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Abstract: Boundary value problems for linear stationary dispersive equations of order 2/ + 1, / € N with general linear
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1. Introduction

This work concerns solvability of boundary-value problems on bounded intervals for linear stationary dispersive
equations

!
Au+Y (-1)"'Du = f(x), xe(0,L); [N, )

J=1

where A, L are real positive numbers and f'is a given function. This class of stationary equations appears naturally while
one wants to solve a corresponding evolution equation

!
u, + Y (~1)"'DX M u+uDu=0,xe(0,L); t>0, Q)

J=

making use of the semigroup theory (see [1], Theorem 4.1) or a semi-discrete approach . Here, we propose (1) as a
stationary analog of (2) because the last equation includes as special cases classical dispersive equations: when / = 1,
we have the Korteweg-de Vries (KdV) equation ™ * and for / = 2 the Kawahara equation . These equations play an
important role in the development of science due to various applications in physics, such as dynamics of fluids and
plasma physics ", There are a number of papers dedicated to initial-boundary value problems for dispersive equations
(which included KdV and Kawahara equations) posed on bounded domains """, Dispersive equations such as KdV
and Kawahara equations have been deduced for unbounded regions of wave propagations, however, if one is interested
in implementing numerical schemes to calculate solutions in these regions, there arises the issue of cutting off a spatial
domain approximating unbounded domains by bounded ones '*'. In this occasion, some boundary conditions are needed
to specify the solution. Therefore, precise mathematical analysis of mixed problems in bounded domains for dispersive
equations is welcome and attracts attention of specialists in this area > """ *'%,

Last years, publications on stationary and evolution dispersive equations of higher orders appeared !"'>"***, Usually,
simple boundary conditions at x = 0 and x = L such as D'u(0) = D'u(L) = D'u(L) =0, i =0,..., I — 1 for (1) were imposed, see
[1, 21, 22]. Different kinds of boundary conditions for KdV and Kawahara equations were considered in [16, 23-25]. We
must mention ** where general mixed problems for linear multidimensional (25+ 1)-hyperbolic equations were studied by
means of functional analisys methods.
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The goal of our work is to formulate correct general boundary value problems for (1) and to prove the existence
and uniqueness of regular solutions. Obviously, boundary conditions for (1) are the same as for (2). Because of that,
study of boundary value problems for (1) helps to understand solvability of initial-boundary value problems for (2) and
may be considered as the first and a necessary step in study of (2). Therefore, this study is interesting from the purely
mathematical point of view because it generalizes some results on dispersive equations. Moreover, these results can be
used for constructing of numerical schemes for studying various models of initialboundary value problems for higher-
order dispersive equations depending on a choise of / and coefficients. Some techniques proposed in this manuscript are
used to solve problems involving dispersive equations *"**>***I. Moreover, they can be found in different problems of
mathematical physics *"*”.

Our paper has the following structure: Chapter 1 is introduction. Chapter 2 contains notations and auxiliary facts. In
Chapter 3, the formulation of problems to be considered is given. In Chapter 4, the existence and uniqueness of regular

solution have been established.

2. Notations and auxiliary facts
Letx € (0, L), D' = D! = ;

x'
L7(0, L), 1 < p <+oo with the norm:

i € N; D=D'. As in [30] p.23, we denote for scalar functions f(x) the Banach space

171, ) = [ @) dx, pelloo), N1, =ess sup | F()].

x€(0,L)

For p =2, L*(0, L) is a Hilbert space with the scalar product

(u,v) :j:u(x)v(x)dx and the norm ||, |2 = .|.0L|u(x) I dx.

The Sobolev space W™”(0, L), m € N is a Banach space with the norm:

lulp, o= 3 Dl

w™r,L) 7 (0,L)°
0<|a|<m

1< p <+,

When p =2, W™(0, L) = H"(0, L) is a Hilbert space with the following scalar product and the norm:

@y = 2 @u,D), Mull, = 3 I Dulf.

0<| j|<m 0<| j|<m

For any space of functions, defined on an interval (0, L), we omit the symbol (0, L), for example, L” = L (0, L), H" =
H"(0,L), Hy = H(0, L) etc. We will use the following form of the Cauchy inequality:

2

ab<ea’ +—; €>0.
4e

Lemma 2.1 Let u € C¥"' ([0, L]), j € N. Then
J

(D2j+1u,u) :z(_l)k+1Dk—1uD(2j+1)-ku |é _I_(_l)j%(Dju)Z

k=1

o 3)

4 j . o
(D¥u,u) =) (-D)"'D*uD> "y |g +(=1’ll D/ull, “4)

k=1
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(DY, xu) =D (=) XD DDy |- (1) %(D’u)z A

k=1

j .
XD D [ sy ELED D 0

k=1

Proof. Since
241 Lo 2 2/ L 5
(D" u,u) =I0 D™ u(x)u(x)dx; (Du,u) =IO D™ u(x)u(x)dx,

the proof of (3), (4) are based on integration by parts and mathematical induction. The proof of (5) is similar taking into

account (4).
Lemma 2.2 Letu € C*""' ([0, L]), ! € N. Then

i(_l)ﬁrl (D2j+1u’ u) = iDiu(i(_l)kﬂDZkﬂu) |é _%i(Dju)z |é . (6)
= i=0 k=t =

Proof. The case / = 1 follows by (3). Suppose assertion (6) is valid for some integer n > 1 and assume u € C*"([0, L]).

By induction hypothesis and (3), we get

n+l n
Z(_l)j+l (D2j+1u, u) — Z(_l)j+l (D2j+1u, u) + (_1)n (D2n+3u, u)
J=1 Jj=1

_ nz_lDiu (S (_1)k+1D2k+iu) |g _%i(Dfu)Z |é
i=0 -

k=1

n+l 1
+z (_1)n+k+1Dk—1uD(2n+3)—ku |L

0~
i 2

(Dn+1u)2 |é

S (S iy D) |

i=0 k=1

+D"uD" *u |é —%gi(Dju)2 |é

J=

Lo (& PRI TS B
= Du(d (-1 p*)|! —EZ(D’u) £
i—0 =1 =

This implies (6) forall / € N.
Lemma 2.3 Let u ¢ C*'([0, L]), [ € N. Then

Zl:(_l)/+l (DZ_i+lu, xu) — ixDlu(i (_1)k+1D2k+iu) |([),
j=1 i=0 k=1
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-1 . = i X ! .
+> 1+ )Du(> (-1 D> ) | —EZ(D’u)Z A
i=0 k=1 Jj=1

I .
LDy ™

J=1

Proof. The case /= 1 follows by (5). Suppose assertion (7) is valid for some integer n > 1 and assume u € C*""([0, L]).
Induction hypothesis and (5) imply

n+l n
Z(_1)1+1 (D2j+lu, xu) — Z(_l)jJrl (D2j+1u, xu)
j=1 j=1

n—1

H=1Y (D¥"u, xu) = sz u(Z( 1y peiy ) [

n-1

+Z(I+Z)Du(2( (o RA) | (D’ ) [E

C (2]+1) j - n+k+ - n+3)—
+ZTH Dju||2+z(_1) kel k=1, D@k, |é

Jj=1 k=1

(Dn+l ) | +z( 1)n+kka D)~ k‘

k=1

(2n2+ 3) || Dn+1u ||2

le Dzu(z( 1)k+1D2k+z +( l)n i pAne2- 1)| +xD"uD"u |L
i=0

k=1
+nz_1 1+ i)Diu(nZ_i (_1)kD2k+i—lu n (_1)n—i+1 D2n+l—i) |€
i=0 k=1
~(1+n)D"uD""'u |g —%i(Dju)z |g +§@I D’ull?
Jj=1 Jj=1

n+l—i

_ZXD u(z( 1)k+1D2k+z )l
+Z(1+Z)D1u(n+z:l( 1) k p2kei-ly, )| _%ri(Dju)z |é

n+l 2 +1
z(f )| Dl
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This proves (7) forall / € N.

Lemma 2.4 (See [31], p.125). Suppose « and D"u, m e N belong to L*(0, L). Then for the derivatives D'u, 0 <i < m,
the following inequality holds:

_ £ T
I D'ull<Cll D"ull"lull ™ + Cyll ull, ®)
where C,, C, are constants depending only on L, m, i.

3. Formulation of the problem
Let L, A be real positive numbers and / € N. Consider the higher-order stationary dispersive equation

Au+ ZI‘,(—D’“D”*‘u = f(x), x€(0,L), 9)

J=1

subject to a correct set of boundary conditions (/ conditions at x =0 and / + 1 conditions at x = L, see [32])
I=1:

u(0)=u(L)=Du(L)=0; (10)
1>2:
u(0)=u(L)=0, (11)
D'u(0) =) a,D’'u(0), i=1+1,...,2[-1, (12)
j=1
D'u(L)=Y b;D’u(L),i=1,...,21 -1, (13)
=
where a;, b, are real constants and /" € L*0, L) is a given function. Assumptions on the coefficients imply estimate in L’

-norm. In other words, multiplying (9) by u and integrating over (0, L), we get

!
Alull? + 37 (=) (D uyu) <l Al

J=1

A natural way to obtain || u|| < %llfll is to choose a
become

b, such that 1= X' (~1)""(D¥""u, u) > 0. When [ = 2, (11)-(13)

ij>

u(0) = u(L) = 0, D’u(0) = a3, Du(0) + a,D*u(0),
D*u(L) = b,,Du(L), D*u(L) = by, Du(L). (14)

Substituting (14) into (6), we obtain

1 b 2 (1 )
1=(b, —5—7)<Du(L)) +(~ay, + 2)(Du(O))
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—a,, Du(0)D*u(0) + %(Dzu(O))z.

By the Cauchy inequality with ¢ = 1, we get

1 B 1 11

12 (by, —==22)(Du(L))* + (a5, +—— a3 )(Du(0))* + (= == )(D*u(0))’.
2 2 2 2 4

In order to obtain /> 0, we must have

1 b} 1, 1
Blzb31—5—7>0, Alz—a31+5—a3z >0, AZZZ' (15)

This implies that by, > %,aﬂ < %,and |assl, |b| should be sufficiently small or zero. For /=3, (11)-(13) become
u(0)=u(L) =0,

D*u(0) = a,, Du(0) + a,, D*u(0) + a,;D’u(0),

D’u(0) = a5, Du(0) + a5, D’u(0) + a;D’u(0),

D’u(L) = by, Du(L) + by, D’u(L), 16)

D*u(L) = b, Du(L) + b,D’u(L),

D’u(L) = bs,Du(L) + by, D’u(L).

Substituting (16) into (6), we obtain

1 by ) R B 5S PHC
1= by by~ =2 Du(L) + (b, —5 == D*u(L)

+(b32 —bs, + b, = by by, )D”(L)DZM(L) + (a51 + %)(D”(O))z

+(_‘142 + %)(DZM(O))Z + %(D%’(O))z +(as, — a41)D“(0)D2”(0)

+(=1+as, YDu(0)D’u(0) - a43D2u(O)D3u(O).

By the Cauchy inequality with ¢ = 1, it follows that

1 1
> (b31 — by, _E_b321 _E(l by, [+|bs, |+ by |))(D”(L))2
1 1
(b =5 b = (1B |+ 1bs [ +1By DUD*u(L)?

+(a51 —%—%ﬂ as, | +]ay |+]as |))(D“(O))2
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1 1
+(~a, +o o ag +lay [+l D)(D*u(0))’

1 1
H( =S (lag | +]a, D)Du(0).
4 2
To have /> 0, the coefficients must satisfy the following inequalies:
r 5, 1
B, =b; - by, _E_bﬂ _E(| by, [+]bsy [+ 1) >0,

1 1
B, =b,, _E_bzzz _E(|b32 | +1bsy [ +1D4, ) >0,

1 1 (17)
A =a; ————(las, |+|a, [+|as[) >0,
2 2
1 1
Ay ==ay,+———(as, [+|a,[+]a; ) >0,
2 2
1 1
A322_5(|as3|+|a43|)>0~

.. . 1 1 1 1 .. . .
This implies that bs; < =%, by, > 5, as; > 5, ayp, < 5 and the remaining coefficients should be sufficiently small or

zero. Let [ > 4. By (6),

I= inu(L)(li (=) D**y(L)) —%i(D”'u(L))z (18)
+§ Diu(O)(i(—l)"DZk*iu(O)) + %i(D”lu(O))z. (19)

Conditions at x = L: Substituting (11), (13) into (18), we find

-1

_ ZDiu(L)(i (_1)k+1D2k+iu(L)) _ %Z (D"*'u(L))?

i

-1

[Z (=1 Diu(L)D**'u(L) + Z (=) Diu (L)D2k+lu(L):|

2k shrezl
1S, > 1 R~ K+ i 2he+i
—EZ(DH u(L)) —E(D u(L))” = > (D" Du(L)D* u(L)
i=0 -1 kel
2ri<i-1

-1 I-i

+ Z (-1 k“bzkﬂ,DM(L)D’M(L)——Z(D’+1 (L))’

i=l1 1 j=l 10

~
—_

\
I

Ahite
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S Eh O =3 (3 Dby, -3 - ) Ouw)

/
i=1 k=1
2k+i=l

-3
+ Z (_1)k+l Diu(L)DZk-H'u(L)
=1 k=1

2k+i<l-1

1

+ IZI: ( IZ (~)"'b,,.,  )D'u(L)D'u(L) —% ZZE byb, D'u(L)D u(L).

i,j=1 k=1 i,j=1
i#j  2k+i=l i#j
We deduce

Il :i z (_1)k+l Diu(L)D2k+iu(L) > 3T_li(Dlu(L))2

k=1
2k+i<l-1

1

The proof is an induction on /. For / =4, we have

Du(L)D*u(L) > —%i(D%(L)Y = %E(Dl’u@))z.

i=1

Assume assertion (20) is valid for some integer m > 4. Then

2 m=3

3

Z (_l)k+1 DiM(L)DZkHu(L) :Z Z (_1)k+l Diu(L)D2k+iu(L

k=1 i=l k=1
2k+i<m 2k+i<m

i

+D’”’2u(L)D’”u(L)=}f > (=D)"'Du(L)D* u(L)

i=1 k=1
2k+i<m-1

Jf > (=)' D'u(L)D"u(L)+ D" *u(L)D"u(L)

i= k=1
2k+i=m

S (DU -3 DL+ D (L))

3—-m
2

>

3—-m
2

= ¥ 0wz (- DT vy

H{(5573) X Dy + (5= ) 0ru(wy?
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—’”f(D"u(L))Z.

This proves (20) for all /> 4.
For i, j fixed, by the Cauchy inequality, we obtain

(Z (-, )D'u(L)D'u(L)

2k+1>l

233 [ ) @ty -5ty

2k+i=l

Summing over i, j=1,---, 1 — 1 with i #, we get

L=5 (3 )b, )Du()Du(L)

;Z [121( i \bzk+,~,j\)2 +1-2] (D). @

It is easy to see that

B _E z blzbl/D M(L)DIM(L) > Zbi (Dl (L))

Substituting 7, + 1, + [; into /,, we conclude
I-1

1—i
> [Z (-D!"'by,, +(2-1)

i=1 k=1
2k+izl

M z__z( Z (). }(D"u(L))z.

1=1 2k+ixl

Hence, for /, > 0, the coefficients b; must satisfy

’Z( Dy, + (2 l)+(1 l)bz

+

—i

——JZI‘,( Z by, >0, - (22)

]¢1 2k+t>l

Volume 1 Issue 5/2020| 355 Contemporary Mathematics



This implies

b1+1,1—1 >1—= 2:
J-1
b1+,1]> (Z|bl+2m 1Li=2m+1 |) +1-2, j=3,...,1-1,
e (j odd) 23)
b1+2,1—2 <2- l:
l—l
by < (z|bl+2m1 om |) +2-1, j=4,..,1-1,

(j even)
and the remaining coefficients of (22) should be sufficiently small or zero

Conditions at x = 0: Substituting (11)-(12) into (19), we get

1, =S Du)(3 (-1 D**u(0)) + l2(1)”‘ (0))
i=0 k=1

i=0
|: I—i

Z( 1Y Di(0) D> 1u(0) + Z (—1)’fDl’u(0)D2k+fu(0)]

22D () =33 (= Du(0)D*u(0)

i=l k=l
2k+i<l

/-1

> (= ;D'u(0)D'u(0) + Z(D’” (0)°

i=0

S (X D e, ) DUO 4 (D'u(0))

-1 I1—i
33 ) DuOD* u(0)+ > ( ~1)*ay,.,,, )D'u(0)D'u(0)
= 215331 l}ij‘l 2kf1:211+1
-1 1—i

+

> (Y (D ay., )D'u©)D'u(0).

2k+i=l+1

Making use of (20) with 0 instead L, and the Cauchy inequality with an arbitrary & > 0, we obtain
-2
=) Z (-1 D'u(0)D**'u(0) = Z D (=) D'u(0)D**'u(0)
=l k=l
2k+i<l

i=1 k=1
2k+i<l-1
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D) Z (-1 Du(0)D'u(0) - D' *u(©)D'u(0) > Z(D’ ()

——Z(D’ (0))° +22L (D’ (0))” - (D'*Zu(0)+D'*1u(0))

3-l-¢

—i(D’u(ow:( )Z(D' o) +271 (D’ 0)°.

Taking ¢ = 2(/ — 2), we conclude

> 73S Do)y ——(D’ (0.

Acting as by the proof of (21), we obtain

L=3(S (an, )DuODu0)

Rl
i L

(D'u(0))? - 2 IaM

i>/+1 2

(D'u(0))’.

1
5 |a2k+i,/

T =
I
l\)l»-*

Summing over i = 1,...,/ — 1, we find
= ( (_1)k a2k+1,1)Diu(0)Dlu(0)

1 i /-1 [—i
22X e 0wy =[S T fa,
2 = J/f':>ll+l = 2k :>

)|uo)y

Substituting [, + I, + I; into /,, we conclude

Volume 1 Issue 5/2020| 357 Contemporary Mathematics



2k+izl+1
1 /-1 1-i ) 1 1—i ) 5
1
_EZ( Z ‘a2k+i,j D Y |a2k+i,l :|(D u(0))
Jj=1 k=1 k=1
J# 2k+izl+1 2k+i2l+1

+[l_l lfl ( 3 e, )](D’u(O))2.

Obviously, 1, > 0 if the coefficients a;; satisfy the following conditions:

1—i =

. 1 = 5
A4 = Z (=D ay.;; +(5-20) _EZ( z ‘a”‘”’j‘)
%

=1 j=1 k=1
2k+i=l+1 J#Ei o 2k+izl+1

-1 I-i

1 1
AZZZ_E_ ( Z |a2k+i,l)>0'

This implies
Aoy, <521,

J-1
2

Y +5-21, j=3,.., 1-1,
%,—/

1
Qi < _E( |al+2m71,172m+1
m=1

(j odd)
g2 > 215,
i
1 2 2 .
Aiji-j > _(Z|al+2m,l—2m |) +21-5, j=4,..,1-1,
2 m=l (j even)

and the remaining coefficients of (24)-(25) should be sufficiently small or zero.
< 3 for /=3 and (23), (26) for / > 4 and the

1 1 1

Assuming by, > %, az < % for [ =2; b, <775 by, > 550517 55 An
remaining coefficients in (15), (17), (22), (24), (25) equals to zero, we get the following boundary conditions for all / € N:

u(0) = u(L) = D'u(L) = 0,
D" u(0)=ay,,, ;D"u(0), j=1,..., -],

D"u(L)=b,, ., D'"u(l), j=1,.., 1-1.

=]

iporary Math tics

24

(25)

(26)

27
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Remark 1 We call (12)-(13) general boundary conditions because they follow from a more general form:

20-1
> &, D'u(0)=0, k=1,...,1 -1, (28)

i=1

21-1

Z B.Du(L)=0,k=1,...,1, (29)
i=1

where a,,, f;,; are real numbers. Write (28)-(29) as

2[-1 i

>, D'u(0) ==Y o, D'u(0), k=1,...,1 -1,

i=l+1 j=1

20-1

-1
> BDu(L)y==Y B.D'u(L), k=1,...,1.
i=l J=1

. det (o) o
If det(a;,) # 0, then D'u(0) = det((a,]j; ,i=1+1,.,21—1, where (a,) is the matrix formed by replacing the i-th
column of (a;,) by —le_l aijf'u(O). _
B : det (S,
After simple calculations, we arrive to (12). Similarly, if det(,;) # 0, then D'u(L) = %, i=1,..,2[—1, where
ki

(ﬁ/;) is the matrix formed by replacing the i-th column of (5,;) by lej_:l] ,[)’k_,-Dj u(L) and we come to (13).
Remark 2 All results established in this paper are proven for the case / = 1, see [21]. From here on, we will consider
[>2.

4. Existence and uniqueness of regular solutions

For areal 1> 0 and a given function f, consider the equation

Au+ Zl:(—l)-”lDZj“u = f(x), xe(0,L), (30)

J=1

subject to boundary conditions (27) with the coefficients satisfying: b;, > %, az < % for/=2; b5, < —% , by > %, as; > % ,
ay,< 5 for1=3 and (23), (26) for /> 4.

Theorem 4.1 Let f e L*(0, L). Then for all 1 > 0, there exists a unique regular solution u = u(x) e H*""'(0, L) for the
problem (30), (27), such that

lull o <CULI, (31)

where C'is a constant dependingon L, [, A, a,.; -, boj 1y j=1,...,1— 1.

Proof. Suppose initially /e C([0, L]) and consider the homogeneous equation

!
Au+ Y (-1)’"'D**'u =0 in (0,L), (32)

J=l
subject to boundary conditions (27). It is known, see [33], that (30), (27) has a unique classical solution u# € C*"'([0,

L)) if and only if (32), (27) has only the trivial solution. Let u € C*"'([0, L]) be a nontrivial solution of (32), (27), then
multiplying (32) by u and integrating over (0, L), we obtain
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/
Al 1P+ (=1 (D u,u) = 0.

J=1

Making use of (6) and boundary conditions (27) with the coefficients satisfying: by, > % , a3 < % for /= 2; bs, < —% ,

by > %,aﬂ > %9042 < % for /=3 and (23), (26) for [ > 4, we get
/ ) ) /-1 ) ! )
D) DY u u) =Y B (D'u(L)) + )| A,(D'u(0))* >0, (33)
j=1 i=1 i=1

for all /> 2, which implies A|| u||* < 0. Since A > 0, it follows that x = 0 and (30), (27) has a unique classical solution u =
u(x) e C*"'([0, L]).

Estimate 1 Multiply (30) by u and integrate over (0, L) to obtain
l . .
Al P+ ) (D u) = (f w).
Jj=1
Taking M, = {Ilnilllil} {B,, 4;, A;} in (33) and making use of the Cauchy-Schwarz inequality, we get

-1
Al ullP +M, (Z[(D"u(L))2 +(D'u(0))* ]+ (D’u(O))z) <l I all, (34)
i=1
which implies
i<y 7. (35)
A
Substituting (35) into (34), we find
-1
> [(D'u(L))* +(D'u(0))* ]+ (D'u(0))* < ALMII 1P, (36)
i=1 1

Estimate 2 Multiply (30) by (1 + x)u and integrate over (0, L) to obtain

A+ x,u”)+ Zl:(—l)'f+l(D2j*lu, (I+x)u)=(f, 1+ x)u). (37)

J=1

By the Cauchy inequality with an arbitrary ¢ > 0, we estimate
o0 < E U xu?) 4= (1 x, £2)
’ B PR (38)

Substituting (38) into (37) and taking ¢ = 4, we get

A { ; ; 1+L
ShulP 4 3D (0, (14 20u) g;7|| IR, (39)
Jj=1
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Making use of (6), (7) and boundary conditions (27) with the coefficients satisfying: b, > Loa, <L fori= 2;

27 31 2
*.by> 3 .ag> 3. an< 3 for/=3and (23), (26) for /> 4, we find

b51<733 D)

I= i(—l)’” (D 'u, (1+ x)u) = lia + x)Diu(i (~1) Dy )
< s k 2kl Yo (1 ; 2L
2 1+ Du(E (D D u) [ —%Z(D’u) |
S(2j+1) ) \- i )~ i 2
+ZTII D/ulP =(1+ L)Y B (D'u(L))* + Y 4,(D'u(0))

-l o . L(2j+1 ;
+> A+)Du(> () D* ) |- +Z—( ]2 W DiulP,
i=1 k=1 j=1
Substituting / into (39), we obtain

%II ull + ZI:@I D/ul’ +(1+ L)iBi (D'u(L))* + iA,. (D'u(0))*

1+L oL & i
<=l 7P =S a+dpu(S (D D) |E (40)
24 i=1 k=1
Making use of (27) and applying the Cauchy inequality, we find

S+ i)Dl‘u(i DD )< S (144) | Diu(L) |
i=1 k=1 i=1
A0 (L)) + 3 1+ )| Du() | (D™ u(0)])
k=1 i=1 k=1
<M, (T Uy +Du()f ]+ (D'u0)?), (a1)

where M, is the maximum among all the coefficients of the derivatives (D'u(0))’, (D'u(0))’, (D'u(L)Y’, i = 1,...,1— 1 in (41).
Substituting (41) into (40) and taking into account (36), we get

A ! 2j+1 ; 1+L M

ZNulP Y A DulP <(—=+—2)I £IP.

2 ,Z:; 2 ( 22 /1M]) S

Therefore

el < CIAN (42)
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where C is a constant depending only on L, [, A, @, by o j= 1,0, = 1.
Finally, returning to (30) and making use of (8), we conclude that

Il e |[2rr < CILAI,

with a constant C depending only on L, /, 4, a,;; , b,.;,;, (see details in [21], p.4-5). Uniqueness of u follows from (35).
In fact, such calculations must be performed for smooth solutions and the general case can be obtained using density
arguments.

Remark 3 The problem (9)-(13) in Chapter 3 can be formulated under the following boundary conditions:

!
D'u(0)=>"a;D’u(0), i=1+1,..,2l, (43)
Jj=0
. l_l .
D'u(L)=Y b,D'u(L), i=1,...,2l, (44)
j=0

instead of (10)-(13). In fact, boundary conditions (10)-(13) are derived from (43)-(44) while one wants to study the
nonlinear equation:

/
Au+ Y (=D)"'D¥'u+uDu = f(x), x€(0,L). (45)

j=1

Multiplying (45) by u and integrating over (0, L), we get

A ulP @)+ Y 1y (D )+ 20 ()= (0.

ij> Yij
> 0. Note that, assuming 1(0) = u(L) = 0, (6) gives us (—1)"u(x)D"u(x)[5 = 0. This allows us to eliminate conditions at (43)-
(44) when i = 21, getting a correct set of boundary conditions (/ conditions at x =0 and / + 1 conditions at x = L): When /=1,
(43)-(44) become u(0) = u(L) = Du(L) = 0 and when / > 2, we get (11)-(13). We call (43)-(44) general boundary conditions
because they follow from a more general form: (see Remark 1)

. 1 . o
So a natural way to obtain || u || < 7 || £l is suppose u(0) = u(L) = 0 and to choose a;, b, such that le.:l(—l)’ (DY"u, u)

2/
>, D'u(0)=0, k=1,...,1,

i=0

21 _

D B Du(L)=0,k=1,...,1+1,
i=0

where a,;, f,; are real numbers.
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