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1. Introduction
Though researchers are familiar with classical and weak solutions of the ordinary or partial differential equations, 

it is necessary to contemplate, “why generalized functions from Banach space, Hilbert space are needed to study the 
mild solutions of abstract differential systems?”, and “why it is needed to seek a solution of differential equation in an 
abstract space?”. The answer is not straight forward. For the last two decades, the concept of existence of weak solutions 
is dominated the applied mathematics research field due to its inevitable role in solving ordinary or partial differential 
equations which cannot be solved by analytical methods. Certain partial differential systems do not have classical 
solutions such as equations under the hyperbolic conservation law and there are continuous functions satisfying those 
partial differential equations but still not a solution of the equation due to the non-differentiability. There comes the 
significant role of abstract theory functional analysis which brings the compactly supported test functions from Banach 
space or from L2 space to generate the functions as continuous linear functional in order to have a solution called weak 
solution, such systems are called abstract differential systems. Since set of all test functions form a linear space, it acts 
as a linear differential operator in the abstract differential system like abstract Cauchy problem, 1-D diffusion equations 
and as a kernel under the integral sign like Volterra integral equations. Test functions along with semigroup theory form 
a new set of notions results bounded linear operators. There comes the role of Banach space and Hilbert space which 
contain the class of generalized functions satisfying required notions like compactly supported, inner product, norm, 
and linearity. The main motive of using test function in control theory and dynamical systems is to restrict the impulsive 
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behavior and control the dynamics of the system.
Fractional calculus helps identify specific dynamic behaviors of the dynamical system that integer order differential 

equations are unable to represent because it takes memory effect into consideration. They have drawn more attention and 
are widely used by scholars to construct and solve models and nonlocal or memory-based Cauchy systems. Additionally, 
fractional stochastic differential equations are used to solve complex medical biology systems (e.g., chemotherapy, 
epidemiology).

Readers can refer to [1-3] for a better knowledge of semigroup theory and fractional calculus. Different definitions 
of fractional derivatives (FDs) exist, such as Caputo, Riemann-Liouville, Grunwald-Letnikov, Hilfer, and others. Hilfer 
proposed the Hilfer fractional, which combines the Riemann-Liouville and Caputo derivatives [4]. Whether or not there 
are weak solutions to differential equations with Hilfer fractional derivatives was examined by Gu et al. [5]. 

Stochastic differential equation plays a crucial role in the area of fractional calculus to model the system where 
the random change, random growth or random heat conduction occur. For further details refer [6-10]. Ahmed et al. 
investigated the Hilfer fractional stochastic integro-differential systems with non-local conditions using Sadovskii fixed 
point theorem in [11]. Jingyun et al. [12] examined the approximate controllability of Hilfer fractional neutral stochastic 
differential systems through Banach contraction principle. The controllability of nonlinear integro-differential systems 
in Banach space was explored in [13] and this work was extended in [14] to the third order dispersion system. And in 
the recent years many authors have made their contribution in the control theory [15, 16]. Mourad K [17] explored the 
approximate controllability of FDS with fBm. However, these derivatives cannot be used in conjunction with the chain 
rule, quotient rule, or product rule. In order to solve the problem with nonlocal FDs. Khalil et al. [18-20] recommended 
a limit-based fractional derivative known as conformable FD. This helps to avoid the challenge of solving the complex 
systems using the previously described rules. For this reason, conformable FD is a preferable idea when managing 
complex systems.

The purpose of using Hilfer fractional derivative is that it interpolates between Riemann-Liouville and Caputo 
fractional derivative. This versatility makes Hilfer fractional derivatives useful for modeling intricate dynamical 
systems, such as the heat conduction model and infectious disease models. 

The fundamental notion behind trajectory controllability is that it directs the solution curve along the predetermined 
path, allowing for more precise control of the dynamic system. For instance, normal cells may be impacted while are 
treated in cancer cells in cancer therapy. Trajectory controllability (T-controllability) will be helpful in reducing such 
effects and maintaining the normal cells at a safe level. Researchers have been paying attention to trajectory control 
theory lately because it is a crucial component of control theory and makes a significant contribution in dynamical 
systems. Since trajectory controllability is independent of both the starting and final states, it is more precise and 
efficient than other controllability’s such as exact controllability, approximate controllability. More specifically, as the 
majority of dynamical systems are nonlinear, this idea will be useful in solving such systems. Chalishajar et al. [21] the 
ones who originally proposed the novel idea of T-controllability and [22, 23] discussed T-controllability of non-linear 
integro-differential systems for 1st and 2nd order using by numerical approach. Malik et al. [24] shared their opinion 
on the T-controllability of a fractional differential system a few years ago. Then, Dhayal et al. [25] investigated the 
approximation and Tcontrollability for fractional stochastic differential sytem. Later, [26] explored the T-controllabilty 
for Hilfer fractional stochastic equation.

Recently, the existence results and trajectory controllability of conformable fractional stochastic integro-differential 
equation with infinite delay was discussed in [27]. As accurate as possible, the trajectory controllability of conformable 
Hilfer fractional neutral stochastic integro-differential has not been discussed. In this manuscript, our motive is to study 
the conformable Hilfer fractional neutral stochastic integro-differential systems with infinite delay.

First let us consider the conformable Hilfer fractional stochastic integro-differential systems with infinite delay,
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e  is the Hilfer conformable fractional derivative for J (0, b]=′∈r , 
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0 < ρ ≤ 1 and 1
2

 < e ≤ 1. OH-phase space. G : D(G) ⊂ V → V is a linear operator which generates a strongly continuous 

semigroup {T( r )}, r  ≥ 0 on a Hilbert space V with inner product and norm defined in V . ( )y r  is a control function 
which is measurable and square integrable and assumes values on J = [0, b] in the reflexive Hilbert space K. The 
function ur : (-∞, 0] → V is described by ur (θ) = u(r + θ) in OH. The functions L, N , M and M  are defined as follows 
L : J × OH × V → V , N : J × OH× V →L2 and M, M : J × J × OH → V are bounded and continuouson J' = (0, b]. 
Assume that z is a standard Q-Wiener process on a separable Hilbert space U with <·, ·> u and ‖·‖ u as itsnorm. {γ(r), r 
≥ 0} is a U-valued Brownian motion with finite-trace nuclear covariance operator Q ≥ 0. κ = {κ(r) : r∈ (-∞, 0} with the 
finite second moment is OH-valued random variable, measurable and independent of Wiener process {γ(r)}. 

The main contribution of this paper is to exhibit the existence results of complex system like conformable Hilfer 
fractional derivative with stochastic process and establishing the controllability. Conformable fractional derivative is 
an efficient tool since it preserves the chain and quotient rule for derivatives. This manuscript is organized as follows: 
preliminaries, existence and uniqueness of mild solution of (1) without neutral term, with neutral term and trajectory 
controllability of (1). An illustration is given to understand the theoretical approach.

2. Preliminaries
Consider the followings. Set of all bounded linear operators S(r)r≥0 generated by G forms an analytic semi-group.

ρ(G ) is the resolvent set of G which contains zero. Then ∀ζ ∈ (0, 1], G β is a closed linear operator on D(G β). The 
complete probability space with a normal filtration {Kr}r∈[0,b] is denoted by (Λ, K , P). Z: J × Λ → H is a Q-Wiener 
process on (Λ, K, P) with the linear bounded covariance operator Q such that Tr(Q) < ∞, which is adapted to normal 
filtration {Kr}r∈ [0, b]. The complete orthonormal set {hn}n≥1 in H, with sequence of nonnegative real numbers {wn}n∈N 

such that Qhn = wnhn, wn ≥ 0, n = 1, 2, ··· and 
1

( ),  ,  ( ),  U,  [0,  b]n n nn
Z w w h w wγ∞

=
〈 〉 = ∈ ∈∑r r r  where γn(r) is a 

sequence of independent Brownian motions. 
Consider the Hilbert spaces L2(Λ, V ), 0 2

2 ,  L LK (J, U), where 

L2(Λ, V ) : = {L | L is an K -measurable and square integrable random variables with values in V },

1
0 2
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Lebesgue integrable K -valued random values in V .

Definition 2.1 [2] The Riemann-Liouville fractional integral of order ρ for F : [0, ∞) → R shall be expressed as
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Definition 2.2 [2] Riemann-Liouville’s fractional derivative of order ρ for F : [0, ∞) → R shall be expressed as
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Definition 2.3 [2] Caputo derivative of order ρ for a function F : [0, ∞) → R is defined as
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Definition 2.4 [4] The Hilfer fractional derivative of order ρ ∈ [0, 1] and e ∈ (0, 1) with the lower limit 0 is defined 
as
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Definition 2.5 [5] Wright function Me, is described as,
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In addition to the above, we shall construct few more important results, lemmas and properties to support the main 
results.

Lemma 2.1 [5, 11] Let the semigroup T(r) be generated by the infinitesimal generator G : V → V and there exists 
M > 0 such that ‖T(r)‖ ≤ M ∀r ∈ J. Then

1. Te(r), Pe(r) and Sρ,e(r) are bounded linear operators, i.e. ∀ r > 0, u ∈ V , p = ρ + e − ρe, we have

e 1 p 1

e e ,e( ) ,  ( )  and ( ) .
Γ( ) Γ( ) Γ(p)

M u Mt u M uT u P u S uρ

− −

≤ ≤ ≤
     

     

r
r r r

e e

2. Te(r), Pe(r) and Sρ,e(r) are strongly continuous.
Lemma 2.2 [11] For ∀u ∈ V , γ ∈ (0, 1) and β ∈ (0, 1], we have
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Lemma 2.3 [12] For arbitrary 0
2L -valued stochastic process ϒ(r), r ∈ [τ1, τ2], satisfying
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Definition 2.6 [30] The abstract phase space OH is defined as follows,
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Obviously ( )HH ,  ⋅‖‖OO  is a Banach space.
Definition 2.7 [30] The space containing all continuous V -valued stochastic processes {h(r): r ∈ (−∞, ρ]} is 

denoted by C ((−∞, v], V ). Furthermore,
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Lemma 2.4 [30] If u0 = κ ∈ OH, 
Hu ′∈O , then for r ∈ E , ur ∈ OH. Furthermore,
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Definition 2.8 [18] The conformable FD of a function F(·) of order ρ with r > 0 is defined as follows:
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For r = 0, the definition becomes,

0
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d d
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F F r

r r
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0
( )( ) ( ) .dρ ρ −= ∫

r

F r g F g gI

Definition 2.9 (Trajectory controllable) [27] The system (1) is T-controllable on [0, T] if for any w ∈ T , (w(·)- 
a set of all continuous functions (trajectories) defined on [0, T] such that w(0) = u0 and w(T) = u1), and if fractional 
derivative 0D wρ  exists almost everywhere, then there exists a control y ∈ L2([0, T]) such that the mild solution of (1) 
satisfies u(r) = w(r) on [0, T].

Lemma 2.5 (Generalized Gronwall’s inequality) [31] Suppose l(r) and m(r) are non-negative locally integrable 
functions on 0 ≤ r < ∞ and s(r) is a non-negative, non-decreasing function on 0 ≤ r < ∞ with s(r) ≤ C where C is a 
constant.

If
1

0
( ) ( ) ( ) ( ) ( )m l s m dαθ θ θ−≤ + −∫

r

r r r r

for any α > 0, then
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Furthermore, if l(r) = 0, then m(r) = 0 ∀  0 ≤ r < ∞. From the motivation from [5, 27], we shall construct the mild 
solution (1) as follows,

Definition 2.10 The Kr-adapted stochastic process u: (−∞, b] → V with κ ∈ L 2(Λ, OH) on (−∞, 0], 
0

0 2 (Λ,  )u ∈ L V  is the mild solution of (1) is defined as

( 1) 1 1

0
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3. Existence and uniqueness of mild solution
Since prior motive is to prove the uniqueness of mild solution of the Hilfer fractional differential system, assume 

that all the appropriate functions used in the proposed system satisfies the Lipschitz condition through semigroup theory 
and stochastic process as follows.

(C1) The linear operator G : V → V generates C0-semigroup T(r). Thus ∃ M > 0 such that ‖T(r)‖ ≤ M ∀r ∈ J.
(C2) The function L : J × OH × V → V is continuous for 1 1 H 2 2J. ,  ,  ,  w w w w∈ ∈ ∈ r O V  and there exist 

(2)
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0ˆ,  Q Q >L L
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Theorem 3.1 If the suppositions (C1)-(C4), with c > 0 are satisfied, then ( )B Bc cϒ ⊂  and
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then Hκ ′∈O . Let ( ) ( ) ( ),  b.u κ= + − ∞ < ≤r z r r r  Clearly this assumption makes z0 = 0. Then z(r) becomes

(3)
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Step 1
To prove ϒ  has a fixed point, first it is necessary to show that ϒ  maps into itself. By the method of contradiction, 

we consider that for any ( ) ( ) 21 p 1 p 1 p0 ( ) B  and B ,  (i.e),  ( )  for .c c c
c cc c− − −> ∃ ∈ ϒ ∉ ϒ > ∈ r z r r z r z r rE E

The suppositions (C1)-(C4) with Lemma 2.3 produces

( )1 p 2( )cc −≤ ϒ r z rE

( )( )
2 2

1 p 1 1 1

0 0 0
3 ( ) ,  ,  ,  ,  c cT y d T d d

θ

θ θ ρ ρ
θ θθ θ θ κ θ ρ κ ρ θ− − − −
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e
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where

1 p 1 2

0
3 ( )T y dθ θ θ− −  −
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r g

e
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r
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2 2 1 2 2
2

2
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e pr
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2
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≤ ∈
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e

r
ee
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r
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e
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− + −

≤ + + +
−

′ ′

e

ee
L

( )
2 2 1 2p

2 2 2
12

3 b b ;  where 1 .
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ˆ
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−



e
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θ
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e
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Substituting the above values in the original equation, it yields

( ) ( )
2 2 1 2p 2 2 1 2 2p 2 2 1 2p

2 2 2 2 2 2 2
1 22 2 2

3 b 3 b 3 bˆ ˆb Tr( ) b ,
2 1 2 1 2 1( ) ( ) ( )

M M Mc y Q c n c Q c n c
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Divide the above inequality by c and as c → ∞, we obtain

( ) ( )
2 2 1 2p 2 2 1 2p

2 2 2 2 2 2
1 22 2

3 b 3 b1 1 b Tr( ) 1 b ,
2 1 2 1Γ ( ) Γ ( )

ˆ ˆM MQ n Q n
+ − + −

≤ + + +
− −

 

e e

Q
e ee e

L N

which contradicts the assumption. So, there must be some c > 0, such that ϒ (Bc) ⊂ Bc.
Step 2 To prove the map ϒ  is a contraction map, we shall assume that ,  Bˆ c∈z z  and the expectation set be defined 

as,

2ˆ( ) ( )ϒ − ϒ 

 z r z rE

( )( )2(1 ) 1
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θ
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c [0,  1). Since c 0∗ ∗∈ =  is a trivial case, that is 2ˆ( ) ( ) 0− = z r z rE  is nothing to do with the uniqueness of mild 
solution. Therefore c∗∈ (0, 1). From the above result, taking supremum over r, 2 2( ) ( ) ( (ˆ ˆ .) )c∗ϒ − ϒ = − 

   z r z r z r z r
concluding that ϒ  is a contraction map having unique fixed point z(.) ∈ Bc, which is the mild solution of (1). Hence 
proved.

4.  Mild solution of conformable Hilfer fractional neutral stochastic integro-differential 
equation

Neutral fractional equations with dependent delay, infinite delay, or without delay assist partial differential systems 
in many fields like physics, Biological sciences and control theory, as the importance of neutral differential equations 
in practical mathematics has grown over the years. Consider the neutral stochastic integro-differential equation infinite-
delay of the form:

( ) ( )( ),
0 0

( ) ,  [ ( )] ( ) ,  ,  ,  ,  u u u y u u dρ
θθ θ+ − = + +   ∫

r
e

r rr k r r r r rD G L M

( )( )0

( ),  ,  ,  ,  du u d
dθ
γθ θ+ ∫ 

r

r

r
r r

r
N M

( )(1 )(1 ) 2
H(0) ( ) Λ,  ,  ( ,  0].uρ κ− − = ∈ ∈ −∞e r rI L O

Consider the following hypothesis:
(C5) k : [0, b] × OH → V is continuous such that

H

2 2 2(1 ) 2
H H( ( ,  ) ( ,  )) ,  ,  ,  ,ˆ ˆ ˆw w Q w w w wβ −− ≤ − ∈ ∈   

p
kk r k r r rOE G O O

( )H

2 2 2(1 p) 2
H H( ,  ) 1 ,  ,  .ˆw Q w wβ −≤ + ∈ ∈   kk r r rOE G O O

Definition 4.1 A function u ∈ OH is a Kr-adapted stochastic process which is mild solution of (4) is defined by u : 
(−∞, b] → V and κ ∈ L 2(Λ, OH) on 0

0 2( ,  0],  (Λ,  )u−∞ ∈ L V  and it satisfies the following

( )( 1) 1 1

0
( ) I [ (0) (0,  )] ,  ( ,  ( ))u T u T u dρ θ θκ κ θ θ θ− − −   − −
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e e e e
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e e e
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r g k k r k

e e
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0 0
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θ

θ ρ
θ θ θ ρ ρ γ θ−  −
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∫ ∫ 

e e
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e r
g

e
N M

Note The linear operator G generates {O(r)}r ≥ 0 on V .
Theorem 4.1 With the suppositions (C1)-(C5), there exists c > 0 such that ( )B Bc cϒ ⊂  and

(4)

(5)

□
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( )
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Proof. Let us define H HΓ : ′ ′→O O  as
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Let { }H H 0 H;  0 .′′ ′= ∈ = ∈z zO O O
For any H ,′′∈z O
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1/2 1/22 2
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0 b 0 b
.sup ( ) sup ( )

θ θ
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b
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Finally, ( )H b
,  ′′ ⋅O  is a complete normed linear space. Consider { }2

HB : ;  0,c c c′′= ∈ ≤ >
b

z zO such that HBc ′′⊆ O
is uniformly bounded, ∀c which leads to with the help of Lemma 2.4,

2  where 0.c cκ+ ′ ′≤ > r rz OH

(6)
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Let us define H H:ζ ′′ ′′→ O O  as
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Step 1 ( )B B .c cζ ⊂
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Therefore,
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Dividing by c throughout and let c → ∞ we obtain,
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which contradicts the assumption. So, there must be some c > 0, such that ( )B Bc cζ ⊂ .
Step 2 To claim that the map ζ  is a contraction map, for ,  ,ˆ Bc∈z z  the norm of expectation set be defined as,
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( ) ( )( )
2

2(1 p) 1
2 0

S ,   ˆ,T dθ θ θ θ
θ θ κ θ κ θ− −  −

= + − + 
 

∫
e e

r
e r

r k z k z
e

E G

2 2 2 2 2(1 p)
21 2

2

Γ (1 ) b .
2 1Γ (1 )

ˆ
C

Q
β

β
θ θ

β
ββ

+ −
− +

≤ −  −+ 

e

k

e
z z

ee

( )
2 2(1 p) 2 2(1 p) 2 1

2 22( 1) 2 2 2
3 12 20

bS 1 b .
Γ ( ) (2 1)Γ ( )

ˆ ˆM Md Q nθ θ θ θθ
− − + −

−≤ − ≤ + −
−∫

e
r

er
g z z z z

e e e
LE

( )
2 2(1 p) 2 1

22 2 2
4 22

bS .Tr( ) 1 b
(2 1)Γ ( )

ˆM Q n θ θ

− + −

≤ + −
−

e

Q z z
e e

N

Substituting above values, we get

2 2 2 2 2(1 p)2 2 212(1 p) 2 2 2
0 2

Γ (1 ) b( ) ( ) 4b 4
2 1Γ

ˆ
( )

ˆ ˆ
1

C
M Q Q

β
β

θ θ

β
ββ

+ −
−−

 +
ϒ − ≤ − + −  −+ 




e

k k

e
z r rz r r zr z z

ee
E

( )
2 2(1 p) 2 1

22 2 2
12

b4 1 ˆb
(2 1)Γ ( )
M Q n θ θ

− + − 
+ + − − 

e

z z
e e

L

( )
2 2(1 p) 2 1

22 2 2
22

ˆ ,b4Tr( ) 1 b
(2 1)Γ ( )
M Q n θ θ

− + − 
+ + − − 

e

Q z z
e e

N

which implies

( )
2 2 2 2 2(1 p) 2 2(1 p) 2 1

12(1 p) 2 2 2 2 2 2
0 12 2

(1 ) b b4b 4 4 1 b
2 1(1 ) (2 1) ( )

C MM Q Q Q n
β

β β
ββ

+ − − + −
−−

  Γ +  
≤ + + +     −Γ + − Γ   

e e

k k

e

ee e e
L

( )
H H

2 2(1 p) 2 1
2 2 22 2 2 2

2 02
J

0
 b4Tr( ) 1 b sup (

(
ˆ ˆ) ( )

(2 1) )
M Q n l

θ
θ θ

− + −

∈

 
 

 
+ + − + + Γ  −  

e

Q z z z z
e e

N O O
E

2 2 2 2 2(1 p) 2 2(1 p) 2 1
12 2(1 p) 2 2 2

0 2 2

(1 ) b b4b 4 4
2 1(1 ) (2 1) ( )

C Ml M Q Q
β

β β
ββ

+ − − + −
−−

  Γ +  
≤ + +     −Γ + − Γ   

e e

k k

e

ee e e

( ) ( )
2 2(1 p) 2 1

22 2 2 2 2 2
1 22

J

 b1 b 4Tr( ) 1 b .ˆsup ( ) ( )
(2 1) ( )
MQ n Q n

θ
θ θ
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∈

   × + + + × −  − Γ    

e

Q z z
e e

L N E

Substitute

2 2 2 2 2(1 p)
1* 2 2(1 p) 2 2 2

0 2

(1 ) b4b 4
2 1(1 )

C
c l M Q Q

β
β β

ββ

+ −
−−

  Γ +
= +   −Γ +  

e

k k

e

ee
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( ) ( )
2 2(1 p) 2 1 2 2(1 p) 2 1

2 2 2 2 2 2
1 22 2

b b4 1 b 4Tr( ) 1 b ,
(2 1) ( ) (2 1) ( )
M MQ n Q n

− + − − + −    
+ + + +    − Γ − Γ    

e e

Q
e e e e

L N

which becomes

( ) 2 21 p *

J
( ) ( ) sup ( ) ( ) .ˆ ˆc

θ
ζ ζ θ θ−

∈

 − = − 
 

 r z r z r z zE E

Since r ∈ (0, b], the function ζ  attains its maximum at r = b when taking supremum over r (i.e) 
2 2

bb
ˆ ˆζ ζ− = − z z z z .

By concluding now that ζ  is a contraction map, there exist a fixed point of the mild solution of the system.

5. Trajectory controllability
Trajectory curves are the curves which carries solution curve from initial state to final state. They accompany 

and steer the curves along the prescribed path (which might be more efficient in many categories like, cost reduction, 
accurate path or accurate direction). In this section, we concerntrate on proving the Conformable Hilfer fractional 
neutral stochastic integro-differential system is T-controllable using Gronwall’s inequality.

Theorem 5.1 The system (4) is T-controllable if the suppositions (C1)-(C5) are fulfilled.
Proof. Let w(r) be the trajectory and y(r) be the control function on (0, b] as defined by

( ) ( )( ),
0 0

( ) D ( ) ,  [ ( )] ,  , ,  ,   y w w w w w dρ
θθ θ+= − − −   ∫

r
e

r rr r k r r r rG L M

( )( )0

( ),  ,  ,  ,  ,dw w d
dθ
γθ θ− ∫ 

r

r

r
r r

r
N M

where e ∈ [0, 1] and ρ ∈ (0, 1). The system (4) becomes

( ),
0

D ( ) ,  u uρ
+ −  
e

rr k r

( ) ( )( ),

0
[ ( )] ( ) ,  [ ( )] ,  ,  ,  ,  u w w w w w dρ

θθ θ= + − − −   ∫
r

e
r rr r k r r r rG D G L M

( )( ) ( )( )0 0

( ),  ,  ,  ,  ,  ,  ,  ,  dw w d u u d
dθ θ
γθ θ θ θ− +∫ ∫

r r

r r

r
r r r r

r
N M L M

( )( )0

( ),  ,  ,  ,  .du u d
dθ
γθ θ+ ∫ 

r

r

r
r r

r
N M

Let ( ) ( ) ( )u wϒ = − r r r , we obtain

( ) ( ),
0

D ( ) ,  ,  u wρ
+  ϒ − −   


e
r rr k r k r

( )( ) ( )( )0 0
[ ( )] ,  ,  ,  ,  ,  ,  ,  ,  u u d w w dθ θθ θ θ θ= ϒ + −∫ ∫

r r

r rr r r r rG L M L M

□
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( )( ) ( )( )0 0

( ),  ,  ,  ,  ,  ,  ,  ,  ;  (0,  b],du u d w w d
dθ θ
γθ θ θ θ + − ∈  ∫ ∫ 

r r

r r

r
r r r r r

r
N M N M

here ϒ (r) = 0 for r ∈ (−∞, 0]. For r ∈ (0, b], the expectation as follows,

( ) ( ) ( )22 2(1 ) 1

0
( ) 4 ,  ,  4 ,  T θ θ

θκ κ θ κ− −  −
ϒ ≤ + − + + +   

 
∫

e e
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p e
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r r k r z k r z g k z

e
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θ θ θ θ ρ ρ
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e e
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e r
k z g z z

e
E L M
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0 0
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θ

θ θ ρ ρ θ θ
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e e
e

e r
z z g z

e
L M E N
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2

0 0
,  ,  ,  ,  ,  ( )

s
s d d d

θ

ρ ρ θ θ ρ ρρ κ ρ θ κ θ ρ κ ρ γ θ
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 z z zM N M
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2 2 22 2 2(1 p)

2 212 2 2( 1)
2 2 0
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CM Q Q d
β

β β
θ θ

β
θ

ββ
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− −

 Γ +
≤ ϒ + −  −Γ Γ + 

∫ 

e
r

e
k k

e
r g z z

ee e
E E

( ) ( ) ( )(
H

2
22 2( 1)

2 0 0
4 ,  ,  

( )
M Q s d

θ

θ θ θ θ ρ ρκ κ ρ κ ρ−+ + − + + +
Γ ∫ ∫

r
eg z z z

e
L O

E M

    ( ) ( ) ( )(
H

22 22 2( 1)
20 0

,  ,  4 Tr( )
( ) S

Md d Q
θ

ρ ρ θ θ θθ ρ κ ρ θ κ κ−
− + + + − + Γ∫ ∫ 

r
ez Q g z z

e
N O

M

( ) ( )
2

0 0
,  ,  ,  ,  d d d

θ θ

ρ ρ ρ ρθ ρ κ ρ θ ρ κ ρ θ
+ + − + 


∫ ∫ 

z zE M M

2 2 22 2 2(1 p)
2 212 2 2( 1)

2 2 0

(1 ) b4 r( ) 4 ( )
2 1( ) (1 )

CM Q Q d
β

β ββ
θ θ

ββ

+ −
− −

 Γ +
≤ + ϒ  −Γ Γ + 

∫
e

r
e

k k

e
r g

ee e
E E

( ) ( )( )
2

22( 1) 2 2 2 2 2 2
1 22 0

4 g 1 b Tr( ) 1 b r( )
( )

M Q n Q n dθ θ−+ + + +
Γ ∫

r
e Q

e
L N E

Since β is arbitrary and β ∈ (0, 1), by taking maximum value, the above inequality is identical to Gronwall’s 
inequality.

( ) ( )
2 2 2 2 2(1 p)

12 2 2 2 2 2 2
1 2 2

2

2
2

2

(1 )b
4 1 b 4 Tr( ) 1 b 4

(2 1) (1 )
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1 4
( )

C
Q n Q n Q

M Q

β
β β
β β

+ −
−

  Γ +
+ + + +   − Γ +  ϒ ≤    −  Γ  

e

k

k

e
Q

e e
r

e

L N

E
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22( 1)

0
( ) ,dθ θ−× ϒ∫

r
eg E

which yields ( ) 0ϒ =rE  by generalised Gronwall’s inequality, that is ur = wr. Thus system (4) is Trajectory 
Controllable on [0, b], (ie). the trajectory curves controls the solution curve along the prescribed path.

6. Illustration
Hilfer fractional neutral stochastic integro-differential system is given as follows,

( )
( )

1 1 2, 0
2 2

20

0

1 20

0

1 30

D ( ,  δ) k( ,  δ) ( ,  δ) δ ( ,  δ) ( ,  δ)

,  ( ) ( ,  δ) ,  ( ,  δ,  ) ( ,  δ)

( ),  ( ) ( ,  δ) ,  ( ,  δ,  ) ( ,  δ) , [0,  ]

( ,  

w w d w y

w s d w d d

dw s d w d d b
d

w

δ

θ θ θ ε θ ε ε θ

γθ θ θ ε θ ε ε θ

+
−∞

−∞ −∞

−∞ −∞

∂ − = +   ∂

+ − −

+ − − ∈

∫

∫ ∫ ∫

∫ ∫ ∫

r r

r r

r r r r r

r r

r
r r r

r

r

L L L

N L L

1
4

0

0) ( ,  ) 0, 0,

(0,  δ) ( ,  δ), [0,  ],  0,

w

w w

π

κ δ π











= = ≥

 = = ∈ − ∞ < <

r r

r r

here b ≤ π, κ (t, δ) ∈ H = L2([0, π]) which is the Hilbert space.
Let Y = U = H and γ(t) is 1-D Brownian motion on the filtered probability space (Λ, K , P). Let the function κ(t, 

δ) ∈ (-∞, 0) × [0, π] be continuous and L1, L2, L3 be continuous on [0, b] and measurable in H =L2([0, π]) while the 
memory functions or history functions L2, L3: [0, b] × [0, π] × (-∞, 0) → [0, π] satisfies Lipschitz condition.

Assumptions that helps to write the system (7) as (1). 
Let G : D(G) ⊂ Y → Y be defined as Gw = -w" with D(G) = {w ∈ Y; w, w′ are absolutely continuous, w" ∈ Y, w(0) 

= w(π) = 0} and it produces self-adjoint, compact, analytic semigroup S(r).
Therefore properties (C1)-(C4) satisfied.
Gw = -w" which is a Strum-Liovullie boundary value problem, therefore G acts as a generator of eigenfunctions.  

So the Eigenvalues of G are n2 where n ∈ N with the eigen functions wn(δ) = Bn sin(nδ), when normalising it, wn(δ) = 
2 sin( )nδ
π

 which brings some properties with it as follows:

• For any 2
1( ),  ,  .v n n nv D n v w w∞

=∈ = ∑G G

• The operator
1
2vG  is defined by 

1
2

1 ,  n n nv n v w w∞
== ∑G  on

1
2

1

( ) such that ,   on H .n n
n

D v n v w w
∞

=

   
= ⋅  

  
∑G

H(s) = e4s, s < 0, ⇒ 
0 1H( ) .

4
l s ds

∞−
= =∫  The abstract phase space OH provided with

( )
H

1/20 2

0
H( ) sup H ( ) .

s
s t dsκ κ

−∞ ≤ ≤

= 
∫

r
O

Thus, ( )
H

H ,  ⋅
O

O  is a complete normed linear space.
For neutral term k(r, δ) let us assume the followings
• The function k is Lebesgue square integrable and bounded.
•  The function k(t,  )∂

∂δ δ  is measurable such that k(r, 0) = k(r, π) = 0 and bounded by M1 where M1 is lebesgue square 
integrable.

(7)

(8)

□
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Define k: [0, b] × L2([0, π]) → L2([0, π]) by k(t, w) = V1(w) where V1(w)(δ) = 
0
k( ,  ) ( )δ w d

π

∫ r r r.

Obviously V1 is a bounded linear operator and 
1 1

2 22 2
1 1 1since .  M D

 
≤ ∈  

 
 G V V G

Therefore by Riez Representation theorem,

1 0 0
( ),  ( ) k( ,  ) ( )n nw w w δ δ w d d

π π
δ =   ∫ ∫ r r rV

0

2 sin( ) k( ,  ) ( )nδ δ w d d
π

δ
π

 =   ∫ r r r

2
1 2( ),  cos( )w nδ
n π

= V

2
1 2 ( ,  cos( )w n
n

δ
π

= V

Obtained by simply taking partial derivative by without loss of generality since the norm is preserved according 

to the Riez Representation theorem, here 2 2
2 2 10
( ) k( ,  ) ( )  and w w d M

π ∂ δ
∂δ

= ≤∫  r r rV V  therefore (C5) is fulfilled. 

Furthermore, the control y: ( )2
H H([0,  ])  where ([0,  ])y Lπ π→ ∈O R O  and r → y(t) is measurable, continuous and do 

not vanish on (0, b].
Consider

( ){ }2U : b  where  b ,  .y y L δ += ∈ ≤ ∈G R

For any trajectory w which is continuously differentiable and meets with initial data of w, there exists a control y 
such that  and (0) ( ) 0.w w w w π′′= − = =G  Therefore the system (7) is T-controllable on (0, b] by theorem (5.1).

7. Conclusion
This manuscript has addressed the mild solution and trajectory controllability of conformable Hilfer fractional 

neutral stochastic integro-differential equation with infinite delay by assuming Lipschitz and growth conditions and 
using Banach contraction mapping theorem and Gronwall inequality. An example was given to support the theoretical 
approach.

Discussing the same system with impulse and Rosenblatt process will be our future work.
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