. [11] presented new oscillation criteria for the second-order half-linear neutral delay differential
equation, which essentially improve a number of related ones from the literature

(
r
(
z′
)α
)′
(v)+q(v)yα(σ(v)) = 0, v ≥ t0 > 0,

under the condition

π (t0) :=
∫ ∞

t0
r−1/α(s)ds < ∞.

They utilised a recently created method for successively changing the monotonicities of nonoscillatory binomial
differential equation solutions. This method has proven useful in the analysis of second-order half-linear functional
differential equations and higher-order linear differential and difference equations. Oscillation of even-order neutral
differential equations presented by Bazighifan [12]. Using the technique of Riccati and comparison with first-order
differential equations, newKamenev-type oscillation criteria are established, and they essentially improve and complement
some the well-known results reported in the literature.

Using a spectral collocation algorithm, Abd-Elhameed et al. [13] introduced a novel method for efficiently obtaining
numerical solutions of the nonlinear time-fractional generalized Kawahara equation (NTFGKE) and their methodology is
validated by means of a set of numerical experiments with comparison evaluations to show its efficacy and reliability.

New adequate conditions were presented for the oscillation of a second-order quasilinear neutral delay differential
equation

(
a(v)

(
z′(v)

)β
)′
+q(v)yγ(σ(v)) = 0.

The oscillation results were contingent upon a single condition and significantly enhanced, supplemented, and
streamlined several related ones in the existing literature [14]. Furthermore, Nagehan et al. [15] studied the oscillatory
behaviour of solutions to a fourth-order linear delay differential equation

(
r2
(
r1y′
)′)′′

+q1(v)y(τ1(v)) = 0.

New oscillation criteria were given for a special type of fourth-order differential equation. A new approach for
changing fourth-order semi-canonical nonlinear neutral difference equations into canonical form has been proposed by
Ganesan et al. [16]

D4z(n)+q(n)xα(n− τ) = 0, n ≥ n0 > 0.

The authors developed some novel oscillation criteria by comparing them to first-order delay difference equations.
Ahmed and Abd-Elhameed [17] used a novel numerical method to address three types of high-order singular boundary
value problems. They proposed three third-kind modified Chebyshev polynomials (CPs) as basis functions for these
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equations, transforming them into algebraic systems amenable to numerical solutions. Next, they applied the collocation
approach using the operational matrices of derivatives of the third-kind modified CPs.

We studied the oscillatory behaviour of the nonlinear delay differential equation of the fourth order. The fundamental
idea of our study relies on three mathematical approaches: the Riccati substitution, the integral averaging technique, and
the comparison technique. These techniques enable us to derive novel findings on the oscillatory of equation (1).

The paper is organized as follows. In Section 2, we present some lemmas which play important roles in the proofs
of the main results. In Section 3, we shall use the integral averaging technique and comparison method to obtain some
sufficient conditions for oscillation of every solution of equation (1). In Section 4, we give some examples in order to
illustrate the main result.

2. Some basics
First we need the following definitions:
Definition 1 If r(v)

(
y(n−1)(v)

)α
∈ C1 [vy, ∞) and y(v) satisfies (2) on [vy, ∞), then y ∈ C3 [vy, ∞), vy ≥ v0, is a

solution of (1).
Definition 2 If a solution to (1) has arbitrarily large zeros on [v, ∞), it is commonly known as oscillatory; if not, it

is called nonoscillatory.
Definition 3 Let D =

{
(v, s) ∈ R2 : v ≥ s ≥ t0

}
and D0 =

{
(v, s) ∈ R2 : v > s ≥ v0

}
. The function class I is said to

have the kernel function Ni ∈C(D, R) if
• (i) Ni(v, s) = 0 for v ≥ t0, Ni(v, s)> 0, (v, s) ∈ D0;
• (ii) Ni(v, s) has a continuous and nonpositive partial derivative ∂Ni/∂ s on D0 and there exist functions ϑ , v ∈

C1 ([t0, ∞) , (0, ∞)) and ni ∈C (D0, R) for i = 1, 2 that give

∂
∂ s

N1(v, s)+
δ ′(s)
δ (s)

N1(v, s) = n1(v, s)Nα/(α+1)
1 (v, s), (3)

and

∂
∂ s

N2(v, s)+
ϑ ′(s)
ϑ(s)

N2(v, s) = n2(v, s)
√

N2(v, s). (4)

It is important to note that the study of the asymptotic behaviour of the positive solutions to (1) only considers two
cases:

Case 1 : y( j)(v)> 0 for j = 0, 1, 2, 3,
Case 2 : y( j)(v)> 0 for j = 0, 1, 3 and y′′(v)< 0,
for v ≥ v1, where v1 ≥ v0 is sufficiently large. We need the following notations:

Q1(v) = δ (v)q(v)Aβ−α
1

(
σ(v)

v

)3β
,

Φ(v) = ϑ(v)Aβ/α−1
2 (v)

∫ ∞

v

(
1

r(u)

∫ ∞

u
q(s)

σβ (s)
sβ ds

)1/α

du,
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and

Θ(v) = αµ1
v2

2r1/α(v)δ 1/α(v)
.

Some relevant lemmas are as follows:
Lemma 1 [18] Let y ∈Cn ([v0, ∞) , (0, ∞)) and y(n−1)(v)y(n)(v)≤ 0 for all v ≥ v1, then

y(v)≥ µ
(n−1)!

vn−1
∣∣∣y(n−1)(v)

∣∣∣ ,
for v ≥ vµ .

Lemma 2 [19] If the function y satisfies y(i)(v)> 0, i = 0, 1, . . . , n, and y(n+1)(v)< 0, then

y(v)
vn/n!

≥ y′(v)
vn−1/(n−1)!

.

Lemma 3 [20] Let α be a ratio of two odd numbers, V > 0 and U are constants. Then

Uy−V y(α+1)/α ≤ αα

(α +1)α+1
Uα+1

V α .

Lemma 4 Assume that y is an eventually positive solution of (1) and

ξ ′(v)≤ δ ′(v)
δ (v)

ξ (v)−Q1(v)−αµ1
v2

2r1/α(v)δ 1/α(v)
ξ

α+1
α (v), (5)

and

φ ′(v)≤−Φ(v)+
ϑ ′(v)
ϑ(v)

φ(v)− 1
ϑ(v)

φ2(v), (6)

where

ξ (v) := δ (v)
r(v)(y′′′(v))α

yα(v)
, (7)

and

φ(v) := ϑ(v)
y′(v)
y(v)

, v ≥ v1. (8)
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Proof. Let y represent a positive solution to (1) on [v0, ∞). Assume that Case 1 holds. Since ξ (v)> 0 for v ≥ v1 and
from the definition of y we get

(
r(v)

(
y′′′(v)

)α
)′
+q(v)yβ (σ(v))≤ 0, (9)

which with (1) we obtain

ξ ′(v)≤ δ ′(v)
δ (v)

ξ (v)−δ (v)q(v)
yβ (σ(v))

yα(v)
−αδ (v)

r(v)(y′′′(v))α

yα+1(v)
y′(v). (10)

From Lemma 2, we have y(v)≥ v
3

y′(v), accordingly,

y(σ(v))
y(v)

≥ σ3(v)
v3 . (11)

It follows from Lemma 1 that

y′(v)≥ µ1

2
v2y′′′(v), (12)

for all µ1 ∈ (0, 1) and every large v. From (10)-(12), we find

ξ ′(v)≤ δ ′(v)
δ (v)

ξ (v)−δ (v)q(v)yβ−α(v)
(

σ(v)
v

)3β
−αµ1

v2

2r1/α(v)δ 1/α(v)
ξ

α+1
α (v).

Since y′(v)> 0, there exist v2 ≥ v1 and A1 > 0 such that

y(v)> A1. (13)

Thus, we obtain

ξ ′(v)≤ δ ′(v)
δ (v)

ξ (v)−δ (v)q(v)(1− p0)
β Aβ−α

(
σ(v)

v

)3β
−αµ1

v2

2r1/α(v)δ 1/α(v)
ξ

α+1
α (v),

which yields

ξ ′(v)≤ δ ′(v)
δ (v)

ξ (v)−Q1(v)−αµ1
v2

2r1/α(v)δ 1/α(v)
ξ

α+1
α (v).

Consequently (5) holds.
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Now consider that Case 2 holds. Integrating (9) from v to u, we acquire

r(u)
(
y′′′(u)

)α − r(v)
(
y′′′(v)

)α ≤−
∫ u

v
q(s)yβ (σ(s))ds. (14)

From Lemma 2 we get that y(v)≥ vy′(v), and hence

y(σ(v))≥ σ(v)
v

y(v). (15)

For (14), letting u → ∞ and using (15),

r(v)
(
y′′′(v)

)α ≥ yβ (v)
∫ ∞

v
q(s)

σβ (s)
sβ ds.

By doing another integration of this inequality, ranging from v to ∞, we obtain

y′′(v)≤−yβ/α(v)
∫ ∞

v

(
1

r(u)

∫ ∞

u
q(s)

σβ (s)
sβ ds

)1/α

du. (16)

Since φ(v)> 0 for v ≥ v1, as can be shown from its definition and using (13) and (16), we find

φ ′(v) =
ϑ ′(v)
ϑ(v)

φ(v)+ϑ(v)
y′′(v)
y(v)

−ϑ(v)
(

y′(v)
y(v)

)2

≤ϑ ′(v)
ϑ(v)

φ(v)− 1
ϑ(v)

φ2(v)−ϑ(v)yβ/α−1(v)
∫ ∞

v

(
1

r(u)

∫ ∞

u
q(s)

σβ (s)
sβ ds

)1/α

du.

Since y′(v)> 0, there exist v2 ≥ v1 and A2 > 0 such that

y(v)> A2. (17)

Hence, we obtain

φ ′(v)≤−Φ(v)+
ϑ ′(v)
ϑ(v)

φ(v)− 1
ϑ(v)

φ2(v).

Thus, (6) holds and the proof is complete.
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3. Main results
In this section we shall present our results.
Theorem 1 Let (2) holds. If there exist positive functions δ , ϑ ∈C1 ([v0, ∞) , R) such that

limsup
v→∞

1
N (v, v1)

∫ v

v1

N(v, s)Q1(s)−
hα+1

1 (v, s)Nα
1 (v, s)

(α +1)α+1
2α r(s)δ (s)
(µ1s2)α ds = ∞, (18)

and

limsup
v→∞

1
N2 (v, v1)

∫ v

v1

(
N2(v, s)Φ(s)− ϑ(s)n2

2(v, s)
4

)
ds = ∞, (19)

for all µ1 ∈ (0, 1), then (1) is oscillatory.
Proof. Let y be a non-oscillatory solution on [v0, ∞) and Case 1 holds.
From Lemma 4, multiplying (5) by N(v, s) and integrating from v1 to v, we obtain

∫ v

v1

N(v, s)Q1(s)ds ≤ξ (v1)N (v, v1)+
∫ v

v1

(
∂
∂ s

N(v, s)+
δ ′(s)
δ (s)

N(v, s)
)

ξ (s)ds

−
∫ v

v1

Θ(s)N(v, s)ξ
α+1

α (s)ds.

From (3), we get

∫ v

v1

N(v, s)Q1(s)ds ≤ ξ (v1)N (v, v1)+
∫ v

v1

n1(v, s)Nα/(α+1)
1 (v, s)ξ (s)ds−

∫ v

v1

Θ(s)N(v, s)ξ
α+1

α (s)ds. (20)

Using Lemma 3 with V = Θ(s)N(v, s), U = n1(v, s)Nα/(α+1)
1 (v, s) and y = ξ (s), we get

n1(v, s)N1
α/(α+1)(v, s)ξ (s)−Θ(s)N(v, s)ξ

α+1
α (s)≤

nα+1
1 (v, s)Nα

1 (v, s)
(α +1)α+1

2α r(v)δ (v)
(µ1v2)α .

Upon using (20) then yields

1
N (v, v1)

∫ v

v1

(
N(v, s)Q1(s)−

nα+1
1 (v, s)Nα

1 (v, s)
(α +1)α+1

2α r(s)δ (s)
(µ1s2)α

)
ds ≤ ξ (v1) ,

which contradicts (18).
From Lemma 4 and Case 2, we have that (6) holds. Multiplying (6) by N2(v, s) and integrating from v1 to v, we

obtain
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∫ v

v1

N2(v, s)Φ(s)ds ≤φ (t1)N2 (v, v1)+
∫ v

v1

(
∂
∂ s

N2(v, s)+
ϑ ′(s)
ϑ(s)

N2(v, s)
)

φ(s)ds

−
∫ v

v1

1
ϑ(s)

N2(v, s)φ2(s)ds.

Thus,

∫ v

v1

N2(v, s)Φ(s)ds ≤φ (v1)N2 (v, v1)+
∫ v

v1

n2(v, s)
√

N2(v, s)φ(s)ds−
∫ v

v1

1
ϑ(s)

N2(v, s)φ2(s)ds

≤φ (v1)N2 (v, v1)+
∫ v

v1

ϑ(s)n2
2(v, s)
4

ds,

and so

1
N2 (v, v1)

∫ v

v1

(
N2(v, s)Φ(s)− ϑ(s)n2

2(v, s)
4

)
ds ≤ φ (v1) ,

which clearly contradicts (19). This completes the proof.
Corollary 2 Suppose (2) holds. If δ , ϑ ∈C1 ([v0, ∞) , R) are positive functions such that

∫ ∞

v0

(
Q1(s)−

2α

(α +1)α+1
r(s)(δ ′(s))α+1

µα
1 s2α δ α(s)

)
ds = ∞, (21)

and

∫ ∞

v0

(
Φ(s)− (ϑ ′(s))2

4ϑ(s)

)
ds = ∞, (22)

for some µ1 ∈ (0, 1), then (1) is oscillatory.
If we take β = α in equation (1) we obtain some oscillation criteria.
Theorem 3 Let Cases 1 and 2, and (1) hold. For some constant k1 ∈ (0, 1) suppose that δ ∈ C1 [v0, ∞) and θ ∈

C1 [v0, ∞) are positive functions such that

∫ ∞

v0

[
q(s)

(
σ2(s)

s2

)α

δ (s)− 2α

(α +1)α+1

r(s)
(
δ ′
+(s)

)α+1

(k1δ (s)s2)α

]
ds = ∞, (23)

and
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∫ ∞

v0

θ(s)
∫ ∞

s

[
1

r(u)

∫ ∞

u
q(ς)

(
σ2(ς)

ς2

)α

dς

] 1
α

du−
(
ϑ ′
+(s)

)2

4ϑ(s)

ds = ∞, (24)

then (1) has oscillatory solutions.
Proof. Assume that we have Case 1. We find y(v)≥ (v/2)y′(v), and hence

y(σ(v))
y(v)

≥ σ2(v)
v2 . (25)

Using (7) and ξ (v)> 0 for v ≥ v1,

ξ ′(v) = δ ′(v)
r(v)(y′′′)α (v)

yα(v)
+δ (v)

(
r (y′′′)α)′ (v)

yα(v)
−αδ (v)

yα−1(v)y′(v)r(v)(y′′′)α (v)
y2α(v)

, (26)

for every µ1 ∈ (0, 1) and all sufficiently large v. Hence, by (25) and (12), we obtain

ξ ′(v)≤ δ ′(v)
r(v)(y′′′)α (v)

yα(v)
+δ (v)

(
r (y′′′)α)′ (v)

yα(v)
− αµ1

2
v2δ (v)

y′′′(v)r(v)(y′′′)α (v)
yα+1(v)

.

Therefore, in view of (1), we get

ξ ′(v)≤−q(v)
(

σ2(v)
v2

)α

δ (v)+
δ ′
+(v)
δ (v)

ξ (v)− αµ1

2
v2

(r(v)δ (v))
1
α

ξ
α+1

α (v).

We set A := αµ1v2/2(r(v)δ (v))1/α , B := δ ′
+(v)/δ (v) and y := ξ (v). Then using the inequality

By−Ay
α+1

α ≤ αα

(α +1)α+1
Bα+1

Aα , A, B > 0,

results in

δ ′
+(v)
δ (v)

ξ (v)− αµ1v2

2(r(v)δ (v))
1
α

ξ
α+1

α (v)≤ 2α

(α +1)α+1

r(v)
(
δ ′
+(v)

)α+1

(kδ (v)v2)α .

Hence, we obtain

ξ ′(v)≤−q(v)
(

σ2(v)
v2

)u

δ (v)+
2α

(α +1)α+1

r(v)
(
δ ′
+(v)

)α+1

(µ1δ (v)v2)α ,
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which implies that

∫ v

v1

[
q(s)

(
σ2(s)

s2

)α

δ (s)− 2α

(α +1)α+1

r(s)
(
δ ′
+(s)

)α+1

(µ1δ (s)s2)α

]
ds ≤ ξ (v1) ,

for every µ1 ∈ (0, 1) and all sufficiently large v, but this contradicts (23).
Now assume that Case 2 holds. Integrating (1) from v to l, we find

r(l)
(
y′′′
)α

(l)− r(v)
(
y′′′
)α

(v)+
∫ l

v
q(s)yα(σ(s))ds = 0.

By virtue of y > 0, y′ > 0 and y′′ < 0, we get y(v)≥ (v/2)y′(v). Therefore, (25) holds and hence we obtain

r(l)
(
y′′′
)α

(l)− r(v)
(
y′′′
)α

(v)+
∫ l

v
q(s)

(
σ2(s)

s2

)α

yα(s)ds ≤ 0.

Since y′ > 0, this yields

r(l)
(
y′′′
)α

(l)− r(v)
(
y′′′
)α

(v)+ yα(v)
∫ l

v
q(s)

(
σ2(s)

s2

)α

ds ≤ 0.

Letting l → ∞, we arrive at the following inequalities

−r(v)
(
y′′′
)α

(v)+ yα(v)
∫ ∞

v
q(s)

(
σ2(s)

s2

)s

≤ 0,

thus, we see that

−y′′′(v)+ y(v)

[
1

r(v)

∫ ∞

v
q(s)

(
σ2(s)

s2

)α

ds

] 1
α

≤ 0.

Integrating again from v to ∞ gives

y′′(v)+ y(v)
∫ ∞

v

[
1

r(u)

∫ ∞

u
q(s)

(
σ2(s)

s2

)α

ds

] 1
α

du ≤ 0. (27)

From (8), φ(v)> 0 for v ≥ v1 and
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φ ′(v) =ϑ ′(v)
y′(v)
y(v)

+ϑ(v)
y′′(v)y(v)− (y′)2 (v)

y2(v)

=ϑ(v)
y′′(v)
y(v)

+
ϑ ′(v)
ϑ(v)

φ(v)− φ2(v)
ϑ(v)

.

Hence, by (27) we find

φ ′(v)≤−ϑ(v)
∫ ∞

v

[
1

r(u)

∫ ∞

u
q(s)

(
σ2(s)

s2

)α

ds

] 1
α

du+
ϑ ′(v)
ϑ(v)

φ(v)− φ2(v)
ϑ(v)

. (28)

Thus, we have

φ ′(v)≤−ϑ(v)
∫ ∞

v

[
1

r(u)

∫ ∞

u
q(s)

(
σ2(s)

s2

)α

ds

] 1
α

du+
(ϑ ′(v))2

4ϑ(v)
.

This yields

∫ v

v1

ϑ(s)
∫ ∞

s

[
1

r(u)

∫ ∞

u
q(ς)

(
σ2(ς)

ς2

)α

dς

] 1
α

du− (ϑ ′(s))2

4ϑ(s)

ds ≤ φ (v1) ,

which contradicts (24) and thus Theorem 3 is proven.
Theorem 4 Let (2) holds and assume that the following equations

(
r(v)
v2α

(
y′(v)

)α
)′

+q(v)
(

µ1σ2(v)
2v2

)α

yα(v) = 0, (29)

and

y′′(v)+ y(v)
∫ ∞

t

[
1

r(u)

∫ ∞

u
q(s)

(
σ2(s)

s2

)α

ds

] 1
α

du = 0, (30)

are oscillatory, therefore every solution of equation (1) exhibits oscillatory behaviour.
Proof. Following the steps in Theorem 3, we have (26) and (27). If we set δ (v) = 1 in (26), then we obtain

ξ ′(v)+
αµ1v2

2(r(v))
1
α

ξ
α+1

α (v)+q(v)
(

σ2(v)
v2

)α

≤ 0,
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∀µ1 ∈ (0, 1). Thus, we can see that equation (29) is nonoscillatory for every constant µ1 ∈ (0, 1), which is a contradiction.
If we now set ϑ(v) = 1 in (28), then we get

φ ′(v)+φ2(v)+
∫ ∞

t

[
1

r(u)

∫ ∞

u
q(s)

(
σ2(s)

s2

)α

ds

] 1
α

du ≤ 0.

Hence equation (30) is nonoscillatory, which contradicts the previous assumption. The proof of Theorem 4 is now
complete.

It is generally accepted (see [16]) that if

∫ ∞

v0

1
a(v)

= ∞,

and

liminf
v→∞

(∫ v

v0

1
a(s)

ds
)∫ ∞

v
q(s)ds >

1
4
.

Equation (28) with α = 1 is oscillatory. From the previous results that we have concluded and Theorem 4, we can
easily obtain the Hille and Nehari type oscillation criteria for (1), in the next theorem.

Theorem 5 Let (2) hold. Assume that

∫ ∞

v0

v2

r(v)
= ∞,

and

liminf
v→∞

(∫ v

v0

s2

r(s)
ds
)∫ ∞

v
q(s)

σ2(s)
s2 ds >

1
2k1

, (31)

for some constant k1 ∈ (0, 1), and

liminf
v→∞

∫ ∞

v

∫ ∞

η

1
r(u)

∫ ∞

u
q(s)

σ2(s)
s2 ds du dη >

1
4
. (32)

Then every solution of (1) is oscillatory.
Proof. The proof is clear.

4. Examples
In this section we shall illustrate our main results via some examples.
Example 1 Consider the fourth-order delay differential equation
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(
vy′′′(v)

)′
+

q0

2v3 y3(v) = 0, v ≥ 1, (33)

where η ∈ (0, 1) and q0 > 0. We note that α = 1, β = 3, r(v) = v, σ(v) = v and q(v) = q0/2v3. Hence, if we set δ (s) := v2

and ϑ(v) := v, A1 =
1
2
, A2 = 1.

Using Corollary 2, we have

Q1(v) = v2q0/2v3 1
4

(v
v

)9
= q0/8v,

Φ(v) = v
∫ ∞

v

(
q0/4u3)du =

q0

8v
,

∫ ∞

v0

(
Q1(s)−

2α

(α +1)α+1
r(s)(δ ′(s))α+1

µα
1 s2α δ α(s)

)
ds =

∫ ∞

v0

(
q0/8s− 2

µ1s

)
ds = ∞, if q0 >

16
µ1

, (34)

∫ ∞

v0

(
ΦΦΦ(s)−

(
ϑϑϑ ′(s)

)2

4ϑϑϑ(s)

)
ds =

∫ ∞

v0

(
q0

8s
− 1

4s

)
ds = ∞, if q0 > 2.

Equation (33) is oscillatory if (34) holds.
Example 2 Consider the fourth-order delay differential equation

(
y′′′(v)

)′
+

q0

v4 y(3v) = 0, v ≥ 1, (35)

where q0 > 0. Let r(v) = 1, and σ(v) = 3v. If we set l = 1, then condition (31) becomes

liminf
v→∞

(∫ v

v0

s2

r(s)
ds
)∫ ∞

v

q0

s4 ds = liminf
v→∞

(
v3

3

)∫ ∞

v

q0

s4 ds =
q0

9
>

1
4
,

and condition (32) now reads as

liminf
v→∞

∫ ∞

v

(∫ ∞

η

(
ℓ

r(v)

∫ ∞

u
q(s)

σ γ(s)
sγ ds

)
du
)

dη = liminf
v→∞

∫ ∞

v

(∫ ∞

η

(∫ ∞

u

3q0

s4 ds
)

du
)

dη

=q0 >
1
4
.

Therefore, from Theorem 5, all solutions of (35) are oscillatory if q0 > 2.25.
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5. Conclusion
We have examined the oscillatory behaviour of (1) in this article. Conditional oscillation criterion for (1) when β ̸=α

and β = α were obtained. New oscillatory properties have been found through the use of comparison tools, the Riccati
transformation, and the integral averaging methodology. We will attempt to establish the oscillation criterion for higher-
order differential equations in our future research. Some examples have been presented to highlight the significance of
the main results.
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