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Abstract: For a given polynomial G we study the sums φm(n) := ∑′k m and φG(n) = ∑′G(k) where m ≥ 0 is a fixed integer 
and ∑′ runs through all integers k with 1 ≤ k ≤ n and gcd(k, n) = 1. Although, for m ≥ 1 the function φm is not multiplicative, 
analogue to the Euler function, we obtain expressions for φm(n) and φG(n). Also, we estimate the averages ∑ n ≤ xφm(n) and 
∑ n ≤ xφG(n), the alternative averages ∑ n ≤ x(−1)n−1φm(n) and ∑ n ≤ x(−1)n−1φG(n).
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1. Introduction
The Euler function φ(n) is defined as the number of positive integers k with k ≤ n and (k, n) = 1, where (k, n) denotes 

the greatest common divisor of the integers k and n. For a given integer m ≥ 0 let
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In 2006, Apostol [1] obtained a formula for φm(n) (relation (8) on the page 278 of [1], where the inner sum should 
corrected as product). In this note we provide a classical study of φm(n) as an arithmetic function in n, more precisely 
focusing on its asymptotic behaviour and its average order. To keep completeness of our note, first we reprove Apostol’s 
result in the following neat form.

Theorem 1.1 Let m ≥ 0 be fixed integer. Then for n ≥ 1 we have
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where for 0 ≤ j  ≤ m,
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with Bj denoting the j th Bernoulli number, and for any integer j ≥ 0 the arithmetic function j is defined by
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For any integer n ≥ 1 let δ(n) =[ 1
n ]. We will use this expression for the arithmetic function δ throughout the paper. 

Since 0(n) = ( )n
n

ϕ  and 1(n) = δ(n), we have φ0(n) = φ(n) and φ1(n) = 1
2 nφ(n) + 1

2 nδ(n). Moreover,
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Remark 1.2 In the above expressions the term δ(n) will drop very soon for n > 1. Also, for m ≥ 2 we have
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Moreover, B2 j−1 = 0 for j ≥ 2. Thus, β2 j−1 = 0, and
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Proposition 1.3 Let m ≥ 0 be fixed integer. As n → ∞ we have
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where the constant of O-term doesn’t exceed ∑ m
j = 0 | β j |.

While the function φ0, which coincides with the Euler function φ is known to be multiplicative, we deduce the 
following result examining the multiplicative property of the function φm for a given integer m ≥ 1.

Corollary 1.4 Let m ≥ 1 be fixed integer. The function φm(n) is not multiplicative.
The relation (4) is the key to study average order of the arithmetic function φm(n). Because of the deep connection to 

the Euler function, we expect a result similar to
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which holds as x → ∞, with

2 4
3 3( ) (log ) (log log ) ,w x x x=

providing the best error term known to date, due to Walfisz [2]. We will use this expression for w (x) throughout the paper. 
Indeed, the following generalizations is an immediate corollary of (4) and (5).

Theorem 1.5 Let m ≥ 0 be fixed integer. Then, as x → ∞,
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In 2017, Tóth [3] developed a method to obtain asymptotic expansion for alternating sums of certain arithmetical 
functions, including ∑ n ≤ x(−1)n−1φ(n), for which he proved that
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In this paper, we use his result to prove the following.
Theorem 1.6 Let m ≥ 0 be fixed integer. Then, as x → ∞,
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The following corollary asserts that the sum of the values of φm(n) over odd arguments is approximately twice the sum 
of the values of φm(n) over even arguments.

Corollary 1.7 Let m ≥ 0 be fixed integer. Then, as x → ∞,
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Finally, as a generalization, for a given polynomial G(x) = am xm + am−1xm−1 + ··· + a1x + a0 with am ≠ 0 we define
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Corollary 1.8 We have φG(n) = amφm(n) + am−1φm−1(n) + ··· + a1φ1(n) + a0φ0(n), and as n → ∞,
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2. Proofs
To prove Theorem 2.1, and then other average results, we follow Apostol [1] to obtain the following more general and 

key result.
Lemma 2.1 Assume that f is an arbitrary arithmetic function. Then for n ≥ 1,
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Proof. The result is valid for n = 1. We assume that n > 1, for which we have δ(n) = 0.
Hence
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By taking k = dq, we get
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Now, we note that if q = n
d , then  f(dq) =  f(n), and since n > 1, we imply that
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Thus, we obtain (9), and the proof is completed.
Proof of Theorem 1.1. The classical identity

1

1 0
,

N m
m m j

j
q j

q Nβ + −

= =

=∑ ∑                                                                                                                                              (10)

which is known in literature holds for integers m ≥ 0 and N ≥ 1. By using the relations (10) and (9) we get
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Changing the order of sums gives (1).
Proof of Proposition 1.3. Let m ≥ 2. We write
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where as usual ω(n) denotes the number of distinct prime divisors of n, and κ(n) = ∏ p |n p denotes the square-free kernel of n. 
Thus, for j ≥ 2 we have | j(n)| ≤ n j−1, and
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Note that for each integer m ≥ 1 we have β0 = 1
1m+  and β1 = 1

2 . Hence, for any integer m ≥ 0 we obtain
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This completes the proof.
Proof of Corollary 1.4. For each odd prime p the relation (4) gives
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Since m ≥ 1 is fixed integer and φm(2) = 1, thus φm(2p) > φm(2)φm( p) for prime p sufficiently large.
Proof of Theorem 1.5. By using the expansion (5) and Abel summation [4], for each m ≥ 0 we obtain
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Considering (4) concludes the proof.
Proof of Theorem 1.6. By using the expansion (7) and Abel summation, for each m ≥ 0 we obtain
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Considering (4) concludes the proof.
Remark 2.2 We take a deep look at the error term in (6) and the missing role of the function µ in its estimating. Since  

φ0(n) = φ(n) and φ1(n) = 1
2 nφ(n) + 1

2 nδ(n), the approximation (6) holds for m = 0 and m = 1 due to (11). Let m ≥ 2 and  x ≥ 1. 
The relation (3) gives
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The first sum is approximated due to (11). Clearly, ∑ n ≤ x n mδ(n) = 1. For the third double sum, for which j ≥ 2, we 
write
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Note that 2 ≤  j ≤ m, or 1 ≤  m + 1− j ≤  m−1. The truncated version of (10) gives
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We recall the approximation 
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, where c > 0 is constant, and the error term is best known to 

date, due to Walfisz [2]. This expansion and Abel summation give
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