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Abstract: A new class of p-valent close-to-convex functions is introduced in this paper, which is defined using
Gegenbauer Polynomials within the open unit disk D. This investigation sheds light on the properties and behaviors of
these p-valent close-to-convex functions, providing estimations for the modulus of the coefficients ap+1 and ap+2, with
p being a natural number, for functions falling under this particular class. Additionally, this paper also investigates the
classical Fekete-Szegö functional problem for functions f that are part of the aforementioned class.
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1. Introduction
Consider the set H , which consists of all functions f (ζ ) that are holomorphic within the open unit disk denoted

as D = {ζ ∈ C : |ζ | < 1}. A function f is classified as p-valent if, within a specific domain D ⊂ C, the equation
f (ζ ) = w can yield no more than p distinct roots for any given w ∈ C. Consequently, there exists a particular value
w0 ∈ C for which the equation f (ζ ) = w0 possesses precisely p roots in the domain D . Now, define the class Hp as
the collection of all holomorphic functions f that belong to the set H and satisfy the aforementioned conditions. This
classification highlights the significance of p-valency in the study of analytic functions, particularly in understanding their
root structures and the implications of their behavior within the unit disk. The exploration of such functions contributes
to a deeper comprehension of complex analysis and its applications. Moreover, any function f belongs to the class Hp

can be written as

f (ζ ) = ζ p +
∞

∑
n=p+1

anζ n, where ζ ∈ D. (1)
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In this paper, S represents the set of functions that are univalent in the unit disk D and belong to the class H = H1.
Moreover, S ∗

p denotes the class of p-valent starlike functions, and we say f (ζ ) ∈ Hp in the class S ∗
p if the following

condition holds for all ζ ∈ D:

R⌉
{

ζ f ′(ζ )
f (ζ )

}
> 0.

Moreover, let Sc
p denote the set of p-valent convex functions. We can state that f (ζ )∈Hp within the class S c

p when
the following condition is satisfied for all ζ ∈ D:

R⌉
{

1+
ζ f ′′(ζ )

f ′(ζ )

}
> 0.

The fact that if f is analytic in a convex domain D ⊂C and R⌉
{

eiθ f ′(ζ )
}
> 0 for some real θ and for all ζ ∈ D is

well established (see, for details [1] and [2]). This implies that f (ζ ) is univalent inD . This conclusion is supported by the
findings presented in the literature, particularly in the works of Noshiro and Warschawski. In 1935, Ozaki [3] expanded
upon the previous findings by demonstrating that if the function f (ζ ), as described in equation (1), is analytic within a
convex domain D ⊂C and R⌉

{
eiθ f (p)(ζ )

}
> 0 for a certain real θ and for all ζ ∈D , then f (ζ ) can be at most p-valent

in D . This extension of results sheds light on the behavior of analytic functions and provides valuable insights into the
properties of functions satisfying the given criteria. Furthermore, it can be proven that if f is a member of the function
spaceHp and the real part of f (p)(ζ ) is positive for every ζ in the domainD, then the function f (ζ ) is constrained to being
at most p-valent within the unit disk D. Moreover, in 1989, Nunokawa [4] established that if f ∈ Hp, where p ≥ 2, and

arg
{

f (p)(ζ )
}
<

3π
4

for all ζ ∈ D, then f (ζ ) is at most p-valent in D. For further information and better understanding
of p-valent, readers are encouraged to consult the articles [1–8], and the references provided therein.

The functions f and g being analytic in the open unit disk D implies that f is subordinated by g in D, denoted as
f (z)≺ g(ζ ) for all ζ ∈D, if there exists a Schwarz function w satisfying w(0) = 0 and |w(ζ )|< 1 for all ζ ∈D, such that
f (ζ ) = g(w(ζ )) for all ζ ∈D. This relationship between f and g is a fundamental concept in complex analysis, providing a
way to compare the behavior of two analytic functions within the unit disk. Notably, when the function g is univalent over
D, the condition f (ζ )≺ g(ζ ) is equivalent to f (0) = g(0) and f (D)⊂ g(D). This equivalence highlights the significance
of the subordination principle in understanding the relationship between analytic functions. For further insights and
detailed discussions on the Subordination Principle, interested readers are encouraged to explore the monographs [9–12].
These sources provide comprehensive explanations and applications of this principle in the context of complex analysis .

The research conducted in geometric function theory sheds light on the intricate relationships between coefficients
and the geometric properties of functions. By examining the bounds placed on the modulus of a function’s coefficients,
researchers can gain a deeper understanding of how these functions behave and interact within the mathematical
framework. This analytical approach not only enhances our comprehension of the underlying principles governing
geometric function theory but also paves the way for further exploration and discovery in this dynamic field of study.
For example, within the class S , it is established that the modulus of the coefficient an is bounded by the value of n.
These bounds on the modulus of coefficients provide valuable insights into the geometric characteristics of these functions.
Specifically, the restriction on the second coefficients of functions belonging to the classS offers crucial details regarding
the growth and distortion bounds within this class.

The exploration of coefficient-related properties of functions within the bi-univalent class Σ commenced in the
1970s. Notably, Lewin’s work, in 1967 [13], marked a significant milestone as he examined the bi-univalent function
class and established a bound for the coefficient |a2|. Following this, Netanyahu’s research, in 1969 [14], determined

that the maximum value of |a2| is
4
3
for functions categorized under Σ. Furthermore, Brannan and Clunie, in 1979
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[15], demonstrated that for functions in this class, the inequality |a2| ≤
√

2 holds true. This foundational work has spurred
numerous investigations into the coefficient bounds for various subclasses of bi-univalent functions. Despite the extensive
research conducted on the coefficient bounds for bi-univalent functions, there remains a significant gap in knowledge
regarding the general coefficients |a2| for cases where n ≥ 4. The challenge of estimating the coefficients, particularly the
general coefficient |an|, continues to be an unresolved issue in the field. This ongoing inquiry highlights the complexity
and richness of the bi-univalent function class, suggesting that further exploration is necessary to fully understand the
behavior of these coefficients in higher dimensions.

Fekete and Szegö, in 1933 [16], determined the maximum value of |a3−λa2
2| for a univalent function f , with the real

parameter 0 ≤ λ ≤ 1. This result led to the establishment of the Fekete-Szegö problem, which involves maximizing the
modulus of the functional Ψλ ( f ) = a3−λa2

2 for f ∈H with any complex number λ . Numerous researchers have delved
into the Fekete-Szegö functional and other coefficient estimates problems. For instance, relevant articles include [16–
24], and the references provided therein. These studies have contributed to a deeper understanding of the Fekete-Szegö
problem and its implications in the field of geometric function theory.

2. Preliminaries
This section contains essential information that is crucial for the primary findings of this paper. Szynal, in 1994

[25], established and examined a subset F(µ) of the class H , which contains functions of the form

f (z) =
∫ 1

−1
H(z, t) dσ(t). (2)

The function defined as H(z, t) =
z

(z2 −2tz+1)µ operates under the conditions where µ ≥ 0 and−1 ≤ t ≤ 1. In this

context, σ represents the probability measure on [−1, 1]. The Taylor-Maclaurin series expansion of the function H(z, t)
can be expressed as follows:

H(z, t) = z+Cµ
1 (t)z

2 +Cµ
2 (t)z

3 +Cµ
3 (t)z

4 + · · ·,

where Cµ
n (t) signifies the Gegenbauer polynomials of order µ .

Addtionally, for any real numbers µ and t, with the stipulation that µ ≥ 0 and −1 ≤ t ≤ 1, and z ∈ D the generating
function for the Gegenbauer polynomials is articulated as:

Gµ(z, t) = (z2 −2tz+1)−µ .

This formulation provides a comprehensive framework for understanding the behavior of theGegenbauer polynomials
in relation to the specified parameters. Consequently, for any given value of t, the function Gµ(z, t) is analytic within the
unit disk D, and its Taylor-Maclaurin series can be expressed as

Gµ(z, t) =
∞

∑
n=0

Cµ
n (t)z

n.

Furthermore, should f ∈ F(µ) as denoted in (2), the nth coefficient is expressible as
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an =
∫ 1

−1
Cµ

n−1(t) dσ(t).

Gegenbauer polynomials can also be expressed through a specific recurrence relation, which is articulated as follows:

Cµ
n (t) =

2t(n+µ −1)Cµ
n−1(t)− (n+2µ −2)Cµ

n−1(t)
t

, (3)

with the foundational values specified as

Cµ
0 (t) = 1, Cµ

1 (t) = 2µt, and Cµ
2 (t) = 2µ(µ +1)t2 −µ. (4)

The Gegenbauer polynomials and their special cases, such as the Legendre polynomials Ln(t) and the Chebyshev
polynomials of the second kind Tn(t), are well-known to be orthogonal polynomials. The values of µ for these polynomials
are µ = 1/2 and µ = 1 respectively. More precisely, the Legendre polynomials Ln(t) can be expressed as Ln(t) =
C1/2

n (t), and the Chebyshev polynomials Tn(t) can be expressed as Tn(t) =C1
n(t).

Additional information regarding the Gegenbauer polynomials and their specific instances, readers are encouraged
to consult the articles referenced as [17–28], as well as the monographs [9, 29, 30], and the related sources. Following
this, we proceed to define our category of p-valent close-to-convex functions, denoted as Hp(λ , α, µ).

Definition 1 A function f (z) belonging to the family Hp is considered to be part of the class Hp(λ , α, µ) if, for
every z ∈ D, it obeys the following subordination condition:

(1−α)

λ p

(
z f ′′(z)
f ′(z)

+1
)
+

α
λ

(
z f ′′(z)
f ′(z)

− p+1
)
≺ Gµ(z, t),

where the parameters λ , α , and µ have specific constraints on their values, namely µ ≥ 0, −1 ≤ t ≤ 1, α ∈ [0, 1], and λ
is a non-zero complex number.

The subsequent lemma, which is extensively documented in the literature (see for example [22]), is a widely
recognized principle that holds significant importance for the work we are presenting.

Lemma 1 Consider the Schwarz function defined as:

w(ζ ) = w1ζ +w2ζ 2 +w3ζ 3 + · · · where ζ ∈ D.

It follows that |w1| ≤ 1 and for any γ ∈ C the following inequality holds:

|w2 − γw2
1| ≤ 1+(|γ|−1)|w1|2 ≤ max{1, |γ|}.

Notably, this result is particularly sharp for the specific cases of the functions w(ζ ) = ζ and w(ζ ) = ζ 2.
The main objective of this article is to explore a specific category of p-valent functions within the open unit disk

D, denoted as Hp(λ , α, µ). The article focuses on obtaining estimates for the initial coefficients |ap+1| and |ap+2|
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for functions belonging to this category. Additionally, the article delves into the analysis of the related Fekete-Szegö
functional problem for functions in this particular category.

3. Coefficient bounds of functions in the class Hp(λ , α, µ)
This section of the paper outlines the bounds for the modulus of the initial coefficients of functions that are part of

the class Hp(λ , α, µ), as denoted by equation (1).
Theorem 1 If a function f belongs to the class Hp(λ , α, µ) and is represented by the equation (1), then

|ap+1| ≤
2µ p2|t||λ |

(1−α +α p2)(p+1)
, (5)

|ap+2| ≤
µ p|λ |
p+2

max{Θ1, Θ2}, (6)

where Θ1 =
2(µ +1)t2 +2|t|+1

1−α +α p
and Θ2 =

4µ p2t2|λ |
(1−α +α p)2 .

Proof. Suppose a function f belongs to the class Hp(λ , α, µ). According to the Definition 1, we can find a
holomorphic function ϕ defined on the open unit disk D such that

(1−α)

λ p

(
z f ′′(z)
f ′(z)

+1
)
+

α
λ

(
z f ′′(z)
f ′(z)

− p+1
)
= Hµ(t, ϕ(z)), (7)

where the function ϕ in the form of a power series is expressed as ϕ(z) = d1z+d2z2+d3z3+ · · ·, satisfying the conditions
ϕ(0) = 0 and |ϕ(z)|< 1 for all z ∈ D. Additionally, it is a known fact, as referenced in [9], that modulus of the values of
the coefficients d j are bounded by 1 for all j ∈ N.

Now, by equating the coefficients on both sides of equation (7), a set of equations can be derived as follows:

(
(1−α)(p+1)

λ p2 +
α(p+1)

λ

)
ap+1 =Cµ

1 (t)d1, (8)

and

1−α +α p
λ p

(
2(p+2)ap+2 −

(p+1)2

p
a2

p+1

)
=Cµ

1 (t)d2 +Cµ
2 (t)d

2
1 . (9)

Hence, using equation (8), we get

ap+1 =
λ p2Cµ

1 (t)d1

(1−α)(p+1)+α p2(p+1)
. (10)

Therefore, considering the initial values presented in equation (4) alongside the constraint |d1|< 1, we arrive at the
conclusion that:

Volume 5 Issue 4|2024| 6097 Contemporary Mathematics



|ap+1| ≤
2µ p2|t||λ |

(1−α)(p+1)+α p2(p+1)
,

which confirms the sought-after estimate for |ap+1|.
In the next step, we seek to determine the coefficient estimate for |ap+2|. By applying equation (9), we can derive

the following equation

2p(p+2)ap+2 =
λ p2[Cµ

1 (t)d2 +Cµ
2 (t)d

2
1 ]

1−α +α p
+(p+1)2a2

p+1. (11)

By utilizing the equation (10), the final equation is transformed into

2p(p+2)ap+2 =
λ p2[Cµ

1 (t)d2 +Cµ
2 (t)d

2
1 ]

1−α +α p
+

λ 2 p4[Cµ
1 (t)]

2d2
1

(1−α +α p2)2 .

Consequently, by employing the initial values (4) and considering the condition |d j| ≤ 1 for all j ∈ N, we obtain

|ap+2| ≤
|λ |pµ

2(p+2)

{
2(µ +1)t2 +2|t|+1

1−α +α p
+

4|λ |p2µt2

(1−α +α p2)2

}
.

This leads to the required estimation of |ap+2|. Consequently, the proof of Theorem 1 is now concluded.
The following corollary emerges as a direct outcome of Theorem 1 with the assumption that µ = 1. These initial

estimations of coefficients are intricately linked to the Chebyshev polynomials of the second kind. The methodology
employed in proving this corollary closely resembles that of the preceding theorem, hence, we have chosen to exclude the
detailed proof for brevity.

Corollary 1 If a function f ∈ Hp is expressed as (1) and is a member of the class Hp(λ , α, 1), then it can be
concluded that

|ap+1| ≤
2p2|t||λ |

(1−α +α p2)(p+1)
,

and

|ap+2| ≤
p|λ |
p+2

max
{

4t2 +2|t|+1
1−α +α p

,
4p2t2|λ |

(1−α +α p)2

}
.

4. Fekete-Szegö inequality of the function class Hp(λ , α, µ)
In this section, we examine the classical Fekete-Szegö functional applied to functions that are memebers of our

specified class Hp(λ , α, µ).
Theorem 2 If a function f is a member of the class Hp(λ , α, µ) and is represented by equation (1), then for a real

number ζ and a positive number t such that the following inequality holds
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|a3 −ζ a2
2| ≤



pµt|λ ||A|
(p+2)(1−α +α p)

, if ζ ∈ [ζ1, ζ2]

pµt|λ |
(p+2)(1−α +α p)

, if ζ /∈ [ζ1, ζ2],

(12)

where

ζ1 =
(p+1)2

2p(p+2)
+

(2(µ +1)t2 −2t −1)(p+1)2(1−α +α p2)2

8t2µλ p3(p+2)(1−α +α p)
,

ζ2 =
(p+1)2

2p(p+2)
+

(2(µ +1)t2 +2t −1)(p+1)2(1−α +α p2)2

8t2µλ p3(p+2)(1−α +α p)
,

and

A =
2(µ +1)t2 −1

2t
+

2tµλ p2(1−α +α p)
(
(p+1)2 −2ζ p(p+2)

)
(p+1)2(1−α +α p2)2 .

Proof. For every real number ζ , the utilization of equations (11) and (10) leads to the following outcome

ap+2 −ζ a2
p+1 =

λ p[Cµ
1 (t)d2 +Cµ

2 (t)d
2
1 ]

2(p+2)(1−α +α p)
+

(
(p+1)2

2p(p+2)
−ζ

)
a2

p+1

=
λ p[Cµ

1 (t)d2 +Cµ
2 (t)d

2
1 ]

2(p+2)(1−α +α p)
+

((p+1)2 −2ζ p(p+2))λ 2 p3[Cµ
1 (t)]

2d2
1

2(p+2)(p+1)2(1−α +α p2)2

=
λ ptµ

(p+2)(1−α +α p)

{
d2 +Ad2

1
}
.

Therefore, with the assistance of Lemma 1, we are able to achieve the following inequality

|ap+2 −ζ a2
p+1| ≤

pµ|λ ||t|
(p+2)(1−α +α p)

max{1, |A|}.

For t > 0, if the following inequality holds, then we can proceed to solve for the real number ζ

∣∣∣∣Cµ
2 (t)

Cµ
1 (t)

+
((p+1)2 −2ζ p(p+2))λ p2(1−α +α p)[Cµ

1 (t)]
(p+1)2(1−α +α p2)2

∣∣∣∣≤ 1.

Now, by solving for ζ we obtain
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−1−
Cµ

2 (t)
Cµ

1 (t)
≤ ((p+1)2 −2ζ p(p+2))λ p2(1−α +α p)[Cµ

1 (t)]≤ 1−
Cµ

2 (t)
Cµ

1 (t)
.

Hence, simple calculations give us the following inequality

ζ1 ≤ ζ ≤ ζ2,

where

ζ1 =
(p+1)2

2p(p+2)
+

[Cµ
2 (t)−Cµ

1 (t)](p+1)2(1−α +α p2)2

2[Cµ
1 (t)]

2λ p3(p+2)(1−α +α p)
,

and

ζ2 =
(p+1)2

2p(p+2)
+

[Cµ
2 (t)+Cµ

1 (t)](p+1)2(1−α +α p2)2

2[Cµ
1 (t)]

2λ p3(p+2)(1−α +α p)
.

Finally, utilizing the initial values referenced in equation (4), we obtain the anticipated outcome as indicated in the
inequality (12). This marks the conclusion of the proof for the Theorem.

The following corollary is a natural outcome of the previously stated Theorem 2. When µ is assigned a value of 1, the
resulting Fekete-Szegö inequality becomes associated with the Chebyshev polynomials of the second kind. The approach
used to establish this corollary closely mirrors that of the previous theorem, therefore, we have opted not to include the
detailed proof for the sake of conciseness.

Corollary 2 If a function f ∈ Ap is given by (1) belong to the class Ap(λ , α, 1), then for some ζ ∈ R and t > 0,

|a3 −ζ a2
2| ≤



pt|λ ||B|
(p+2)(1−α +α p)

, if ζ ∈ [τ1, τ2]

pt|λ |
(p+2)(1−α +α p)

, if ζ /∈ [τ1, τ2],

where

τ1 =
(p+1)2

2p(p+2)
+

(4t2 −2t −1)(p+1)2(1−α +α p2)2

8t2λ p3(p+2)(1−α +α p)
,

τ2 =
(p+1)2

2p(p+2)
+

(4t2 +2t −1)(p+1)2(1−α +α p2)2

8t2λ p3(p+2)(1−α +α p)
,
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and

B =
4t2 −1

2t
+

2tλ p2(1−α +α p)
(
(p+1)2 −2ζ p(p+2)

)
(p+1)2(1−α +α p2)2 .

Remark 1 This research paper is a generalization of some results published recently. For example:
• Taking α = 0, λ = 1 and p = 1, we have the class BC(µ) that is investigated in [31]. We also have the class

GΣ(x, µ, 1) that is investigated in [32].
• Taking α = 0, λ = 1, p = 1 and µ = 1, we have the class L(0, t) that is investigated in [33]. We also have the class

K(0, t) that is investigated in [34].

5. Conclusion
This research paper explored a novel family of p-valent close-to-convex functions that are associated with

Gegenbauer polynomials. The author has established estimates for the initial coefficients and addressed the Fekete-Szegö
functional problem for functions within this class. The findings of this study are expected to yield various results for
subclasses defined through Horadam polynomials and their specific variations, such as Fibonacci polynomials, Lucas
polynomials, Pell polynomials, and both the first and second kinds of Chebyshev polynomials. Furthermore, the insights
provided in this paper are anticipated to motivate researchers to broaden these concepts to encompass harmonic functions
and symmetric q-calculus.
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