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Abstract: In this paper, we aim to explore the oscillation of solutions for second-order delay differential equations with
multiple delays. Delay equations are characterized by being rich in both practical and theoretical aspects. We propose
new criteria to ensure that all obtained solutions are oscillatory. The obtained results can be used to develop and provide
theoretical support for and further develop the oscillation study for a class of second-order differential equations. Finally,
some illustrated examples are given to demonstrate the effectiveness of our new criteria.
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1. Introduction
In this work, we focus our attention on the oscillation of the second-order nonlinear delay differential equation with

the form

(
f (s)

(
u
′
(s)
)µ)′

+
m

∑
j=0

q j(s)uµ(τ j(s)) = 0, su ≥ s0. (1)

Throughout this paper, we assume that:
(i) µ is quotient of odd positive integers,
(ii) q j(s),∈C ([s0, ∞) , [0, ∞)) , j = 1, 2, . . . , m,
(iii) f (s) ∈C([s0, ∞) , (0, ∞)), and

∫ ∞

S0

1

f
1
µ (s)

ds < ∞, (2)
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(iiii) τ j(s) ∈C ([s0, ∞) , R) , and there exists τ ∈C ([s0, ∞) , R) such that τ(s)≤ τ j(s), τ(s)< s and lims→∞ τ(s) =
∞, j = 1, 2, . . . , m.

By a solution of (1), we mean a nontrivial function u ∈ C1 ([s0, ∞) , R) , su ≥ s0, which has the properties
f (s)

(
u
′
(s)
)µ

∈ C1 ([s0, ∞) , R) , and u satisfies (1) on [su, ∞), then u is a solution of (1). We focus in our study on
the solutions that satisfy sup{u(s) : s ≥ su}> 0, for every su ≥ sx, and we assume that (1) possesses such solutions. Such
a solution of (1) is called oscillatory if it is neither eventually positive nor eventually negative; otherwise, it is called
nonoscillatory. An equation is called oscillatory if all of its solutions are oscillatory.

The delay differential equations find a wide range of applications in certain high-tech fields, such as control theory,
mechanical engineering, physics, population dynamics, economics, and so on, see [1–7].

The property of oscillation is widespread in many physical, natural, and even social phenomena, so the study of
oscillatory properties for solutions of differential equations is an interesting issue not only for its applied importance, but
because it also contains many interesting analytical issues, see [7–10].

Thus, we can see that investigating the oscillatory and asymptotic behavior of solutions of neutral differential
equations is of great importance. During the past period, many papers appeared on the oscillatory behavior of differential
equations of neutral and delay type. Investigations by Zhang et al. [11], Li et al. [12–15], Baculikova et al. [16], and
Grace and Lalli [17] have yielded techniques and methodologies aimed at enhancing the oscillatory attributes of these
equations. Furthermore, the work of Zhang et al. and Agarwal et al. [6, 18–21] has expanded this inquiry to encompass
differential equations of the neutral variety. In recent years, there has also been a significant exploration of oscillation
behaviors in fourth-order delay differential equations, as evidenced by studies such as [22, 23].

Balatta et al. [24] studied the oscillatory properties of higher -order delay half linear differential equations with non-
canonical operators. They improved new criteria, extended, and greatly simplified the previously established criteria, but
they also have the potential to act as a reference point for the theory of delay differential equations of higher order.

Numerous investigations have addressed the criteria governing oscillation in solutions to diverse differential
equations. As an illustration, Zhang et al. [25] introduced novel characteristics concerning solutions to delay differential
equations

(
f (s)

(
u
′
(s)
)µ)′

+q(s)uµ(τ(s)) = 0,

in the canonical case

∫ ∞

S0

1

f
1
µ (s)

ds = ∞.

Agarwal et al. [26] analyzed the oscillatory behavior for differential equations of second-order

(
f (s)(uµ(s))′

)′
+q(s)ur(τ(s) = 0.

The main purpose of this work is to establish new criteria for oscillation of (1) under condition (2). New criteria
ensure that all solutions are oscillatory, which is an extension and expansion of previous results. Some examples were
provided to illustrate the results.

The following notation will be used in the remaining sections of this work: τ(s) = min
{

τ j(s), j = 1, 2, . . . , m
}
.
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2. Main results
In this section, we set out to investigate the monotonic properties and oscillatory behavior of solutions to (1).
Lemma 1 [20] Let f ∈Cn ([ j0, ∞) , R+) and f (n) is not identically zero on a subray of [ j0, ∞), and is of fixed sign,

such that f (n−1)( j) f (n)( j)≤ 0. If limt→∞ f ( j) ̸= 0, then

f ≥ λ
(n−1)!

jn−1
∣∣∣ f (n−1)

∣∣∣ , λ ∈ (0, 1),

holds on [ jλ , ∞).
Lemma 2 [26] Let N > 0 and Q are constants, and α be a ratio of two odd numbers. Then

Qs−Ns
α+1

α ≤ αα

(α +1)α+1
Qα+1

Nα , N > 0.

Lemma 3 [25] Let u is an positive solution of (1). Then, there exist two cases:
Case 1: u

′
(s)< 0.

Case 2: u
′
(s)> 0.

Lemma 4 [16] If u is a positive solution of (1). Then

(
u(s)

φ(s, ∞)

)′

≥ 0.

and there exists a s1 ≥ s0 such that
(

u(s)
φ(s1, ∞)

)′

≤ 0.

Theorem 1 If

limsup
s→∞

∫ s

s1

1

f
1
µ (x)

(∫ x

s0

φµ(y, ∞)
m

∑
j=0

q j(y)dy

) 1
µ

dx = ∞.

Then (1) is oscillatory.
Proof. Suppose the contrary that u is a positive solution of (1), so we have

u(s)> 0, τ j(s)> 0 and
(

f (s)
(

u
′
(s)
)µ)′

≤ 0, for s ≥ s1 ≥ s0.

By Lemma 3, we find two cases.
First, if case (1) holds. From (1), we have
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(
f (s)

(
u
′
(s)
)µ)′

=−
m

∑
j=0

q j(s)uµ(τ j(s)), for s ≥ s1 ≥ s0,

≤−uµ(s)
m

∑
j=0

q j(s). (3)

Since s ≥ s1, and so,

f (s)
(

u
′
(s)
)µ

≤ f (s1)
(

u
′
(s1)

)µ
,

since u
′
(s)< 0, we obtain

u(s)≥−φ(s, ∞) f
1
µ (s)u

′
(s),

≥−φ(s, ∞) f
1
µ (s1)u

′
(s1) ,

we put σ =− f (s)
(

u
′
(s)
)µ

, and so,

uµ(s)≥−φµ(s, ∞) f (s1)(u
′
(s1))

µ
= φµ(s, ∞)σ for s ≥ s1. (4)

From (3) and (4), we have

(
f (s)

(
u
′
(s)
)µ)′

≤ σφµ(s, ∞)
m

∑
j=0

q j(s) for s ≥ s1. (5)

Integrating (5) from s1 to s, we obtain

f (s)
(

u
′
(s)
)µ

− f (s1)
(

u
′
(s1)

)µ
≤−σ

∫ s

s1

φµ(t, ∞)
m

∑
j=0

q j(t) dt. (6)

From (6), we get

u
′
(s)≤

−σ
1
µ
(∫ s

s1
φµ(t, ∞)∑m

j=0 q j(t) dt
) 1

µ

f (s)
1
µ

. (7)

Integrating (7) from s1 to s, we find
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u(s)−u(s1)≤−σ
1
µ

∫ s

s1


(∫ y

s1
φµ(t, ∞)∑m

j=0 q j(t) dt
) 1

µ

f (y)
1
µ

dy.

when s → ∞, we have arrive at a contradiction with (2).
Now, if that case (2) holds. From (2) and I2, we find

lim
s→∞

∫ s

s1

m

∑
j=0

q j(t) dt = ∞, (8)

and so,

(
f (s)

(
u
′
(s)
)µ)′

≤−uµ (τ(s))
m

∑
j=0

q j(s) for s ≥ s1. (9)

Integrating (9) from s2 to s, we have

f (s)
(

u
′
(s)
)µ

− f (s2)
(

u
′
(s2)

)µ
≤−

∫ s

s2

uµ(τ(y))
m

∑
j=0

q j(y) dy

≤−uµ(τ (s2))
∫ s

s2

m

∑
j=0

q j(y) dy.

Take s → ∞, we arrive at a contradiction with (8).
The proof is complete.
Corollary 1 Let the conditions I1 − I4 holds. If

lim sup
s→∞

φµ(s, ∞)
∫ s

s1

m

∑
j=0

q j(v) dv > 1.

Then (1) is oscillatory.
Corollary 2 Let the conditions I1 − I4 holds. If f

′
(s)> 0 , ∃γ, δ ∈C1([s0, ∞) , (0, ∞)) such that

lim sup
s→∞

φµ(s, ∞)

γ(s)

∫ s

s1

γ(s)
m

∑
j=0

q j(s)−
f (s)

(
γ ′
(s)
)µ+1

(µ +1)µ+1 γµ(s)

ds > 1,

and
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limsup
s→∞

∫ s

s1

δ (s)
m

∑
j=0

q j(s)−
f (s)

(
δ ′
(s)
)µ+1

(µ +1)µ+1 δ µ(s)(τ
′
(s))

µ

ds = ∞.

Then (1) is oscillatory.

3. Numerical example
Examples are provided to demonstrate the significance of our results.
Example 1 Consider the second-order equation:

(s2 u
′
(s))

′
+a0s

(
u
( s

3

)
+u
( s

2

))
= 0, j ≥ 1. (10)

Let µ = 1, f ( j) = s2, q1(s) = q2(s) = a0s, τ1(s) =
s
3
, τ2(s) =

s
2
, and

∫ ∞

s0

1
x2 dx =

1
s0
.

It is easy to verify the conditions (I1 − I4).
Now, from Theorem 1, we see that

limsup
s→∞

∫ s

s1

1

f
1
µ (x)

(∫ x

s0

φµ(y, ∞)
m

∑
j=0

q j(y)dy

) 1
µ

dx,

= limsup
s→∞

∫ s

s0

1
y2

(∫ y

s0

(∫ ∞

v

1
t2 dt

)
2a0v dv

)
dy = ∞.

Thus, Equation (10) is oscillatory.
Example 2 Consider the equation:

(s2 u
′
(s))

′
+
(
s+ s2)u(

s
2
) = 0, j ≥ 1. (11)

Let µ = 1, f ( j) = s2, q1(s) = s, q2(s) = s2, τ1(s) = τ2(s) =
s
2
.

∫ ∞

s0

1
x2 dx =

1
s0
.

Now, from Corollary 1, we get
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lim sup
s→∞

φµ(s,∞)
∫ s

s1

m

∑
j=0

q j(t)dt

= lim sup
s→∞

1
s

∫ s

s1

(
t + t2)dt = lim sup

s→∞

1
s

((
s3

3
+

s2

2

)
−
(

s3
1
3
+

s2
1
2

))

=∞ > 1.

Thus, Equation (11) is oscillatory.
Example 3 Consider the second-order equation:

(s3 u
′
(s))

′
+ s2

(
u
( s

5

)
+u
( s

3

))
= 0. (12)

Let µ = 1, f ( j) = s3, q1(s) = q2(s) = s3, τ1(s) =
s
5
, τ2(s) =

s
3,

γ(s) =
1
s3 = δ (s) and

∫ ∞

s0

1
x3 dx =

1
2s02 .

it is easy to verify the conditions (I1 − I4).
Now, by Corollary 2, we have

lim sup
s→∞

φµ(s,∞)

γ(s)

∫ s

s1

(
γ(t)

m

∑
j=0

q j(t)−
f (t)(γ ′(t))µ+1

(µ +1)µ+1γµ(t)

)
dt,

= lim sup
s→∞

1
2

s
∫ s

s1

(
2− 9

4s2

)
dt = ∞ > 1.

Also,

lim sup
s→∞

∫ s

s1

(
δ (t)

m

∑
j=0

q j(t)−
f (t)(δ ′(t))µ+1

(µ +1)µ+1δ µ(t)(τ ′(t))µ

)
dt

= lim sup
s→∞

∫ s

s1

(
2− 27

4s2

)
dt = ∞.

Thus, Equation (12) is oscillatory.

Volume 5 Issue 4|2024| 5033 Contemporary Mathematics



4. Conclusions
This article presents an interesting outcome by studying a class of second-order delay differential equations with

multiple delays. By explicitly taking advantage of proposing new criteria, we ensure that all solutions are oscillatory.
The obtained results can provide theoretical support and empower the oscillation study for a class of second-order neutral
differential equations. An illustrated example is presented to verify our results. For researchers interested in this field,
and as part of our future research, it would be interesting to extend this improvement to higher-order differential equations
in the non-canonical case.
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