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Abstract: This study explores an interconnected M/M/c/N queueing model that incorporates reverse balking, reneging,
a control technique, and adjustable arrival rates. In reverse balking, the likelihood of a visitor deciding to join or leave a
queue is influenced by the current system size, with a higher probability of joining as the system size grows. Conversely,
long wait times can lead to customer impatience, causing them to leave the queue before receiving service (reneging).
Service begins with the arrival of the initial customer (TL) and continues until the system is empty. We are developing a
multi-server queueing systemwith adjustable arrival rates that includes reverse balking and considers impatient customers.
For this model, we determine the steady-state condition and performance metrics such as average waiting time and average
system size.
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1. Introduction
Queueing concepts have been successfully applied to the formulation and study of numerous systems, including

congestion, service, and communications networks. There have been several modifications made to the fundamental
queueing models, and new ideas have emerged. The person being served is not usually considered as being in a queue.
Queueing theory explains how the queue works and its properties. Queueing problems have become quite important in
the decision-making process in the current population growth and globalization of worldwide trade.

Nowadays business environment is extremely difficult because of unpredictability. Unpredictability can be found in
numerous aspects of a functioning organization, such as a volatile economy, unpredictable natural disasters and customer
behavior. Therefore, business enterprises have extremely restricted possibilities for error. Each business seeks effective
risk management and accurate future forecasting. One of the most ambiguous aspects of the corporate environment is
customers behavior. Consumer dissatisfaction in a given company rises as a result of greater levels of expectations. As a
result, customer dissatisfaction is a major challenge for business.

The current era of progress and liberalization has made it challenging to run a business. Clients are now more
selective in their choices. The rate at which customers switch brands has risen. Increased expectations lead to heightened
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frustration with particular companies. In the business realm, customer dissatisfaction has become a significant concern.
Various service systems facing impatient clients can utilize queueing theory’s multiple models. Numerous studies explore
the concept of balking. These models indicate that the size of the system and the length of wait times influence the rate of
balking. As the system size grows, instances of balking increase. However, in investment scenarios, a larger number of
clients at a particular firm can draw in potential investors. Therefore, in sectors like customer investment, the likelihood
of balking decreases with a larger system size, and conversely, this phenomenon is referred to as reverse balking.

Reneging and balking are usual problems in queueing systems. Customers may choose not to join the queue if there is
a lengthy line in the system or no waiting space, or they may leave the queue after joining it because they are impatient and
cannot wait to be served. Any business that has impatient customers suffers. It results in the loss of potential clients. The
control policy queue was investigated by many researchers. The term “control policy”, refers to the concept of a server
remaining inactive until TL consumers have joined the queue. The service starts upon the arrival of the Nth customer and
continues until the system is empty.

The objectives and scope of the research work are, the article investigates a multi-server queueing model with limited
capacity and adjustable arrival rates. It aims to understand the behaviors of customers where customers are more likely
to join a queue when it is longer, contrary to typical balking behavior (reverse-balking), those who leave the queue after
joining (reneging), and the use of additional servers to manage the system efficiently. The study examines the steady-
state solution and characteristics of the queueing model. It includes numerical examples to demonstrate the impact of
adjustable arrival rates on system performance and customer behavior. The findings are intended to help optimize queue
management in various practical scenarios like investment firms and share markets.

The real world validation (example) of the queueing model: At Prime Investments, a busy firm with three financial
advisors (servers), clients encountered a distinctive queueing system. The arrival rate (follows Poisson distribution) of
clients was adjusted dynamically, increasing when the queue was short and decreasing as it grew longer. Many clients
joined longer queues, viewing them as an indicator of the firm’s success (reverse balking). However, some clients would
leave if the wait became too lengthy or some personal issues (reneging). To handle this, the firm adopted Threshold-policy,
where advisors would start consultations (service) onlywhen aminimumnumber of clients in the queue and service follows
exponential-distribution, were in the queue, ensuring efficient use of their time and maintaining high service standards.

This paper develops a manageable M/M/c queue model with limited capacity, incorporating impatient consumers,
reverse balking, and a control policy. An equilibrium solution is produced. The remaining part is organized as in the
following sections: the literature review is given in section 2, a list of the presumptions used to create the model is provided
in section 3, steady-state solution is created according to the model in section 4. Section 5 outlines the characteristics of
the model; performance measures are given in section 6, particular cases are listed in section 7; numerical illustrations are
calculated in section 8, conclusions are discussed in section 9.

2. Literature review
Queuing system with balking and client reneging was studied by [1, 2]. Barrer [3] discusses a queueing problem

marked by customers’ impatience and personnel apathy. Barrer [4] looks at a wait problem involving impatient customers
who receive organised service. Ancker et al. [5] conduct a stationary investigation of a Markovian queue with a finite
capacity with balking and reneging. The data used to produce the study results is generated using a single server queueing
system with balking. A single server non-Markovian queueing model including interruptions, reneging, and balking was
studied by [6]. In [7] studied the stationary workload of the G/M/1 queue with impatient customers provides valuable
insights into customer impatience. However, it does not consider the impact of controllable arrival rates or the reverse
balking. Manoharan and Jose [8] raise the notion of balking in the context of M/M/1 queueing. M/M/1 queue having
state-dependent reneging and finite buffers Check out Balking [9]. They obtain data from a mathematical model that
remains steady. In this article [10], the authors look at input, disasters, recovery, and dissatisfied users in addition to a
single server queueing problem. Networks for communication employ this concept. Kumar [11] examines a multi-server
queuing strategy where users are reneging and balking. A matrix approach is applied to generate the model’s transient

Volume 5 Issue 4|2024| 5483 Contemporary Mathematics



form. An economic analysis of the model is developed. In [12], a cost model was developed for a single-server, limited-
capacity Markovian feedback queue with retention. They maximize the cost of service and system performance. Kumar
and Sharma [13] take into account the Markovian queue with numerous channels, balking, and keeping impatient clients
as feedback from customers. In [14], an M/M/1/N queue with reverse balking is considered. They compute the stable
probability of system size and develop formulas for basic performance measurements. Many different presumptions are
frequently made, like the one that customer service and input processes are separate. However there are a lot of unique
situations where the arrival and service protocols are connected; therefore, this needs to be considered. A model that links
arrivals with services is called an “interrelated queue”. The interconnected standard queue with controllable arrival rates
has received much attention in the literature. A controlled arrivals rateM/M/1 interdependent queuing model is described
in [15]. The associated limited area M/M/1 queue with controlled arrival rates, M/M/c with controllable arriving rates,
and M/M/c with controllable arrival rates, as well as impatient clients and balking consumers, were explored in [16–
18]. Nisha and Thiagarajan [19, 20] covered impatient clients, retrial queueing methods with controllable arrival rates
on one server, and retrial queueing structures with similar features on various servers. In [21] looked towards a Poisson
queue for an N-policy with an average setup time. Through the use of more than one vacation plus a matrix geometric
approach, Ayyappan and Subramanian [22] examined the M/M/1 retrial orbit queuing system with N-Policy, focusing
on non-preemptive prioritized service. The Poisson entry waiting system beneath control-operating policy and with a
starting time was studied by [23]. Balaji and Saradha [24] discussed an M/M/1/K queuing model with controllable
arrival rates, reverse-balking provide valuable insights into the impact of controllable arrival rates on system performance.
AMarkovian multi-server controlled limited capacity queuing model that includes reneging and control policy is extended
with the notion of reverse balking. We identify the model’s steady state and run an analytical evaluation on it.

Critical appraisal of the existing approaches: Queuing system with balking and reneging laid the groundwork for
understanding customer behavior in queues discussed by [1, 2]. However, the models are limited to simple scenarios and
do not account for more complex systems with multiple servers or controllable arrival rates. Barrer [3, 4] studied the
impatient customers and indifferent clerks introduced the concept of customer impatience in queuing systems. While this
models are insightful, they do not consider the impact of controllable arrival rates. Ancker and Gafarian [5] studied a
queuing problems with balking and reneging expanded the understanding of these behaviors in more complex systems.
However, their models still lack the consideration of controllable arrival rates and the reverse-balking. Rao [6] introduced
the concept of interruptions in queuing systems. While this adds a layer of complexity, their models do not address the
controllability of arrival rates. Bae and Kim [7] studied the stationary workload of the G/M/1 queue with impatient
customers provides valuable insights into customer impatience. However, it does not consider the impact of controllable
arrival rates or the reverse balking. Manoharan and Jose [8] worked on Markovian queuing systems with random balking
adds randomness to customer behavior. However, it does not address the controllability of arrival rates or the reverse-
balking. The study on balking and reneging in finite buffer queues provides insights into customer behavior in limited
capacity systems was studied by [9]. However, it does not consider the impact of controllable arrival rates or the reverse
balking. Kumar et al. [10, 12] worked on queuing with reneging, balking, and retention of reneged customers introduces
the concept of retaining customers who have reneged. While this adds a new dimension to queuing models, it does not
address the controllability of arrival rates or reverse balking concept. Srinivasan and Thiagarajan [16, 17] worked on
interdependent and independent queuing models with controllable arrival rates provide valuable insights into the impact
of controllable arrival rates on system performance. However, their models do not consider the use of reverse balking and
reneging. Nisha and Thiagarajan [19, 20] developed a retrial queuing models with impatient customers and controllable
arrival rates adds a layer of complexity to queuing models. However, it does not address the use of reverse balking. Balaji
and Saradha [24] discussed an M/M/1/K queuing model with controllable arrival rates, reverse-balking provide valuable
insights into the impact of controllable arrival rates on system performance. However, their models do not consider the
reneging and multiple server concepts.
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3. Model assumptions
Consider M/M/c/N where customers are admitted based on a Poisson input flow with the rates ∆a and ∆b and where

holding durations are based on a distribution that is exponential with rate υ . Having a joint probability mass function of
the form, assumed to be interrelated, and following a bivariate Poisson process is the system’s arrival process [Y1(m0)]

and service process [Y2(m0)].

P(Y1 = y1, Y2 = y2; m0) = e−(∆d+υg−ζ)m0
min(y1, y2)

∑
g=0

(ζ m0)
g [(∆d −ζ )m0]

y1−g [(υg −ζ )m0]
(y2−g)

g!(y1 −g)!(y2 −g)!
(1)

Where,

y1, y2 = 0, 1, 2, . . . , 0 < ∆d , υg; 0 ≤ ζ < min(∆d , υg) , d = 0

g = 0, 1, 2, . . . TL −1, TL, TL +1 . . . c−1, c, c+1, . . . m0 −1, m0, m0 +1, . . . M0 −1, M0, M0 +1, . . . N

with parameters ∆a, ∆b, υg and ζ as the expected rate of departures, input, and expected dependence rates. It is supposed
that c < r.

υg =

{
gυ ; 0 ≤ g < c
cυ ; c ≤ g ≤ TL

The system space is supposed to be finite, first-come, first-served is the queue order policy. Customers are not balking
with probability r′ = 1−q′. Customers balk probability 1− g

N −1
and not balking

g
N −1

when the service facility is not
free. It is named to be reverse balking. Each consumer waits in queue for a while before receiving service. When that
time comes and he still hasn’t received service, he reneges and exits the queue. The times at which reneging occurs follow
an exponential distribution with the parameter α .

The both incoming and outgoing processes are assumed to be associated and follow a Poisson process. The arrival
rates are defined as ∆a for a higher rate and ∆b for a moderate rate. When the queue length reaches a specified threshold
(TL) (where (TL > N)), the arrival rate decreases from ∆a to ∆b and remains at this lower rate until the queue size exceeds
another specified number m0(m0 ≥ 0 & m0 < TL) and (m0 < TL). Once the queue size drops below (TL), the arrival rate
reverts to ∆a, and this cycle continues. Figure 1 shows this model.

The model’s underlying assumptions are:
i) There is a chance that no arrivals with reverse balking will happen during any given period of length w. If the

system detects an increase in arrival frequency, no service will be provided.

1−
[
(∆a −ζ )r′+(υg −ζ )

]
f + v( f )

ii) There is a chance that one arrival with reverse balking will happen during any given period of length w. If the
system detects an increase in arrival frequency, no service will be provided.

(∆a −ζ )r′ f + v( f ).
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iii) The probability that no arrival with reverse balking will occur for any given length of period w and no service
will be provided if the system observes an upward arrival frequency is

1−
[(

g
N −1

)
(∆a −ζ )r′+(υg −ζ )

]
f + v( f )

and downward arrival frequency is

1−
[(

g
N −1

)
(∆b −ζ )r′+(υg −ζ )

]
f + v( f )

iv) There is a potential that zero arrivals with reverse balking will happen for a particular period of time f at state g and
there will only be one service available when the system is either in upward or downward arrival rate is (υg −ζ ) f +v( f ).

v) The chances that there is one arrival with reverse balking and one service completion during a small interval of
time f when the system is either in upward or downward arrival frequency is ζ f + v( f ).

Figure 1. Flow chart of the queueing model
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4. Problem formulation and solution
If the system has an upward arrival frequency and the server is not in use, then let P0, g, 0 signify the probability

of “g” users in the system. P1, g, 0 represents that there are g clients in the system when the server is busy and the
system has an upward arrival frequency. P1, g, 1 denotes the probability of g clients in the service facility when the server
is overloaded and the system is experiencing a downward arrival frequency. We notice that P0, g, 0 occurs when g =

0, 1, 2, . . .TL −1 and P1, g, 0 occurs when g = 0, 1, 2, . . .TL− 1, TL . . . m0 −1, m0 both P1, g, 0 and P1, g, 1 occurs when
g = m0 +1, m0 +2, . . . , M0 −1 and P1, g, 1 occurs when g = M0, M0 +1, . . . , N. These dependence patterns are present
in the following steady-state equations.

0 =− (∆a −ζ )P0, g, 0 +(∆a −ζ )P0, g−1, 0 1 ≤ g ≤ TL −1 (2)

0 =− (∆a −ζ )r′P0, 0, 0 +(υ −ζ )P1, g, 0 (3)

0 =−
[(

1
N −1

)
(∆a −ζ )+(υ −ζ )

]
P1, g, 0 +2(υ −ζ )P1, 2, 0 +(∆a −ζ )r′P0, 0, 0 (4)

0 =−
[(

g
N −1

)
(∆a −ζ )+g(υ −ζ )

]
P1, g, 0 +(g+1)(υ −ζ )P1, g+1, 0

+

(
g−1
N −1

)
(∆a −ζ )P0, g−1, 0 g = 2, 3, . . . . . . , TL −1 (5)

0 =−
[(

TL

N −1

)
(∆a −ζ )+TL(υ −ζ )

]
P1, TL, 0 +(TL +1)(υ −ζ )P1, TL+1, 0

+

(
TL −1
N −1

)
(∆a −ζ )P0, TL−1, 0 +

(
TL −1
N −1

)
(∆a −ζ )P1, TL−1, 0 (6)

0 =−
[(

g
N −1

)
(∆a −ζ )+g(υ −ζ )

]
P1, g, 0 +(g+1)(υ −ζ )P1, g+1, 0

(
g−1
N −1

)
(∆a −ζ )P0, g−1, 0 TL < g < c (7)

0 =−
[(

g
N −1

)
(∆a −ζ )+ c(υ −ζ )+(g− c)α

]
P1, g, 0

+[c(υ −ζ )+(g+1− c)α]P1, g+1, 0 +

(
g−1
N −1

)
(∆a −ζ )P0, g−1, 0 c−1 < g < m0 (8)
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0 =−
[(

m0

N −1

)
(∆a −ζ )+ c(υ −ζ )+(m0 − c)α

]
P1, m0, 0

+[c(υ −ζ )+(m0 +1− c)α]P1, m0+1, 0 +[c(υ −ζ )+(m0 +1− c)]αP1, m0+1, 1

+

(
m0 −1
N −1

)
(∆a −ζ )P0, m0−1, 0 (9)

0 =−
[(

g
N −1

)
(∆a −ζ )+ c(υ −ζ )+(g− c)α

]
P1, g, 0

+[c(υ −ζ )+(g+1− c)α]P1, g+1, 0 +

(
g−1
N −1

)
(∆a −ζ )P0, g−1, 0 m0 < g < M0 −1 (10)

0 =−
[(

M0 −1
N −1

)
(∆a −ζ )+ c(υ −ζ )+(M0 −1− c)α

]
P1, M0−1, 0

+

(
M0 −2
N −1

)
(∆a −ζ )P0, M0−2, 0 (11)

0 =−
[(

m0 +1
N −1

)
(∆b −ζ )+ c(υ −ζ )+(m0 +1− c)α

]
P1, m0+1, 1

+[c(υ −ζ )+(m0 +2− c)α]P1, m0+2, 1 (12)

0 =−
[(

g
N −1

)
(∆b −ζ )+ c(υ −ζ )+(g− c)α

]
P1, g, 1

+[c(υ −ζ )+(g+1− c)α]P1, g+1, 1 +

(
g−1
N −1

)
(∆b −ζ )P0, g−1, 1 m0 +g < g < M0 (13)

0 =−
[(

M0

N −1

)
(∆b −ζ )+ c(υ −ζ )+(M0 − c)α

]
P1, M0, 1 +[c(υ −ζ )+(M0 +1− c)α]P1, M0+1, 1

+

(
M0 −1
N −1

)
(∆a −ζ )P0, M0−1, 0 +

(
M0 −1
N −1

)
(∆b −ζ )P0, M0−1, 1 (14)
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0 =−
[(

g
N −1

)
(∆b −ζ )+ c(υ −ζ )+(g− c)α

]
P1, g, 1 +[c(υ −ζ )+(g+1− c)α]P1, g+1, 1

+

(
g−1
N −1

)
(∆b −ζ )Pg, 0−1, 1 (15)

0 =

(
g−1
N −1

)
(∆b −ζ )P0, N−1, 1 − [c(υ −ζ )+(g+1− c)α]P1, N, 1 (16)

Let H0 = (∆a − ε); H1 = (∆b − ε); G = (υ − ε).
From (2) to (11) we get

P0, g, 0 = P0, 0, 0 0 ≤ g < TL (17)

P1, g, 0 =

[
(g−1)!

(N −1)g−1

g

∏
n=1

H0

nG

]
r′P0, 0, 0 0 < g < TL (18)

P1, g, 0 =

[
(g−1)!

(N −1)g−1

g

∏
n=1

H0

nG

]
r′P0, 0, 0 −

(g−1)H0

(N −1)(g+1)G
P1, g−1, 0 g−1 < g < c−1 (19)

P1, g, 0 =

[
(g−1)!

(N −1)g−1

g

∏
d=c

H0

cG+(d − c)α

c−1

∏
e=1

H0

eG

]
r′P0, 0, 0

− (g−1)H0

(N −1)(g+1)G
P1, g−1, 0 c < s < m0 +1 (20)

P1, g, 0 =

[
(g−1)!

(N −1)g−1

g

∏
d=c

H0

cG+(d − c)α

c−1

∏
e=1

H0

eG

]
r′P0, 0, 0

− (g−1)H0

(N −1)(g+1)G
P1, g−1, 0

−

[
Q−1

∑
s=p′+1

(
H0

(N −1)cG+(p′+1− c)α

)g−s

(g−1)Pg−s

]
P1, p′+1, 1 m0 < g < M0 (21)

From (12) to (16) we get
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P1, g, 1 =

[
M0−1

∑
s=m0+1

(
H1

(N −1)cG+(s− c)α

)g−s

(g−1)Pg−s

]
P1, m0+1, 1, m0 < g ≤ N (22)

Where,

P1, m0+1, 1 =

P′ (M0 −1)! HQ
0

(N −1)M0−1
[
cM0−cGM0 +(M0 −1− c)γ

]
M0−1

∑
h=m0

(M0 −1)!
h!

(
H0

(N −1)cG+(h− c)α

)Q−h−1 P0, 0, 0

Using the normalizing condition P0, g, 0 + P1, g, 0 + P1, g, 1 = 1, the probability P0, 0, 0 of the free system can be
considered.

P0, 0, 0 =

[
1

P1, g, 0 +P1, g, 0 +P1, g, 1

]
(23)

P0, g, 0 is used to find the probability that g customers in the system and it has an upward arrival frequency and the
server is not in use. It occurs when (g = 0, 1, 2, ... TL −1).

P1, g, 0 is used to find that there are g clients in the systemwhen the server is busy and the system has an upward arrival
frequency. It occurs only when (g = 0, 1, 2, ... TL−1, TL, ... m0−1, m0) and also occurs (g = m0+1, m0+2, ... TL−1).

P1, g, 1 is used to find the probability of g clients in the service facility when the server is overloaded and the system
is experiencing a downward arrival frequency. Occurs when (g = TL, TL + 1, ... K) and also occurs (g = m0 + 1, m0 +

2, ... TL −1).
P0, 0, 0 denotes the normalization condition, states that the sum of all probabilities of all possible states in the system

equals to 1.

The server is not in use with probability assumed by P0, g, 0 =
TL−1

∑
g=0

P0, g, 0. The probability of the system reaching N

and the server being busy with increasing upward arrival frequency is

P1, g, 0 =
TL

∑
g=1

P1, g, 0 (24)

The system is in upward arrival frequency with probability

P1, g, 0 =
M0−1

∑
g=TL

Pg(0)

When g reaches 0, 1, 2, .... TL −1, TL, TL +1 ..., c−1, c, c+1, . . . , m0, m0 +1, . . . , M0 −1, we get
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P(0) =
TL−1

∑
g=0

P0, g, 0 +
TL

∑
g=1

P1, g, 0 +
c

∑
g=TL+1

P1, g, 0 +
m0

∑
g=c+1

P1, g, 0 +
M0−1

∑
g=m0+1

P1, g, 0 (25)

The system is in downward arrival frequency with probability

P(1) =
N

∑
g=p′+1

Pg(1) (26)

When g attains m0 +1, m0 +2, . . . , M0 −2, M0 −1, . . . , N we get

P(1) =
m0

∑
g=0

P1, g, 1 +
M0−1

∑
g=p′+1

P1, g, 1 +
N

∑
g=M0

P1, g, 1 (27)

Usefulness of the proposed model: The queueing model explored in the control policy M/M/c/N interrelated queue
with manageable incoming rates, reverse balking and impatient customers offers significant benefits across various sectors,
including investment firms, telecommunications, computer networks, manufacturing, and service industries. By analyzing
and controlling arrival rates reneging and reverse balking behavior, organizations can better allocate resources, increase
customer satisfaction, and improve overall system efficiency.

4.1 Performance measures

The rationale behind the four key queueing performance measures Ls, Ws, Lq, and Wq lies in their ability to provide
a comprehensive understanding of a queuing system’s efficiency and effectiveness. Ls represents the average number of
customers in the system, helping to gauge overall load and capacity planning. Ws indicates the average time a customer
spends in the system, crucial for assessing customer satisfaction and service efficiency. Lq measures the average number
of customers waiting in the queue, highlighting congestion levels and aiding in queue management. Finally, Wq reflects
the average waiting time in the queue, essential for identifying bottlenecks and improving service processes. Together,
these metrics offer valuable insights for optimizing resource allocation and enhancing system performance.

(i) The predicted system size is provided by

Ls = Ls′ +Ls′′ (28)

Where

Ls′ =
TL−1

∑
g=0

gP0, g, 0 +
TL

∑
g=1

gP1, g, 0 +
c

∑
g=TL+1

gP1, g, 0 +
m0

∑
g=c+1

gP1, g, 0 +
M0−1

∑
g=m0+1

gP1, g, 0

Ls′′ =
M0−1

∑
g=m0+1

gP1, g, 1 +
N

∑
g=M0

gP1, g, 1
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(ii) The expected system holding time

Ws =
Ls

∆̄

Where,

∆̄ = ∆aP(0)+∆bP(1) (29)

(iii) The expected size of the queue is

Lq = ∆Wq (30)

(iv) The expected holding time in the queue

Wq =Ws −
1
υ

(31)

5. Particular cases
When c (server) = 1, this system becomes to a single server limited capacity interconnected queueing model with

an threshold policy, reverse balking, and impatient customers. When ∆a tends to ∆b, c = 1, N = ∞ and ζ = 0, this
model reduces to a single server with control-arrival policy, impatient customer queueing mechanism. When TL tends
to c (server), ζ = 0, and N (capacity) = TL (threshold level), this type turns to a multiple processor queuing model with
impatient customers and reverse balking. If TL tends to c, and α (reneging) = 0 this model reduces to multiple server
queues with controllable arrival rates and reverse balking.

6. Model sensitivity analysis
In this below Table 1 represents the values for c, q

′ , r′, υ , m0, M0, g, N, ∆a, and then Table 2 shows the variation
occurs when the empty system (P0, 0, 0), probability of the system is in upward arrival frequency-P(0), probability that
the system is in downward arrival frequency-P(1). It increases in the rate of reneging results increase in P0(0), P(0) and
decrease in P(1), the size of the expected system, waiting time of the system, expected queue length and waiting time of
the queue with respect to υ , ∆a, ∆b

Table 1. Values for c, q
′ , r′, υ , m0, M0, g, N, ∆a

c q
′

r′ υ m0 M0 g N ∆a

3 0.8 0.2 3 5 12 2 15 8
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Table 2. Variation occurs when the empty system (P0, 0, 0), probability of the system is in upward arrival frequency-P(0), probability that the system is
in downward arrival frequency-P(1), queue length-Lq, queue waiting time-Wq, length of the system-Ls and waiting time of the system-Ws with respect
to υ , ∆a, ∆b

S. No ∆a ∆b υ α ζ P0, 0, 0 P(0) P(1) Lq Wq Ls Ws

1 8 10 3.0 0.1 0.3 0.3622 0.9574 0.0426 0.5868 0.1972 0.6979 0.2564

2 8 10 3.2 0.1 0.3 0.4102 0.9926 0.0074 0.5390 0.1627 0.6410 0.1706

3 8 10 3.3 0.1 0.3 0.5293 0.9954 0.0046 0.4665 0.1506 0.5776 0.1546

4 8 10 3.4 0.1 0.3 0.5417 0.9981 0.0019 0.4398 0.1202 0.5398 0.1275

5 8 10 3.5 0.1 0.3 0.5690 0.9992 0.0008 0.4125 0.1432 0.5804 0.1551

6 8 11 3 0.1 0.3 0.3899 0.9765 0.0235 0.4878 0.1134 0.6487 0.1620

7 8 12 3 0.1 0.3 0.3769 0.9654 0.0346 0.5134 0.1345 0.7202 0.2145

8 8 13 3 0.1 0.3 0.3643 0.9542 0.0458 0.6276 0.2658 0.8165 0.3467

9 8 15 3 0.1 0.3 0.3467 0.9323 0.0677 0.8567 0.4942 1.0061 0.6654

10 8 16 3 0.1 0.3 0.3156 0.9145 0.0855 0.8789 0.6843 1.0093 0.8734

In this below Table 3 represents the values for c, ∆a, ∆b, m0, M0, g, N, ∆a, and then Table 4 shows the probability
of the system is in upward arrival frequency-P(0), probability that the system is in downward arrival frequency-P(1) and
variation occurs when the system is empty (P0, 0, 0). The size of the expected system, waiting time of the system, expected
queue length and waiting time of the queue with respect to υ , ∆a, ∆b and it increases in the rate of reneging results increase
in P0(0), P(0) and decrease in P(1).

Table 3. Values for c, ∆a, ∆b, m0, M0, g, N ∆a

c ∆a ∆b m0 M0 g N ∆a

3 8 10 5 12 2 15 8

Table 4. Variation occurs when the system is empty (P0, 0, 0), probability that the system is in upward arrival frequency-P(0) defines the probability of
system is in downward arrival frequency-P(1), queue Length-Lq, queue waiting time-Wq and Ls system length, system waiting time-Ws respect to ζ , q

′ ,
r
′ , α

S. No α ζ q
′

r
′

P0, 0, 0 P(0) P(1) Lq Wq Ls Ws

1 0.05 0.3 0.8 0.2 0.5408 0.9970 0.0030 0.3767 0.1412 0.4067 0.1392

2 0.06 0.3 0.8 0.2 0.5281 0.9955 0.0045 0.3654 0.1179 0.3943 0.1187

3 0.07 0.3 0.8 0.2 0.5173 0.9923 0.0077 0.3545 0.1106 0.3922 0.1140

4 0.08 0.3 0.8 0.2 0.4047 0.9873 0.0127 0.3492 0.1095 0.3910 0.1113

5 0.09 0.3 0.8 0.2 0.3908 0.9831 0.0169 0.3421 0.1046 0.3901 0.1509

6 0.1 0.3 0.1 0.9 0.3865 0.9763 0.0257 0.3509 0.1112 0.3927 0.1601

7 0.1 0.3 0.2 0.8 0.3963 0.9879 0.0221 0.3421 0.1098 0.3821 0.1545

8 0.1 0.3 0.3 0.7 0.4031 0.9929 0.0171 0.3384 0.1071 0.3734 0.1421

9 0.1 0.3 0.4 0.6 0.4671 1.0934 0.0366 0.3202 0.0952 0.3698 0.1403

10 0.1 0.3 0.5 0.5 0.4878 1.1267 0.0233 0.3152 0.0994 0.3541 0.1364

11 0.1 0.5 0.5 0.5 0.2289 0.5256 0.4074 0.9248 0.5142 0.9884 0.9432
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7. Conclusion
From the preceding table, it is visible that Ls, Ws, Lq, Wq and P(1) rises as the input rate rises while the further

parameters remain constant and P0(0), P(0) drops. As long as the other parameters are held constant, P0(0), and P(0)
increases, P(1), Lq, Wq, Ls and Ws drops as the mean dependence rate rises, Lq, Wq, Ls and Ws grows on a regular basis
when the balking rate falls, P0(0), P(0), decreases and other factors remain constant. It is evident that an increase in
the rate of reneging results increase in P0(0), P(0) and decrease in P(1), the size of the expected system, waiting time
of the system, predicted queue length and waiting period of the queue. This is due to the fact that the rate of reneging
is rising, which indicates that a growing number of clients are leaving the system before having their service completed.
In Table 4 the performance measures Ls and Lq is high (that is, the queue is lengthy), the balking rate decreases (due to
reverse balking), while Wq and Ws also increase when the queue size and system size. This study deals the principles
of reverse balking and control policy into an M/M/c/N interrelated queueing system with adjustable arrival rates. The
model’s steady-state analysis provides key performance metrics, and a sensitivity analysis was performed. This approach
is especially useful for investment firms dealing with impatient clients. Future research could investigate the application
of this concept in a M/G/1 queue environment.
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