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1. Introduction

Though researchers are familiar with classical and weak solutions of the ordinary or partial differential equations,
it is necessary to contemplate, “why generalized functions from Banach space, Hilbert space are needed to study the
mild solutions of abstract differential systems?”, and “why it is needed to seek a solution of differential equation in an
abstract space?”. The answer is not straight forward. For the last two decades, the concept of existence of weak solutions
is dominated the applied mathematics research field due to its inevitable role in solving ordinary or partial differential
equations which cannot be solved by analytical methods. Certain partial differential systems do not have classical
solutions such as equations under the hyperbolic conservation law and there are continuous functions satisfying those
partial differential equations but still not a solution of the equation due to the non-differentiability. There comes the
significant role of abstract theory functional analysis which brings the compactly supported test functions from Banach
space or from L’ space to generate the functions as continuous linear functional in order to have a solution called weak
solution, such systems are called abstract differential systems. Since set of all test functions form a linear space, it acts
as a linear differential operator in the abstract differential system like abstract Cauchy problem, 1-D diffusion equations
and as a kernel under the integral sign like Volterra integral equations. Test functions along with semigroup theory form
a new set of notions results bounded linear operators. There comes the role of Banach space and Hilbert space which
contain the class of generalized functions satisfying required notions like compactly supported, inner product, norm,
and linearity. The main motive of using test function in control theory and dynamical systems is to restrict the impulsive
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behavior and control the dynamics of the system.

Fractional calculus helps identify specific dynamic behaviors of the dynamical system that integer order differential
equations are unable to represent because it takes memory effect into consideration. They have drawn more attention and
are widely used by scholars to construct and solve models and nonlocal or memory-based Cauchy systems. Additionally,
fractional stochastic differential equations are used to solve complex medical biology systems (e.g., chemotherapy,
epidemiology).

Readers can refer to [1-3] for a better knowledge of semigroup theory and fractional calculus. Different definitions
of fractional derivatives (FDs) exist, such as Caputo, Riemann-Liouville, Grunwald-Letnikov, Hilfer, and others. Hilfer
proposed the Hilfer fractional, which combines the Riemann-Liouville and Caputo derivatives [4]. Whether or not there
are weak solutions to differential equations with Hilfer fractional derivatives was examined by Gu et al. [5].

Stochastic differential equation plays a crucial role in the area of fractional calculus to model the system where
the random change, random growth or random heat conduction occur. For further details refer [6-10]. Ahmed et al.
investigated the Hilfer fractional stochastic integro-differential systems with non-local conditions using Sadovskii fixed
point theorem in [11]. Jingyun et al. [12] examined the approximate controllability of Hilfer fractional neutral stochastic
differential systems through Banach contraction principle. The controllability of nonlinear integro-differential systems
in Banach space was explored in [13] and this work was extended in [14] to the third order dispersion system. And in
the recent years many authors have made their contribution in the control theory [15, 16]. Mourad K [17] explored the
approximate controllability of FDS with fBm. However, these derivatives cannot be used in conjunction with the chain
rule, quotient rule, or product rule. In order to solve the problem with nonlocal FDs. Khalil et al. [18-20] recommended
a limit-based fractional derivative known as conformable FD. This helps to avoid the challenge of solving the complex
systems using the previously described rules. For this reason, conformable FD is a preferable idea when managing
complex systems.

The purpose of using Hilfer fractional derivative is that it interpolates between Riemann-Liouville and Caputo
fractional derivative. This versatility makes Hilfer fractional derivatives useful for modeling intricate dynamical
systems, such as the heat conduction model and infectious disease models.

The fundamental notion behind trajectory controllability is that it directs the solution curve along the predetermined
path, allowing for more precise control of the dynamic system. For instance, normal cells may be impacted while are
treated in cancer cells in cancer therapy. Trajectory controllability (¥-controllability) will be helpful in reducing such
effects and maintaining the normal cells at a safe level. Researchers have been paying attention to trajectory control
theory lately because it is a crucial component of control theory and makes a significant contribution in dynamical
systems. Since trajectory controllability is independent of both the starting and final states, it is more precise and
efficient than other controllability’s such as exact controllability, approximate controllability. More specifically, as the
majority of dynamical systems are nonlinear, this idea will be useful in solving such systems. Chalishajar et al. [21] the
ones who originally proposed the novel idea of T-controllability and [22, 23] discussed T-controllability of non-linear
integro-differential systems for 1¥ and 2™ order using by numerical approach. Malik et al. [24] shared their opinion
on the T-controllability of a fractional differential system a few years ago. Then, Dhayal et al. [25] investigated the
approximation and Tcontrollability for fractional stochastic differential sytem. Later, [26] explored the T-controllabilty
for Hilfer fractional stochastic equation.

Recently, the existence results and trajectory controllability of conformable fractional stochastic integro-differential
equation with infinite delay was discussed in [27]. As accurate as possible, the trajectory controllability of conformable
Hilfer fractional neutral stochastic integro-differential has not been discussed. In this manuscript, our motive is to study
the conformable Hilfer fractional neutral stochastic integro-differential systems with infinite delay.

First let us consider the conformable Hilfer fractional stochastic integro-differential systems with infinite delay,

. ¢ vz dy(x)
D u(t)zgu(c)+y(t)+.z(t, u [t (v, 0, ug)d9)+JV(t, u, [ (v, 0, ug)dﬁ) £y,

I(l—p)(l—e)u(o) = x(v), c 2 (A, @;{), te(—oo, 0], )

where I is Riemann-Liouville fractional integral. D>* is the Hilfer conformable fractional derivative for t € J' = (0, b],
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0<p<1land % <e¢ < 1. Oy-phase space. 4: D(4) — ¥ — Vs a linear operator which generates a strongly continuous
semigroup {7(¢)}, v > 0 on a Hilbert space ¥ with inner product and norm defined in #. y(r) is a control function
which is measurable and square integrable and assumes values on J = [0, b] in the reflexive Hilbert space K. The

function u, : (-0, 0] — ¥7is described by u, (0) = u(r + 9) in Oy. The functions %, A", .4 and M are defined as follows

LAX O V=V, N Ix O V—L and M, M ] x]x O, — Vare bounded and continuouson J' = (0, b].
Assume that z is a standard -Wiener process on a separable Hilbert space U with <-, > u and |-l u as itsnorm. {y(v), ¢

>0} is a U-valued Brownian motion with finite-trace nuclear covariance operator Q > 0. x = {x(v) : ve (-, 0} with the
finite second moment is ¢;-valued random variable, measurable and independent of Wiener process {y(t)}.

The main contribution of this paper is to exhibit the existence results of complex system like conformable Hilfer
fractional derivative with stochastic process and establishing the controllability. Conformable fractional derivative is
an efficient tool since it preserves the chain and quotient rule for derivatives. This manuscript is organized as follows:
preliminaries, existence and uniqueness of mild solution of (1) without neutral term, with neutral term and trajectory
controllability of (1). An illustration is given to understand the theoretical approach.

2. Preliminaries

Consider the followings. Set of all bounded linear operators S(v).., generated by ¢ forms an analytic semi-group.
p(9) is the resolvent set of ¢ which contains zero. Then V{ e (0, 1], 4”7 is a closed linear operator on D(¢”). The
complete probability space with a normal filtration {J¢},_, is denoted by (A, J¢, P). Z: ] x A — H is a Q-Wiener
process on (A, %, P) with the linear bounded covariance operator £ such that Tr(Q) < oo, which is adapted to normal
filtration {.%} . ;o.1;- The complete orthonormal set {4,},., in H, with sequence of nonnegative real numbers {w,}, .y

such that Qha, = w,h,, w,>0,n=1,2, -~ and (Z(v), w) = z W, }/n(t) we U, t€[0, b] where y,(v) is a
sequence of independent Brownian motions.
Consider the Hilbert spaces L*(A, ¥), L), I, (J, U), where

LA, V) 1= {Z| Lis an % -measurable and square integrable random variables with values in %},
1
= {.Z | % is a Hilbert-Schmidt operator from Q2 (U) to # },

r',(J,U):= {c | ¢ :JxA — ¥ is asquare integrable ., -adapted process with values in “I/}.

Let 1 —p=(1—-p)1—¢)e(0,1).Let C{J, LA, ¥)): = {c:J— L*(A, ¥) | ¢ be an .%-a continuous mapping
and adapted stochastlc process such that sup,_; & |Ju(t)||* < o} and a complete normed linear space with ||u|| cra) ~
(sup,, &1 u(t)||2) Assume C,_, (3, (A, )):= {c eC(y, 2, M)|e ey e (), LA, "1/))}. Let L7 (A, ) is

1
a Banach space equipped with the norm ||u|| (180 = (suptejg”tl*pu(r)uz )2 which can be described as the set of all

Lebesgue integrable .7 -valued random Values in?¥.

Definition 2.1 [2] The Riemann-Liouville fractional integral of order p for § : [0, o) — R shall be expressed as

5(9)

T ey

do, t>0; p>0.

Definition 2.2 [2] Riemann-Liouville’s fractional derivative of order p for § : [0, ) — R shall be expressed as
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1 d" ¢« F(
J‘ (9)

Dy 3(9) = C(n—p)de" 7 0(x—6)°""

do, t>0; n=[p]+1.
Definition 2.3 [2] Caputo derivative of order p for a function § : [0, ) — R is defined as

Cnryy _ 1 v n—p-1lren _
DO‘S(t)—T_p)_[O(t—H) 3"(0)do, v >0, n=[p]+1.

(

Definition 2.4 [4] The Hilfer fractional derivative of order p € [0, 1] and ¢ e (0, 1) with the lower limit O is defined
as

a4

e _ gp(l-e)
D) =170

(1-p)(1-¢)
I §(v).
Note
e Ife=0, then Dé’;o is a Riemann-Liouville fractional derivative:

D) =150 = DL ().

o Ife=1, then Do’i'l is a Caputo fractional derivative:

D)= 1,7 S5 = D ().

Definition 2.5 [5] Wright function M,, is described as,

M )=

———————,¢€(0, 1), teC,
= (n=DIT(1-ne)

and satisfies

J‘wtpMe(t)dt :m, t>0.
0 I'(1+ep)

In addition to the above, we shall construct few more important results, lemmas and properties to support the main
results.

Lemma 2.1 [5, 11] Let the semigroup 7(r) be generated by the infinitesimal generator 4 : 7' — ¥ and there exists
M > 0 such that I7(r)I <M Vr € J. Then

1. T(v), P(r) and S, (r) are bounded linear operators, i.e. Vt>0,u € ¥, p=p + ¢ — pe, we have

M ju]| Mt | Me™ lu|

I 7 ()u (1< I© N FAGIES e and ||, (t)u [|I< o)

2. T(x), P(r) and S, (r) are strongly continuous.
Lemma 2.2 [11] For Vu € 7,y € (0, 1) and 8 e (0, 1], we have

Volume 5 Issue 4]2024| 5499 Contemporary Mathematics



eC,T2~p)lull

9T =T ()Y u, vel, |9PT (ul< ,
L(Ou (Y u, vel, 97T, (Oull T+ B) t

el.

Lemma 2.3 [12] For arbitrary L) -valued stochastic process Y'(¢), t € [1,, T,], satisfying

g(j o), d9)< w, 0<7 <7, <b,

thus

| :Y(ﬂ)dy(ﬂ) II< Tr(Q)j:@@ 1Y) 1}, de,

where
Tr(Q) < .

Definition 2.6 [30] The abstract phase space ¢}, is defined as follows,

G = {K : (=0, 0] = ¥, such that ¥ with J_(;H(s) sup (é”ll K(§)\|2)1/2 df < +o,

0<c<0

where the continuous function H: (—oo, 0] — (0, +) with /= j_o H(r)dt <o and

0 P 1/2
11l = [ HO) swp (£ " d0. ¥ k<4,

Obviously (ﬁH, Il ) is a Banach space.
Definition 2.7 [30] The space containing all continuous 7 -valued stochastic processes {A(t): t € (-, p]} is
denoted by € ((—, v], ¥). Furthermore,

ﬁH, = {M ‘ue (g((_oq p]a 4//)}

and

u

=[x
[4

2 1/2 ,
, + sup (Ellu@)IF) . ueq;.
0e[0,D]
Lemma 2.4 [30] Ifu,=x € Oy, y e g, thenfor v € &, u, € Oy. Furthermore,

(£l ) <

ul‘

1/2
<ol s (suorf) .

where [ = J.(_) H(s)d0 < .
Definition 2.8 [18] The conformable FD of a function §(-) of order p with ¢ > 0 is defined as follows:

a3 F(rpr) =50
dt’ _ﬂILnO P

, 0<p<l.
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For v = 0, the definition becomes,

5O _ . dF)

dv” 0" dt”

Moreover,

I @) = [ ¢ F(0)ds.

Definition 2.9 (Trajectory controllable) [27] The system (1) is T-controllable on [0, T] if for any w € 7, (W(")-
a set of all continuous functions (trajectories) defined on [0, €] such that w(0) = u, and w(%) = u,), and if fractional

derivative D?w exists almost everywhere, then there exists a control y e L*([0, T]) such that the mild solution of (1)
satisfies u(r) = w(t) on [0, T].

Lemma 2.5 (Generalized Gronwall’s inequality) [31] Suppose /(r) and m(r) are non-negative locally integrable
functions on 0 < v < o and s(t) is a non-negative, non-decreasing function on 0 < t < oo with s(t) < C where C is a
constant.

If

m(x) 1) +5(0) [ (c=O) ' m(0)do

for any a > 0, then

m(x) <I(e)+ [ ri%(t —0)* "' m(0)dh, 0 <t < oo
On:l no

Furthermore, if /(t) = 0, then m(xr) =0 V 0 <t < . From the motivation from [5, 27], we shall construct the mild
solution (1) as follows,

Definition 2.10 The .#.-adapted stochastic process u: (-0, b] — ¥ with x € .Z*(A, O4) on (-, 0],
u, € £ (A, ) is the mild solution of (1) is defined as

[4

tf -6

u(v) = Ip(“)(t)g“T( ]K(O) + .rg“T[te -7 ] ¥(6)do
0 e

4

+J‘;ge-lT(te—9°j$(9, u,, I:///(H, 0, up)dp)dB

+_|‘;g”T(tz;6ej</V(6’, u,, jz//Z(a, P, up)dp)d;/(é’), here [ g"'dg= v oo

2

[4

3. Existence and uniqueness of mild solution

Since prior motive is to prove the uniqueness of mild solution of the Hilfer fractional differential system, assume
that all the appropriate functions used in the proposed system satisfies the Lipschitz condition through semigroup theory
and stochastic process as follows.

(C1) The linear operator &4: ¥ — ¥ generates Cy-semigroup 7(t). Thus 3 M > 0 such that I7(v)I < M Vr € J.

(C2) The function £ : J x 0, x ¥ — ¥is continuous for vel.w, W, €, w,, W, € ¥ and there exist
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0,, Q, > 0such that
ENL (v, wi, wy) =L (v, W, W) IP< QL (PO 1w =W, 15, +6 [l w, =0, 1),
ENL (v, w, w,) IP< 0% (1420 1wy 1B, +& (1w, 1)

(C3) The function 4z J x 0y x ¥ — L) is continuous for v € J and for w,, w, € G, w,, W, € ¥ there exist
positive constants O ,, O , such that

ENAN (v, wo wy )= (v, s 0 ) IP Q% (07 1wy = 1, +6 [l wy =0, 1),

2 A _
ENA (t wp wy 1) <O (14570 1w, I, +6 1w, IP)-

(C4) The appropriate functions .#, .4 :1xIxG, =¥ are continuous V(x, 0) e J x I. For all w, Wwe 4, , there
exist positive constants #,, n,, 71, 7i, such that

El A (x, 0, wy— A (x, 0, WP <P w—all;

EN M (x, 0, wy—M(xt, 6, WP <n2e | w— Wiz, ,

El A (x, 0, wIP< i (14 | wli,),
ENl A (x, 0, w)|P<i? (1+ 2wl )

Theorem 3.1 If the suppositions (C1)-(C4), with ¢ > 0 are satisfied, then Y(B,)c B, and

3M2 b22+1 2p R

3M2 b22+172p R .
Fl e )< >

Fo 2T 0>, (1+7i’b )+Tr(Q)

Proof. Define the operator ¥ : G = G be

3

Ip(c_l)ge_lT(ﬂ] x(0), t € (-, 0],

2_02

wu(t)= j g ‘T( ]y(e)dmj g 'T( jx(a, 0, j:///(a, P, up)dp)dﬁ

[3

+j0'g*“T[%_s_}/V(9, u,, j://Z(e, 0, up)dp)d;/(é’), vel,

4

(1-p)(1-¢) . _
N O Ut
x(0) ;rel,

then k¥ € g . Let u(r) = 3(r) + k(r), —o <t <b. Clearly this assumption makes 3, = 0. Then 3(tr) becomes
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() = j‘g“T[%Jy(e)de

0

+J’1921T(t°;92],$(9, 3, + Ky, jj///(é’, P, 5p+/?p)dp)d¢9

+I;ge_nT[t ;92}/(9, 3+ 75, j://Z(e, P, 3p+1?p)dp)d7/(9).

Let G'={3€6; 3, =0} .Forany 34 .

1/2

172
I3l =loll,, + sup (£115@) 1)~ = sup (€150)1)

This exhibits, (6;{’, ||b) is a Banach space. We consider B, = {5 eqr: ||3||i < c}; ¢>0,such that B, c g/
uniformly bounded, V¢ which leads us to make an assumption with the help of Lemma 2.4,

— 2 ’ ’
b T, <C where ¢' > 0.

Construct Y: G — @ as follows,
0, v e (-, 0)
[ g“T(t ;‘9 j »(6)do

T[T oo (05,5 oo

Yi(v) =

0 ~

+-[(:g°1T[t‘ ;ge}/y(a, 39 + Ky, jo A (0, p, 3p+1?p)dp)d;/(6’), vel

Step 1
To prove Y has a fixed point, first it is necessary to show that T maps into itself. By the method of contradiction,

we consider that for any ¢ > 03t'?3°(v) € B, and Y(t""gc ) B, (ie), (5’“t1'p (Yg" )(t)”2 >cforred.

The suppositions (C1)-(C4) with Lemma 2.3 produces

c<& e (15 IF

s{g

+&

2

2
+&

) g“‘T(t ;” ]yw)de

) QE_IT(K_TQQJX(@, Bk [, #(0. 0.5, +’?p)dp)d9
2]
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tl—pJ'(:ge—lT[tezﬁej(/V(e, 3p Ky I://Z(e, o) 3;+Ep)dp)dy(0)




where

z_ee

S, <38 t" “j e 'T( jy(@)d&llz

3M? o 5 e
<—— I gehg )| do
= [ &1 v@)l

M2 eI
< -

S—=—= Iyl
I'“(e) 2e-1

3M2 b2e+1 2p
r()z IIyII,tE(O b].

ee

wn
»

o [ etn| T . — 0 e —
<36 [ IT( : jf(e,agw, [ (0. p. 5, +%,)dp)do

3M? 0 1% e A . 0 . —
£r2—®tz(l " { 8" ‘>Q;(1+||39+Kg P +& 0 [ (0. p, 3P+Kp)dp||2)d6’

3M2 b2e—1+2—2p n
< rz(e)?Qz (1+C -{-I’l1 b2 (1+C ))

2 2e+1-2p N
;A/([)bz Q‘j(c—i-nlzb2 ) where ¢ =1+c¢'.
e) 2e—1

92

72}
w

o [ e T . 0 - .
<360 g 'T[ : ]W(e, ot Rs [14(0.p. 5+, )dp)ar@)IF

3M? e
s "Tr()[ g™ 1>Q/(1+||ag+f<g P46 [ (0, p, 5, +R, )dplI )
2 2e-1+2-2p n
<3Tr(9 - O* (l++7p* (1+¢'
r( )Fz(e) 2e—1 Q/V( ¢ thn, ( c))
Q 2 b22+1 2p n )
<3T +ii,b
r( ) ( ) 26— Q/V (C nz )

Substituting the above values in the original equation, it yields

3M2 b2z+l 2p N

3M2 b2e+l 2p 3M2 b2271+272p N
b+ WO G (ese).

r(e) e @ 21 0% (c+iibe) + Tr(Q) =5 —
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Divide the above inequality by ¢ and as ¢ — o, we obtain

3M2 b22+1 2p n

3M2 b22+l 2p n . B
Q$(1+nfb2)+Tr(Q)F2() o Qﬂ (1+756%),

l“2 (e) 2e-1
which contradicts the assumption. So, there must be some ¢ > 0, such that Y (B,) = B...
Step 2 To prove the map Y is a contraction map, we shall assume that 3, 3 € B, and the expectation set be defined

as,

&N T3) = Yi() I

B . . te_€¢ _ 6 —
2{*“ "6l g IT[ ¢ J[’g(g’ S0+ %, [, (05 p, 5p+Kp)dp)

¢ (v—e
o[£

x[w(a, 3,5, j://Z(e, 0, 5p+/?p)dp)—JV(¢9, 3,5, j://Z(e, p, 3p+/?p)dp)}d}/(9)

2
i

A~ —_— 0 A p—
_,,5,”(6’, 3y +K,, IO ///((9, PO, 3P+Kp)dp)d(9}

2}
DL PR
T (e) 2e-1

0% (35 =3 I, +mb? 113, -3, 1)

2 2e-1+2-2p

T

)

Q24/ ("59 - 39 "; + n2b2 ”50 - 30

2 b2e+l 2p

() 2e—1

r 2M? b22—1+2—2p N
——— 0, (1+nb” )+ Tr D5 Qi,(l-irnsz)}"ag =3l

| T2(e) 2e-1

IA

2 b2e+1 2p

I*(e) 2e—1

2M2 p2eHi-2p QJ (1+n12b2)+T (Q) 2M Qi,(l-i-nzzbz ):|

F (e) 2e—

IA

X(lz supé | 3O =3I + 113 112, +113 Il;;)
el

2M2 b22+1 2p 9 s 2M2 b2e+1 2p - X .
{Fz(e) - Q7 (1+nb )ﬁLTr(Q)r © Zoo QA (1+mb7) s;i?cfllz(@)—é(e)”

<c sgupé’ 130 =3O) I,
el

here

2M b2e+l 2p 2M b2e+l—2p
=0 1+n'b* )+ Tr(Q 1+ n’b?
{r 2(e) 2e—1 ey 2 (1) T '@ 201 0 (1 )}
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¢* €[0, 1). Since c” =0 is a trivial case, that is & || 3(t)—3(t)|’=0 is nothing to do with the uniqueness of mild
solution. Therefore ¢’ (0, 1). From the above result, taking supremum over t, || Y3(t) - Y3(v) [P=c¢" || 3(t) - 3(v) I* .

concluding that Y is a contraction map having unique fixed point 3(.) € B,, which is the mild solution of (1). Hence
proved. i

4. Mild solution of conformable Hilfer fractional neutral stochastic integro-differential
equation

Neutral fractional equations with dependent delay, infinite delay, or without delay assist partial differential systems

in many fields like physics, Biological sciences and control theory, as the importance of neutral differential equations

in practical mathematics has grown over the years. Consider the neutral stochastic integro-differential equation infinite-
delay of the form:

27 [u(x)—¥(x, u,)] =g[u(t)]+J’(t)+-$(ts U, _l.:;///(t» 0, ”9)“79)

+JV(‘C, u,, I;.//Z(t, 6, ug)dg) dg(t)
t

_g-p)i- e)u(O) K(t) € 32( ) t e (-0, 0]. 4)

Consider the following hypothesis:
(C5) ¢ : [0, b] x 0y — Vis continuous such that

éa”gﬁ(e(t> W)_E(ta 1:‘\}))HZSQEOCZ(]?‘J) || W_ﬁ/|él3 w, weﬁﬂa tEﬁH)
SNt WP (1+ 7wl ). we G, t G,

Definition 4.1 A function u € 0, is a J#-adapted stochastic process which is mild solution of (4) is defined by u :
(0, b] = Yand k € L(A, O) on (—w, 0], u, € £ (A, ¥) and it satisfies the following

u(v)= e Vg™ lT[ j[ x(0)—£(0, K)]+{2(t u) IT%“T[te_ee]E(a, u(0))do
[4 0 ¢

e_ee

+jg° IT( ejy(@)d¢9+‘[g° 'T[ ].,2”(9, u,, jz,///(e, D, up)dp)dé’

+I;gc_1T(re —9e}/y(9, U, jj//Z(e, D, up)dp)d;/(é’), (5)

4

Note The linear operator ¢ generates {J(t)},.,on 7.
Theorem 4.1 With the suppositions (C1)-(C5), there exists ¢ > 0 such that Y(Bc ) cB, and
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~ 6e’C: I (1+ 2ef+2(1-p) 2 p2e+2(-p)-1
6t2('_p)M§Qe2 " 127ﬂ (I+B)b ;+ 6]\;[ b Qz (l+ﬁ12b2)
[F(1+ef)  2ef-1 e (2e-1)
6M2 b2e71+2(17p) R
+ Tr(Q 1+7,b%) < 6
I (e) ) (2e—1) 0 ( <1 (6)

Proof. Let us define T': g — & as

k(t), t e (-, 0),

I*’“”Q”T(—te_geJ[ (0) =0, K] +E(x, u,)+[ ¥'g “T( eej?(ﬁ, u,)d6
¢ 4

Tu(t) = e ‘T[ v -6 jy(@)d6’+j . ‘T[ 99]3(9’ u,, J':,///(H, Jea up)dp)de

4

4

+j;g”T[tc _sz/(e, uy. |46, p. up)dp)d}/(é’), >0,

Consider k¥ as

_ . |K()ve(-w, 0]
FO=1 0y € (0, b]

We know that ke &y, then k € & . Set u(t) = 3(t)+x(r), —o<r<b. Clearly 3, =0 otherwise u wont be satisfied.

2_08

3(t)=—lv(°‘”g°'lT(t J{’(O, K)+E(x, sr+ )+ | ;g‘-lT[ﬂ]e(e, 30)ds
¢

92

]
jy(e)dmj o IT( jz(a, 305y [ (0. p. 5, +Ep)dp)d0

+f ;9"1T ( 4

Let G'={3€4y; 3,=0€G,}.
Forany 3;eq,

;eej,/y(a, ;,g+z?9jz//2(9, 0, 3p+/?p)dp)dy(¢9).

1/2 1/2
ol =laol, + sup (1300 ) = sup (£]s@ )

Finally, (@; - b) is a complete normed linear space. Consider B, = {3 e z < c}; ¢ >0, such that B, c 4/

is uniformly bounded, V¢ which leads to with the help of Lemma 2.4,

+i. |2 <c¢’ where ¢' > 0.
3: v gy
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Let us define £: G — G/ as

0; vt € (-, 0]

_Ip(efl) (’C)geilT [ v

(4

-6
¢

—0 J[e(o, ]+ e(x, 3, +E,)+j;£¢°“T[
30 =1+ ”T( Jy(@)d¢9+j g IT( _Hj

F ot te_ge
dp)d0+jog T( - j

dp)d;/(@); te(0, b].

j{e(a, 3, +K,)d0

3(0 39+K9,I /// 0, p,3,+k

P

)
XJV(H, 3, +K,), IO (0 P 3, +K‘p)

Step1 £(B,)cB..
By the method of contradiction, we may assume that for any ¢ > 0 there exists t'*3°(-) € B, and ¢ (tl”’ 5”) ¢ B., (i.e),

éaHtlfp (5(30 )) (t)”2 > ¢ for some t € (0, b].

< t2(]_

g +6t2“ ‘”é’"? t, 3, +K, )

g ]T[ j[E(O ©)]

2
e

+6r70 g j;gg*-lr[t 0 je(a, 30 +15,)d0
4

n 6t2("")£’HJ.;g“_'T j y(e)de

2

0

6t Mg J.rgHT[te ;Hejiﬂ(@, 30 T Ky J‘:%(Q, P 3, +Ep)dp)d€

2

- S b N _ 0 - _
s T(T}/V(H, 3045y [ (0, p. 5p+Kp)dp)d}/(a9) ,

S8 S+ S8, + 85+ S,

where
S, =6’ P& “T[ j[E(O K)]
sl Tl o]
6M’ M}
ST ooy (1l where(j7] =)
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S, =6 P& e(x, 3, +5,) ’

<6
() (2e-1)

6r2<1p’@@H [ ;ﬁ”T(t =9 j w(0)do| |
4

[ —
(2e—=DT?(e)

M?
< 6p20-»

<6 A
@) (2¢-1)

<6 M0

2 %ﬂ[ j (t—0)"

@' ﬁT[

< (echﬂﬁ(nﬂ) p2#+20-)

C(+ef)  2ef—1 ]Q (I+).

2

oM’
Fz( )

(20-P)1-0)

o Jigae,

6M*?

p20-p2e-l

bl

= 6#“*?’5“]0?9“1.,%(9, 30+, [, #(0 p. 3, +Ep)dp)ds 2

1“2()

2o M M? e
r’ (e) (2e-1)

2 2e+2(1-p)-1
T (I=p)-1

M? prml

- T I _ 0 ~ _
62 p>gHIOE IT( ; }/V(é’, 30t K,, Io///(ﬁ, 2, 3p+Kp)dp)d}/(S) ,

M2 b2¢*1+2(17p) n

Tr(Q) 0’ (1+c +ib’ (l+cl))

IR NO (2e-1)
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2

S, =6r2<1p’£Hjo"gg“T[t —0 Je(a, 30)d0|
¢

2
‘||s¢ﬁe (6, 3 ||d€J

. 13(9 34y [L (0. p. 3, +Ep)dp)d9 g

2
& jox(e, 30+ R [ (0, p, 5,4, )dp)do)] .

0% (1+||59 i [, + 0 (145, + [

0, (1+¢, +ib (1+¢))).

54K ) <60 PMO; (14¢,).

2

Contemporary Mathematics



Therefore,

p M? M;
T (p(1-e)

O; (1], )+ 66 M07 (1+6,)

+
(2e—DI(e)

[ ECLT By
C(1+ef)  2ef-1

2
]Q"ez (1 T Cl) Lbﬂlf}l)ﬂe—l ||y||2

2 p2en2(-p)-l 2 2e-1+2(1-p)
+6]‘24_b—Q;(1+c1 +6 (146,))+6 M ri9)®
I'“(e) (2e-1) I'"(e) (2e-1)

xQ°, (1 +¢ +i,b” (1+¢, ))

Dividing by ¢ throughout and let ¢ — oo we obtain,

. 202 12 2ef+2(1-p) \
1361)2“'P>M§Q;+6[e G, L 0+A)b J :

C(1+ef)  2¢8-1

Mz b2e+2(1-p)-1 . e M2 b2c—1+2(1—p) Ay 212
6 — 10, (1 b 6 T 1 b~ ),
(Ww(wmjﬁ(”‘%'ﬁ@r@)w4)gA+“)

which contradicts the assumption. So, there must be some ¢ > 0, such that 4 (BC ) cB,.
Step 2 To claim that the map ¢ is a contraction map, for 3, 3 € B,, the norm of expectation set be defined as,

&l (-3

-6
e

=00 e, 3, +,)-E(x, 3+, )]+j;£¢g”T( ][9(9, 30+K,)—#(0,3,+K,)]do

+f;gn-1T(Le‘92j[g(a, sk [ (0. p3, +/?p)dp)—.$(c9, Sk, [L(0. 0.3, +fp)dp)}d9

S st s

2

~ —_— 9 ~ —
_JV(H, 5, +5,, jo (0, p, ;,p+;<p)dpﬂdy(9)

=4[S, +8S, +S; +S,].

2

S, = ¢ e(v, 3, +&,) (x5, +5 ) <6 VMO

3.~ 3,
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2

-6
¢

Sz _ tZ(lp)éaH-[;%HT( J(E(a’ 30 +Eg)—é(9, 33 +I?g ))d@

- ¢’CL, T (14 B) p#20») O3 ”2
ST e 2ep—1 |t 10T
M p20-pr2e]
(2e=DI(e)

2

Mltz(l—p)
“Fo )

s G S

0

0% (1+776” )3, — 34

M2t
(2e—DI?(e)

2

S, <Tr(Q)

0’ (1+235% )3, =3
Substituting above values, we get

2

Y ’C? F2 l 2¢B+2(1-p)
£[tso-se[ <40 uig; ||t—3t2+4[e G221+ p) 00

C(+ef)  2ef-1 ]Qe 0 =30

2

M2p20P2el R

4(m} 0., (1 +nb? )"39 —3
M2l
(2e=DI'*(e)

2

>

+4Tr(Q)( Jny (14736730 3

which implies

QZCZ F2 1+ 2¢3+2(1-p) 21.2(1-p)+2e-1
<[4 MO; + 4| —F d+A)b | e —— ;
C(l+ef)  2e8-1 (2e—=DI(e)

jQ;(anbz)

2

)

Mz b2(17p)+2271
(2e=DI(e)

+4Tr<n){ ]Q; (1+nb° )}(zz sup&'[0) =3O +[soll, +[30

QZCZ F2 1+ 2¢f3+2(1-p) 21.2(1-p)+2e-1
£12{4b2“")M§Q§+4{ 0+ H) b Q; +4 M T

I’(+eB) 2ef-1 (2e=DI(e)

M2 p20-pe2e

XQ;/ (l-l-l’l1 b )+4TT(Q)[m

JQ‘; (1+mn3b? )} x (sgu%)@@" 3(0)— 3(9)||2j.

Substitute

22 2 Bl
¢ =0 [4b2(1p)M§Q§ +4{e C U (1+ B) >+ p)} :

C(+ef) 2¢f-1
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M 2p20-p)+2e] R - M P22l , -
+4£ (2e-Dr'(@) jQz (et )+4Tr(g)[ (2~ (e) JQ‘” (1ot )}’

which becomes
&l (ésw-Gw)| =< (sgé” ls@) =30 )

. . P .. . . . P PR A2
Since v € (0, b], the function ¢ attains its maximum at vt = b when taking supremum over t (i.¢) "é’ 3—¢ 3"b = ||3 - 3"b .
By concluding now that ¢ is a contraction map, there exist a fixed point of the mild solution of the system. o

5. Trajectory controllability

Trajectory curves are the curves which carries solution curve from initial state to final state. They accompany
and steer the curves along the prescribed path (which might be more efficient in many categories like, cost reduction,
accurate path or accurate direction). In this section, we concerntrate on proving the Conformable Hilfer fractional
neutral stochastic integro-differential system is T-controllable using Gronwall’s inequality.

Theorem 5.1 The system (4) is T-controllable if the suppositions (C1)-(C5) are fulfilled.

Proof. Let w(r) be the trajectory and y(t) be the control function on (0, b] as defined by

(&) = D2 [w(e) e, w, )}—%[w(t)]—.z(t, w. (e o, wg)dH)

vz dy(x)
_JV(t, w [l (x. 0. wg)dé’) s

where ¢ € [0, 1] and p € (0, 1). The system (4) becomes
D/ [u(e) - (v, u,) ]

:{f[u(t)]+l:@p'e[w(t)—3(t, w, )]—g[w(t)]—.,sf(c, w,, jo‘//z(r, 0, wg)dé’)

e - dy(t ¢
_Jy(t, w [ (v 0. wg)dﬁ)g—i)]i-f(t, u. [ (. 0. ug)dﬁ)

+</V(t, u,, I;//Z(t’ o, ug)dg)d};(t).
t

Let Y(v) = u(r)—w(tr), we obtain

Dy [Y(t) - [?(t» u.)=t(r, w, )ﬂ

=%[Y(r)]+.$(t, u, [t (v, 0, ue)dﬁ)—f(t, w. [ (x. 6. wg)de)
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+[w(r, o [ (5. 0. ug)d0) =N (e w, [ A (v, 0, )d@)]dg(:) & (0, bl,

here Y (v) =0 for t e (—o0, 0]. For ¢ e (0, b], the expectation as follows,

S| < {45"&(@ 5+R)-8(, 3 “T( J[F (0, 30+ ,)

0.5k ndeuuwufga‘T(#}P(a s [0, 0.5,45, )0

(05,5 [0, 3,5, o) Jao] e r [ oo,

M2 5 2 ezclz—ﬂrz (1 + ﬁ) bzzmz(lip) 2(efp-1) _
e (e) ool “{ C(l+eff)  2¢f-1 ]Q'f I (5"3 sl )

s o _ - P - -
L///(s, P, 3p+Kp)dp)—JV(9, 39+K§I0 ///(9, P, 3p+Kp)dp)]d7(9)

2
4FA24—(2)Q;I0 g (||(39 +7,) = (3 + )] +£“j09///(s, p. 3, +%,)dp
_J' (0. p. 3, +K, dp“ jd¢9+4 ()QA Tr(Q)J' g« 1)(" 30+ &) (§9+I?g)||;

2
jdﬁ

+gHj://Z(e, p. 3, 4%, )dp=[ (6. p.5,+%,)dp

> . , ezcliﬂrz (1+ B) p2eF+20-») 2ep
N 4rz(e) i +4{ C*(+ef)  2¢f-1 jQ’f j sl 4o
Mz 2(e-1 2 2
+4F2(e) [[e )(Qj(l-i-nlb )+0% Tr(Q)(1+nlb ))@@||r(9)|| do

Since f is arbitrary and f e (0, 1), by taking maximum value, the above inequality is identical to Gronwall’s
inequality.

407, (1+n/0*)+40%, Tr(Q)(1+nb” ) +40; (

M>
(1—4F2(@QEJ

ezclaﬂrz (1 + ﬂ)b22ﬂ+2(]—p) J

é‘)"Y(t)"z - 2ef-DI(1+ep)
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< s r@f ae.

which yields éa"Y(t)":O by generalised Gronwall’s inequality, that is u, = w,. Thus system (4) is Trajectory
Controllable on [0, b], (ie). the trajectory curves controls the solution curve along the prescribed path. o

6. Illustration

Hilfer fractional neutral stochastic integro-differential system is given as follows,

2

Dé:%[w(t, 8)— j_‘;k(r, S)w(x, 8)d6]= O e, 8)+y(x, 5)

05"
+ z(r, [© Z@-vws e, ['[' 2.5, sy, a)dgde)

+ JV(‘C, j C L(O-v)w(s, 8)d6, j ' j " 20,5, e-Owe, S)dgde)@, t [0, b]
—o0 0 —0 t
w(t, 0)=w(t, 7)=0, t>0,

1
T4w(0, 8) = w, = k(t, d), 5€el0, 7], —o<t<0, (7)

here b < 7, x (t, 8) e H=L*([0, nt]) which is the Hilbert space.

Let Y=U = H and y(t) is 1-D Brownian motion on the filtered probability space (A, 22, P). Let the function x(t,
d) € (-0, 0) x [0, ] be continuous and .%}, .%, &, be continuous on [0, b] and measurable in H =L,([0, t]) while the
memory functions or history functions .4, .%;: [0, b] x [0, 7] x (-0, 0) — [0, 7] satisfies Lipschitz condition.

Assumptions that helps to write the system (7) as (1).

Let%: D(9) c Y — Y be defined as %w = -w"” with D(9) = {w € Y; w, w' are absolutely continuous, w"” € Y, w(0)
= w(m) = 0} and it produces self-adjoint, compact, analytic semigroup S(t).

Therefore properties (C1)-(C4) satisfied.

%w = -w" which is a Strum-Liovullie boundary value problem, therefore ¢ acts as a generator of eigenfunctions.
So the Eigenvalues of ¢ are n° where n e N with the eigen functions w,(8) = B, sin(nd), when normalising it, w,(8) =

f2 . . . . oo
— sin(no) which brings some properties with it as follows:
Vs

«Forany ve D(9), 4 =X, n’ <v, wn>wn.
! 1
« The operator @2y is defined by ¥2v=3" n(v, wn>wn on

D(g;] = {v(~) such that in (v, wn>wn on H}

n=l1

H(s)=e",5<0,= [ = I f H(s)ds = % The abstract phase space &}, provided with

"K"q, = J.L H(s) iugo(H”K((t)"z )1/2 ds. )

Thus, (@;, || " ) is a complete normed linear space.

For neutral term k(t, 8) let us assume the followings

* The function k is Lebesgue square integrable and bounded.

« The function %k(t, 8) is measurable such that k(t, 0) = k(r, ©) = 0 and bounded by M, where M, is lebesgue square
integrable.
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Define &: [0, 5]  LX([0, n]) — LX([0, ]) by ¥(t, w) = #(w) where #(w)(3) = [ k(x, d)w(r)dr.

1 1
Obviously 7/ is a bounded linear operator and || g571/||25 M} since ¥ € D[gzj'

Therefore by Riez Representation theorem,

(0w w,) = [, ) UO K(t, 5)W(t)dt:| 5
- \/% sin(nd) [ [k, 5)w(t)dt:| s

= <”i{(w), %\/% cos(n5)>

:l\/z<7{(w, cos(n5)>
n\rzw

Obtained by simply taking partial derivative by without loss of generality since the norm is preserved according
to the Riez Representation theorem, here %(w) = I:%k(t, Sw(r)dr and || % < M; therefore (C5) is fulfilled.

Furthermore, the control y: ¢, ([0, z]) = % wherey € L’ (@([0, 72'])) and v — y(t) is measurable, continuous and do
not vanish on (0, b].

Consider
%:{yeU:"y”Sb where beL2(5, %+)}

For any trajectory w which is continuously differentiable and meets with initial data of w, there exists a control y
such that ¢ =—w" and w(0) = w(xr) = 0. Therefore the system (7) is T-controllable on (0, b] by theorem (5.1).

7. Conclusion

This manuscript has addressed the mild solution and trajectory controllability of conformable Hilfer fractional
neutral stochastic integro-differential equation with infinite delay by assuming Lipschitz and growth conditions and
using Banach contraction mapping theorem and Gronwall inequality. An example was given to support the theoretical
approach.

Discussing the same system with impulse and Rosenblatt process will be our future work.
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