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Abstract: This paper introduces asymmetric information into the analysis of cooperative games with agreements self-
implemented, establishes theoretical models of a one-shot information asymmetric cooperative gamewith agreements self-
implemented, aims to provide analytical tools for the study of political science, economics, sociology, and other humanities
disciplines. In an information asymmetric cooperative game with agreements self-implemented, the players make their
decisions through their virtual games on the basis of their own information sets. By introducing the virtual games of the
players, this paper defines the coalition equilibrium of an information asymmetric cooperative game with agreements self-
implemented and examines the condition for its existence. This paper demonstrates that in an information asymmetric
cooperative game with agreements self-implemented, the condition for the existence of its coalition equilibrium is that
information is symmetric after the game is completed. This paper defines the distribution equilibrium of the cooperative
payoff of a coalition in the coalition equilibrium (if it does exist) as the Nash equilibrium of the bargaining game
between the core members of the coalition. When the core members are unallied in the bargaining game, the distribution
of a coalition member is the sum of his cooperative payoff distribution when the estimations of the optimal strategic
combination choice of all the core members are all correct and the distribution he gets in the “misjudgment” cooperation;
when the coremembers are allied in the bargaining game, the distribution of a cooperative team is the sum of its cooperative
payoff distribution when the estimations of the optimal strategic combination choice of all teams are all correct and the
distribution it gets in the “misjudgment” cooperation.

Keywords: information asymmetry, information asymmetric cooperative game with agreements self-implemented, virtual
game, coalition equilibrium, bargaining game, core coalition, extensive coalition
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1. Introduction
An important hypothesis in classical cooperative game theory is that there is no asymmetric information among

the players, and that all the players have complete information is common knowledge of all players. However, even a
person who knows game theory just a little will feel doubtful about the complete information hypothesis. So, it’s not
surprising that Kadan et al. [1] asked whether game models according to the above belief really make sense. Obviously,
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this hypothesis neglects the brass tacks that things the players believe rely on the situations they know. However, in the
real cooperative social games, players are usually information asymmetric rather than information symmetric.

The classical cooperative game theory usually assumes that cooperation agreements are implemented by third parties
at no cost, while ignoring the fact that in reality, there are a large number of cooperation agreements that are self-
implemented by the coalition members. The reasons why cooperation agreements are self-implemented by coalition
members are first due to the lack of a third party to implemented the agreements in many cases; secondly, in some cases,
the information required for a third party to implement the agreements is lacking or the cost of obtaining such information
is very high, thus, the third party is unable to implement the cooperation agreements; thirdly, some cooperation agreements
implemented by a third party are inherently self-implemented. Obviously, the implementation mode of cooperation
agreements will have a significant impact on the coalition formation and the distribution of the cooperative payoff of
a coalition in cooperative games.

In the classical literature on cooperative games of complete information, the three main areas that researchers focus
on include:

(1) the coalition formation in the game;
(2) the strategic combination choices of the coalitions in the game;
(3) the distribution of the cooperative payoff of a coalition.
Obviously, the game among coalitions is typically non-cooperative, the cooperative Nash equilibrium of the

cooperative game is just the non-cooperative Nash equilibrium of the non-cooperative game among coalitions, therefore,
the classical literature focuses only on the coalition formation in a cooperative game and the distribution rule of the
cooperative payoff of a coalition which can bring a Pareto improvement to all its members, especially on the latter.

In cooperative game theory, researchers often assumed that there is only one coalition in a cooperative game, if there
is no dummy in the game, all the players will join the only coalition; and if there are dummies in the game, all players
except the dummies will join this coalition. Such an assumption can only accord with a special situation, in a general
cooperative game, the situation may be different from the assumption above. In many cases, there may be not only one
coalition, but a series of coalitions. If there are “dummies” for a coalition in a cooperative game, there may be synergies
among the “dummies”. Therefore, they may form one or more coalitions to benefit from cooperation.

Based on the equilibrium definition introduced by Konishi et al. [2] and the extended by Hyndman et al. [3], and also
the solution concept used in Gomes et al. [4] and Gomes [5], Aumann [6] discussed the coalition formation in a repeated
cooperative game, and defined the equilibrium process of coalition formation (EPCF), which is a process of coalition
formation with the property that at every history, every active coalition, faced with a given set of potential partners, makes
a profitable and maximal move. An implicit assumption of Aumann’s dynamic model is that the information between
players is asymmetric in the repeated cooperative game in study.

By the blocking approach, a lot of researches discussed the possible ranges of the distribution scheme of the
cooperative payoff of a coalition. Beginning with the monumental work of von Neumann et al. [7], this kind of literature
includes notions such as the stable set, the core, and the bargaining set (Aumann et al. [8]; Gillies [9]; Shapley [10];
von Neumann et al. [7]). Extensions of these ideas to incorporate notions of farsighted behavior were introduced by
Harsanyi [11], and later by Aumann et al. [12]. The farsightedness notion was further developed by Chwe [13], Ray et al.
[14], Diamantoudi et al. [15], and others. Of course, this type of research does not end up with a distribution rule of the
cooperative payoff of a coalition.

Some researchers have attempted to obtain a one-point solution to a fully cooperative game, that is, the only
distribution scheme of the cooperative payoff of a coalition, such as Shapley value (Shapley [16]) and Nucleolus
(Schmeidler [17]). These models are often based on “collectivism”, in these models, coalition members are assumed
to pursue a collective goal in the distribution process. In fact, the distribution process is the social interaction among
the coalition members for their own welfares, in which a rational individual would not replace his welfare maximization
objective with a collective one. And in the distribution process, individual rationality and collective rationality are often
in conflict (this conflict is often shown in the so-called prisoner’s dilemma). Nash [18] realized that the distribution of
the cooperative payoff of a coalition is the result of the bargaining among the members of the coalition, after establishing
some axioms, Nash proved that there exists only one bargaining process that can satisfy the axioms which should be

Contemporary Mathematics 5074 | Jeanpantz Chen



satisfied, this only bargaining process is called the Nash negotiation solution. Unfortunately, due to his unreasonable
axiom assumptions, Nash did not find a satisfactory negotiation solution.

Another type of literature on the distribution of the cooperative payoff is called non-fully cooperative game theory,
in which the participation levels of players in the cooperation are introduced. Aubin [19] introduced the solution to a
cooperative game with fuzzy coalitions, Sakawa et al. [20], Molina et al. [21] proposed the lexicographical solution to a
cooperative game with fuzzy coalitions.

So far, classical cooperative game theory has not provided satisfactory solutions to the two basic problems of
coalition formation and cooperative payoff distribution in a one-shot, finite cooperative game of complete information
with agreements implemented by a third party.

In recent years the asymmetric information coordination has been studied in networked system theory. Shang [22]
studied a simple three-body consensus model, which favorably incorporates higher-order network interactions, higher-
order dimensional states, group reinforcement effect as well as homophily principle, proposed a system model of three-
body interactions in complex networks. Shang [23] introduced a novel multiplex network presentation for directed
graphs and its associated connectivity concepts including the pseudo-strongly connectivity and graph robustness, which
provide a resilience characterization in the presence of malicious nodes. Qi et al. [24] investigated the linear quadratic
(LQ) control problem for a stochastic system (https://www.sciencedirect.com/topics/mathematics/stochastic-system) with
different intermittent observations. However, the goal of such literature of networked system theory is clearly not to
establish a general information asymmetry cooperative game theory.

However, these conclusions drawn from the analysis of evolutionary games on the basis of different assumptions
about the behavior patterns of players obviously cannot explain the cooperation of players in a one-shot information
asymmetric cooperative game with agreements self-implemented.

Recently, Chen [25] examined the coalition formation in an information symmetric cooperative gamewith agreements
implemented by a third party, provided the existence proof and an algorithm of the coalition equilibrium; moreover,
Chen analyzed the equilibrium of the bargaining game on the distribution of the cooperative payoff of a coalition under
the coalition equilibrium, and examined the distribution equilibrium of cooperative payoff of a coalition. Chen [26]
examined an information asymmetric cooperative game with agreements implemented by a third party, defined the
virtual cooperative games of the players and demonstrated the equilibrium of the virtual cooperative game of a player;
proposed the condition for the existence of the coalition equilibrium in an information asymmetric cooperative game with
agreements implemented by a third party, defined and provided the existence proof of this coalition equilibrium when
it does exist; defined the public choice game of a coalition on the strategic combination choice in a coalition situation,
provided the existence proof of the equilibrium of this game; examined the condition for the existence of the bargaining
game on the distribution of the cooperative payoff of a coalition, and provided the existence proof of the bargaining game,
when the coalition members are allied or unallied in the bargaining game.

Chen [27] provided an analytical framework for a cooperative games with agreements self-implemented in three
scenarios: (1) the possible opportunistic behaviors in the distribution process are ignored; (2) coalitions centralize all
the payoffs their members get in the game to inhibit the possible opportunistic behaviors in the distribution process; (3)
coalitions distribute their cooperative payoffs before the game begins to inhibit the possible opportunistic behaviors in the
distribution process. In each scenario, Chen examined the formation of the coalitions and the distribution process of the
cooperative payoff of a coalition, defined and provided the existence proof of the coalition equilibrium of a cooperative
game with agreements self-implemented, provided the existence proof of the equilibrium in the bargaining game of a
coalition on the distribution of its cooperative payoff, when its members cooperate in the game or not.

Chen [27] proposed the basicmethodology for the analysis of an cooperative gamewith agreements self-implemented:
the formation of the coalition equilibrium is the result of the choices of the players who pursue the maximization of their
individual welfares, and the cooperative payoff of a coalition can always be decomposed into the common payoffs of
different member sets, the equilibrium of the bargaining game of a coalition on the cooperative payoff distribution can
easily be obtained by applying the distribution rule of common payoffs. Meanwhile, Chen [26] also provided a basic idea
for introducing asymmetric information into the analysis of an cooperative game with agreements implemented by a third
party: players make decisions through their virtual games on the basis of their own information sets, the criteria for each
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player to choose his coalition is the maximization of his expected cooperative payoff distribution or the minimization of his
expected escape payoff deriving from deviation; the distribution equilibrium of the cooperative payoff of a coalition is also
the result of the negotiations between the coalition members in the bargaining game on the distribution of the cooperative
payoff of the coalition. This paper aims to introduce asymmetric information into the analysis of a cooperative game with
agreements self-implemented, using the basic methodologies mentioned above. Based on Chen [26, 27], this paper tries
to analyze the coalition formation in an information asymmetric cooperative game with agreements self-implemented,
defines the coalition equilibrium and examines the condition for its existence, and investigates the Nash equilibrium of
the bargaining game on the distribution of the cooperative payoff of a coalition in the coalition equilibrium (if it does
exist).

The significance of the society lies in cooperation, and many social interactions can be compared to cooperative
games. Among them, a large number take self-implemented agreements, and there is information asymmetry between
the players. This paper aims to provide an analytical tool for a one-shot information asymmetric cooperative game with
agreements self-implemented. By analyzing the virtual games of the players, this paper defines the coalition equilibrium
of the coalition equilibrium of an information asymmetric cooperative game with agreements self-implemented, and
investigates the condition for its existence. Meanwhile, this paper defines the distribution equilibrium of the cooperative
payoff of a coalition under the coalition equilibrium, when the coalition members are allied in the bargaining game or
not. The methodology and conclusions presented in this paper can be widely applied to the study of political science,
economics, sociology, and other humanities disciplines.

First, in Sections 2-4, we ignore the opportunistic behaviors of coalition members in the cooperative payoff
distribution process, or we assume that the opportunistic behaviors of coalition members in the distribution process of
cooperative payoff are negligible. In Section 5, we assume that each coalition concentrates the payoffs that its members
get in the game to prevent coalition members from engaging in opportunistic behaviors in the distribution process of
cooperative payoff.

2. The virtual game of a player: ignoring the opportunistic behaviors in distribu-
tion process
In this section, we will analyze information asymmetric cooperative game Γ(N,{Si} ,{ui}) with agreements self-

implemented and assume that the coalitions are publicly-owned and that the members of a coalition are not allied in the
bargaining game on the distribution of its cooperative payoff, where N denotes the player set, N = {1, 2, · · · , n}; Si

denotes the strategy set of any player i, Si = {si1, si2, · · · , simi} , i = 1, 2, · · · , n; and ui denotes the payoff function of
any player i. First, we do not consider the opportunistic behaviors of coalition members in the distribution process of
cooperative payoff, or, we assume that the opportunistic behaviors of coalition members in the distribution process of
cooperative payoff are negligible.

Due to information asymmetry, in information asymmetric cooperative game Γ(N,{Si} ,{ui}) with agreements self-
implemented, each player virtualizes his own game on the basis of his information set andmakes his decisions according to
his virtual game. The reason why a player retains private information is that the private information he retains is beneficial
for expanding the expected cooperative payoff distribution he can receive from the coalition he belongs to. A player can
exaggerate his marginal contribution to the coalition and his escape payoff deriving from deviation by publishing false
information to the core coalition he belongs to (fromwhich he will not escape) in order to obtain higher cooperative payoff
distribution; he can also influence the decisions of other core coalitions by publishing false information to them (including
claiming to join some coalition but ultimately not keeping his promise) to increase the expected cooperative payoff of the
core coalition he belongs to, thus increase the expected cooperative payoff distribution he receives from his core coalition.

Obviously, when cooperation agreements are self-implemented, a player’s promise to join some coalition cannot be
implemented by force. Therefore, our discussion starts with a player’s false promise and his escape path. Of course, not
every player’s false promise is trustworthy, it must gain the trust of the deceived coalition.
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In this section, we will examine the escape paths of a player in a coalition situation and the conditions for him to
be trusted by the coalition he joins. In each coalition situation c, a player decides his best escape strategy on the basis of
his estimation of the escape strategy of any other player. However, his escape strategy itself is also a kind of information
release which will change the information sets of other players. By analyzing a player’s n-level virtual games, we can
obtain the virtual game of this player with the information sets of all players stable.

Next, we’ll examine the information sets-stable virtual game of this player level by level until a stable solution to his
optimization problem appears, we can obtain the coalition equilibrium of the virtual game of this player. Of course, due
to different information sets, the coalition equilibria in the virtual games of different players are different. However, the
information transmission, communication, and negotiation between the players can ultimately lead to the convergence of
the coalition equilibria of the virtual games of all players.

2.1 Escape path and trust condition

An important difference between a cooperative game with agreements self-implemented and a cooperative game
with agreements implemented by a third party is that in a cooperative game with agreements self-implemented, not only
each member needs to have synergy with the coalition he belongs to, but he should be trusted by other members of the
coalition too, that is, the members of a coalition are considered not to have the motivation to escape through deviation.

In an information asymmetric cooperative game with agreements implemented by a third party, as long as a player
believes that he has the greatest synergy with a coalition, he can apply to become a member of the coalition. Of course,
the cooperative payoff distribution he obtains is not necessarily the cooperative payoff distribution in his virtual game.

However, in an information asymmetric cooperative game with agreements self-implemented, even if a player in his
virtual game believes that he has the greatest expected synergy with some coalition, and considers that he does not have
the motivation to escape through deviation, he may not be accepted by the coalition, because he may be considered to
have a motive to escape from the coalition through deviation. Due to information asymmetry, in other members’ virtual
games, the judgments of the trustworthy members who really have synergies with the coalition, as potential partners, are
not consistent.

In an information asymmetric cooperative game with agreements self-implemented, the conditions that some player
is trusted by other members of a coalition and is accepted by this coalition are:

(1) the marginal contribution of this player to the coalition is considered to be higher than his escape-payoff deriving
from deviation;

(2) the marginal contribution of any member set which this player belongs to is considered to be higher than the sum
of the escape-payoffs deriving from deviation of the members in the member set;

(3) each member of the coalition believes that the cooperative payoff of the coalition is higher than the sum of the
escape-payoffs of all the coalition members.

2.1.1Possible escape paths

First, we examine the escape paths of member k2 of some coalition Ck in the virtual game of player k1, in coalition
situation c of information asymmetric cooperative game Γ(N,{Si} ,{ui}) with agreements self-implemented.

In information symmetric cooperative game Γ(N,{Si} ,{ui}) with agreements self-implemented, in coalition
situation c, the escape paths of any member of some coalitionCk are clear: as long as when he escapes from coalitionCk

through deviation, he can obtain an escape-payoff deriving from deviation that is greater than his marginal contribution
to coalition (this is the maximum cooperative payoff distribution he can obtain from the target coalition when he escapes
from coalitionCk through deviation), his escape is out of question, not only the player himself can recognize this, but other
players can also do; obviously, he will escape through deviation to a coalition that enables him to obtain the maximum
cooperative payoff distribution after his escaping, that is to say, he will escape through deviation to the coalition to which
his marginal contribution is the greatest when he escapes from coalitionCk through deviation. In this escape process, the
escape path includes the initial node (the original coalition that this player belongs to) and the terminal node (the target
coalition he chooses).
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In coalition situation c of information asymmetric cooperative game Γ(N, {Si} , {ui}) with agreements self-
implemented, an escape path of somemember k2 of coalitionCk not only includes the initial node (the original coalition that
this player in name belongs to) and the terminal node (the target coalition he chooses when he escapes through deviation),
but also the intermediate nodes: member k2 of coalition Ck can choose some coalition Ck′ , promise that he would join
the coalition through deviation from coalition Ck though his actual escape target is not coalition Ck′ . That is to say, the
purpose of player k2’s commitment is not to obtain the escape-payoff deriving from deviation when he pretends to escape
from coalition Ck to coalition Ck′ , but to provide false information to coalition Ck′ , so as to facilitate the increase of the
cooperative payoff of his real escape target (a coalition other than coalitionCk′ , or possibly coalitionCk which he currently
belongs to). At the initial node and the intermediate node of the escape path, his commitments to the non-terminal nodes
are all false.

Player k2 may make false promises to more than one intermediate node coalitions, and the terminal node coalition as
his escape target may be coalition which he currently belongs to. Herein, it is assumed that in the escape path of player k2,
the initial node coalition and the terminal node coalition can be the same, but the initial node coalition and an intermediate
coalition cannot be the same, and the terminal node coalition and an intermediate node coalition cannot be the same too;
in addition, the same coalition cannot become the intermediate node twice, nor can two coalitions become initial node
coalitions or terminal node coalitions at the same time.

In some coalition situation c, when each player chooses one of his escape paths, an escape situation is formed.

2.1.2Possible coalition situations and trust conditions of a coalition

Obviously, not each coalition situation c is feasible: the basic condition for a coalition situation to be feasible is that
any member of the coalition in this coalition situation is trusted by the coalition that he belongs to. A self-implemented
agreement must make the members of the coalition be considered to have no opportunistic deviations from the coalition,
because the deviation of a member means a loss of the coalition, and may even a significant reduction in its cooperative
payoff. Therefore, in coalition situation c, if player k1 is a core member of coalition Ck (that is to say, player k1 as a
member of coalition Ck will not escape through deviation), one of the conditions for some player k2 to be trusted by
core member k1 of the coalition is that in the virtual game of core member k1, the marginal contribution of player k2

to core coalition Cc(k1)
k that core member k1 belongs to is considered to be higher than his escape-payoff deriving from

deviation. [There are two ways for player k2 to apply for membership of coalitionCk in coalition situation c. The first one
is that player k2 at the beginning is a nominal member of coalition Ck; the second is that although player k2 is nominal
member of another coalition, he hopes to escape through deviation and join coalitionCk. In these two cases, the marginal
contributions of player k2 to coalition Ck and his escape-payoffs deriving from deviation when he escapes from coalition
Ck through deviation are different].

Mv(k1)
k2

(Cc(k1)
k )>W

−C
c(k1)
k (k1)

k2
, k1 ̸= k2,

where Mv(k1)
k2

(Cc(k1)
k ) represents the marginal contribution of player k2 to coalition Cc(k1)

k in player k1’s virtual game,

W
−C

c(k1)
k (k1)

k2
represents the escape-payoff deriving from deviation of player k2 when he escapes from coalition Cc(k1)

k via
deviation in player k1’s virtual game.

If in the distribution process of cooperative payoff of coalition Ck, all the members of coalition Ck are bound to be
responsible for their own misjudgments of the cooperative game, player k1, as a core member of coalition Ck, can get
the maximum expected cooperative payoff distribution according to his own “correct” judgment, including his judgment
of the choices of his partners. Obviously, for core member k1 of coalition Ck, the condition that a potential coalition
member can be accepted by coalition Ck is that in his virtual game, the potential coalition member’s contribution to core
coalitionCc(k1)

k is greater than his escape-payoff deriving from deviation when he escape from core coalitionCc(k1)
k through

deviation.
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However, if player k1 is a nominal member or an extensive member of coalitionCk rather than a core one, that is to say,
whether player k1 is a nominal member of coalitionCk in coalition situation c, or he escapes from other coalitions through
deviation, as long as player k1 chooses to escape from coalition Ck through deviation, he certainly does not aim at the
maximum expected cooperative payoff of coalitionCk when applying for the membership of coalitionCk, but should aim
at the maximum expected cooperative payoff of the target coalition when he escapes from coalitionCk through deviation.
But, in order not to reveal his intention to escape from coalition Ck through deviation, player k1 will judge whether the
joining condition of potential coalition member k2 is satisfied according to the false signals i∗(k

F
1 )

k1
he issued to coalition

Ck. That is, according to the false signals issued by player k1 to coalitionCk, potential coalition member k2’s contribution
to “core” coalition Cc(kF

1 )
k which player k1 claims is greater than the escape-payoff deriving from deviation of player k2

when he escapes from “core” coalitionCc(kF
1 )

k through deviation:

Mv(k
F
1 )

k2
(Cc(kF

1 )
k )>W

−C
c(kF

1 )

k (kF
1 )

k2
, k1 ̸= k2.

In coalition situation c, one of the conditions that player k2 as a coalition member is trusted by coalition Ck is that,
for any other member i of coalitionCk,

Mv(i)k2
(Cc(i)

k )>W
−Cc(i)

k (i)
k2

, i ∈Cc
k , i ̸= k2;

Mv(i
F )

k2
(Cc(iF )

k )>W
−Cc(iF )

k (iF )
k2

, i ∈C+
k , i /∈Cc

k , i ̸= k2.

The above condition is not easy to be satisfied. In fact, it is too harsh for potential member k2 who asks to join the
coalition to satisfy the trust conditions of all other members.

Under information asymmetry, when coalition Ck is deciding whether to accept potential member k2 or not, if
the coalition members draw different conclusions according to their own virtual games, does coalition Ck accept the
application of potential member k2? What is the condition for coalitionCk accepting the application of potential member
k2?

Theorem 1 In information asymmetric cooperative game Γ(N,{Si} ,{ui}) with agreements self-implemented, given
the coalition situation and the escape situation of the game, one of the conditions that potential member k2 is accepted by
coalitionCk and is trusted by coalitionCk (that is to say, he can sign a cooperation agreement with coalitionCk) is that the
contribution of player k2 to coalitionCk can satisfy the condition shown as follows:

∑
i∈Cc

k

[
Mv(i)k2

(Cc(i)
k )−W

−Cc(i)
k (i)

k2

]
+ ∑

j∈C+
k , j/∈Cc

k

[
Mv( jF )

k2
(Cc( jF )

k )−W
−Cc( jF )

k ( jF )
k2

]
> 0, i, j ̸= k2.

Proof. Build the public choice game in which all the members of coalition Ck except player k2 decide whether to
accept player k2. The strategies of all the players in the public choice game include “acceptance” and “rejection”; the
payoff function of any player is his expected cooperative payoff distribution in each strategic situation of the game.

Obviously, the goal of the maximum expected cooperative payoff distribution of any member (a player in the public
choice game) is consistent with the goal of the coalition’s maximum expected cooperative payoff. Therefore, in the
public choice game mentioned above, the payoff function of each member in the form of his expected cooperative payoff
distribution is equivalent to the payoff function in the form of his expected cooperative payoff of the coalition.
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In this public choice game, all the players will form a unique coalition, and the coalition’s equilibrium public choice
is the public strategy which maximizes the sum of the expected cooperative payoffs of all the players. Thus, the objective
of the above public choice game is the solution to the following optimization problem:

max

∑
i∈Cc

k

V (i)

Cc(i)
k

+ ∑
j∈C+

k , j/∈Cc
k

V ( jF )

Cc( jF )
k

 , i, j ̸= k2,

whereV (i)

Cc(i)
k

represents the cooperative payoff of coalitionCc(i)
k in player i’s virtual game,V ( jF )

Cc( jF )
k

represents the cooperative

payoff of coalitionCc( jF )
k in the virtual game of player i as a non-core member of the coalition who will eventually escape

from the coalition.

Therefore, when ∑i∈Cc
k

[
Mv(i)k2

(Cc(i)
k )−W

−Cc(i)
k (i)

k2

]
+∑ j∈C+

k , j/∈Cc
k

[
Mv(

jF)
k2

(C
c( jF)
k )−W

−C
c( jF)
k ( jF)

k2

]
> 0, (i, j ̸= k2),

coalitionCk will accept player k2, when∑i∈Cc
k

[
Mv(i)k2

(Cc(i)
k )−W

−Cc(i)
k (i)

k2

]
+∑ j∈C+

k , j/∈Cc
k

[
Mv(

jF)
k2

(C
c( jF)
k )−W

−C
c( jF)
k ( jF)

k2

]
≤ 0, (i, j ̸= k2), coalitionCk will reject player k2.

The marginal contribution of a coalition member to the coalition is considered to be higher than his escape-payoff
deriving from deviation does not mean that the coalition member must be trustworthy. According to an analysis similar
to the proof of Theorem 1, we can also draw the conclusion in Theorem 2.

Theorem 2 In information asymmetric cooperative game Γ(N,{Si} ,{ui}) with agreements self-implemented, given
the coalition situation and the escape situation of the game, the second condition that potential member k2 is accepted by
coalitionCk and is trusted by coalitionCk (that is to say, he can sign a cooperation agreement with coalitionCk) is that the
contribution of each member set containing player k2 to coalitionCk can satisfy:

∑
i∈Cc

k

[
Mv(i)Th

(Cc(i)
k )− ∑

t∈Th

W
−Cc(i)

k (i)
t

]
+ ∑

j∈C+
k , j/∈Cc

k

[
Mv( jF )

Th
(Cc( jF )

k )− ∑
t∈Th

W
−Cc( jF )

k ( jF )
t

]
> 0;

i, j ̸= k2, k2 ∈ Th ⊂Ck.

The third condition that potential member k2 is accepted by coalition Ck and is trusted by coalition Ck (that is to
say, he can sign a cooperation agreement with coalition Ck) is that each member of coalition Ck consider the sum of the
contributions of all the members to coalitionCk is higher than the cooperative payoff of coalitionCk in his virtual game:

V (i)
Cc

k
− ∑

t∈Cc
k

W
−Cc(i)

k (i)
t > 0, i ∈Cc

k ;

V ( jF )

Cc( jF )
k

− ∑
t∈Cc( jF )

k

W
−Cc( jF )

k ( jF )
t > 0, j ∈C+

k , j /∈Cc
k .

Proof. Build the public choice game in which all the members of coalition Ck except team Th decide whether to
accept player Th. According to Theorem 1, the following condition should be met:
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∑
i∈Cc

k

[
Mv(i)Th

(Cc(i)
k )−W

−Cc(i)
k (i)

Th

]
+ ∑

j∈C+
k , j/∈Cc

k

[
Mv( jF )

Th
(Cc( jF )

k )−W
−Cc( jF )

k ( jF )
Th

]
> 0.

Obviously,

∑
t∈Th

W
−Cc(i)

k (i)
t ≥W

−Cc(i)
k (i)

Th
, ∑

t∈Th

W
−Cc( jF )

k ( jF )
t ≥W

−Cc( jF )
k ( jF )

Th
,

therefore, ∑i∈Cc
k

[
Mv(i)Th

(Cc(i)
k )−∑t∈Th

W
−Cc(i)

k (i)
t

]
+ ∑ j∈C+

k , j/∈Cc
k

[
Mv(

jF)
Th

(C
c( jF)
k )−∑t∈Th

W
−C

c( jF)
k ( jF)

t

]
> 0 should be

met.

On the other hand, as amember of coalitionCk, ifV (i)
Cc

k
−∑t∈Cc

k
W

−Cc(i)
k (i)

t < 0(i∈Cc
k) orV (iF )

Cc(iF )
k

−∑
t∈C

c(iF)
k

W
−C

c(iF)
k (iF)

t

< 0
(
i ∈C+

k , i /∈Cc
k

)
, player i would not join coalitionCk.

In Theorem 2, condition (2) can guarantee that each member set of the coalition is trusted, and condition (3) can
guarantee that the cooperation agreement of the coalition is feasible from the perspective of cooperative payoff distribution.

For convenience, we will simply denote trust condition (1),

∑
i∈Cc

k

[
Mv(i)k2

(Cc(i)
k )−W

−Cc(i)
k (i)

k2

]
+ ∑

j∈C+
k , j/∈Cc

k

[
Mv( jF )

k2
(Cc( jF )

k )−W
−Cc( jF )

k ( jF )
k2

]
> 0, i, j ̸= k2,

as:

∑
i∈Ck

[
Mv(i)k2

(Ck)−W−Ck(i)
k2

]
> 0, i ̸= k2.

Similarly, we denote trust condition (2),

∑
i∈Cc

k

[
Mv(i)Th

(Cc(i)
k )− ∑

t∈Th

W
−Cc(i)

k (i)
t

]
+ ∑

j∈C+
k , j/∈Cc

k

[
Mv( jF )

Th
(Cc( jF )

k )− ∑
t∈Th

W
−Cc( jF )

k ( jF )
t

]
> 0, i, j ̸= k2, k2 ∈ Th ⊂Ck,

as:

∑
i∈Ck

[
Mv(i)Th

(Ck)− ∑
t∈Th

W−Ck(i)
t

]
> 0, i ̸= k2, k2 ∈ Th ⊂Ck;

and denote trust condition (3)
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V (i)
Cc

k
− ∑

t∈Cc
k

W
−Cc(i)

k (i)
t > 0, i ∈Cc

k ; V ( jF )

Cc( jF )
k

− ∑
t∈Cc( jF )

k

W
−Cc( jF )

k ( jF )
t > 0, j ∈C+

k , j /∈Cc
k ,

as:

V (i)
Ck

− ∑
t∈Ck

W−Ck(i)
t > 0, i ∈Ck.

In an information asymmetric cooperative game with agreements self-implemented, to guarantee a coalition member
who meets the above conditions no longer has the motive to escape through deviation, in the distribution scheme of
expected cooperative payoff, the expected cooperative payoff distribution that this member can get should be no less than
his expected escape-payoff deriving from deviation. That is to say, in the distribution process of expected cooperative
payoff, this member’s expected escape-payoff deriving from deviation in his virtual game is his reservation cooperative
payoff distribution.

2.1.3Feasible escape paths and trust conditions

Similarly, not all possible escape paths are feasible. In coalition situation c, when player k2 choose to escape from
coalitionCk through deviation and join coalitionCz (whether the coalition is an intermediate node coalition or a terminal
node coalition), the first condition for player k2 to be trusted by other coalitionmembers and reach a cooperation agreement
with coalitionCz is shown as follows:

∑
i∈Cc

z

[
Mv(i)k2

(Cc(i)
z )−W−Cc(i)

z (i)
k2

]
+ ∑

j∈C+
z , j/∈Cc

z

[
Mv( jF )

k2
(Cc( jF )

z )−W−Cc( jF )
z ( jF )

k2

]
> 0, i, j ̸= k2. (1)

The second condition is shown as follows:

∑
i∈Cc

z

[
Mv(i)Th

(Cc(i)
z )− ∑

t∈Th

W−Cc(i)
z (i)

t

]
+ ∑

j∈C+
z , j/∈Cc

z

[
Mv( jF )

Th
(Cc( jF )

z )− ∑
t∈Th

W−Cc( jF )
z ( jF )

t

]
> 0,

i, j ̸= k2, k2 ∈ Th ⊂Cz.

(2)

The third condition is shown as follows:

V (i)
Cc

z
− ∑

t∈Cc
z

W−Cc(i)
z (i)

t > 0, i ∈Cc
z ; V ( jF )

Cc( jF )
z

− ∑
t∈Cc( jF )

z

W−Cc( jF )
z ( jF )

t > 0, j ∈C+
z , j /∈Cc

z . (3)

In the above analysis, we did not give the definition of some member k2’s marginal contribution to coalition Cz

(member k2 as a nominal member of coalitionCz or as a member who escapes from another coalition through deviation),
and his escape-payoff deriving from deviation when he escapes from coalitionCz through deviation. These two important
concepts will be discussed in the following.
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2.2 Escape situations in coalition situation c and the signal releases of players

Next, we will analyze the escape situations in coalition situation c of the information asymmetric cooperative game
with agreements self-implemented.

Denote e as an escape situation in coalition situation c. In this escape situation, the escape strategy of each player
i is denoted as ei = (ei

1, . . . , ei
j, . . . , ei

n). Escape strategy variable ei
j = T represents that player i will eventually join

coalition C j, whether C j is the coalition which contains player i in coalition situation c or not; escape strategy variable
ei

j = F represents that player i promises to join coalitionC j but will eventually escape through deviation; escape strategy
variable ei

j = 0 represents that player i does not commit to join and finally does not join coalitionC j.
In an information asymmetric cooperative game with agreements self-implemented, some player who belongs to

some core coalition may have motivation to retain private information to the coalition. Moreover, in an information
asymmetric cooperative game with agreements self-implemented, players may also commit to join but do not actually
join a core coalition. At this time, such a player’s goal of committing to join this coalition is to release false information
to guide the strategic combination choice of this coalition and make it beneficial for the improvement of the cooperative
payoff of the core coalition that he will actually join.

Therefore, in each player’s virtual game of the information asymmetric cooperative game with agreements self-
implemented, in addition to estimating the actual strategy sets and the payoff functions of other players, he must also
estimate the false signals that other players release in the coalitions they falsely join.

2.3 Escape situations and virtual game of player k1: his virtual game when information sets are
unstable

Under information symmetry, an important difference between a cooperative game with agreements implemented
by a third party and a cooperative game with agreements self-implemented is that in a cooperative game with agreements
self-implemented, since the members of any coalition may escape through deviation, the condition that a player joins his
coalition is more harsh: in an information asymmetric cooperative game with agreements self-implemented, for other
members of the coalition, the condition for a player being accepted as a member of the coalition is that his marginal
contribution to the coalition must be at least no less than his escape-payoff deriving from deviation, and at the same time,
the marginal contribution of any member set that he belongs to must be no less than the sum of the escape-payoffs deriving
from deviation of all the members in the member set. And in a cooperative game with agreements implemented by a third
party, once the cooperation agreement is signed, it is impossible for a member to escape through deviation.

Under information asymmetry, even if all other members of the coalition consider that the marginal contribution of
some member to the coalition is greater than his escape-payoff deriving from deviation, and the marginal contribution
of any member set this member belongs to is greater than the sum of escape-payoffs deriving from deviation of all the
members in the member set, this member may still escape through deviation. The reason is that this member may retain
private information and the information sets of other members are incomplete.

In an information asymmetric cooperative game with agreements self-implemented, the escape through deviation of
any member of a coalition itself is a process of information release. The different escape strategic choices of some player
mean that they may change the information sets of all the players. In the virtual game of player i1, when he decides and
plays his escape strategy on the basis of his estimation of the information sets of other members, his escape strategy as
information release will change the information set and the strategic choice of any other member i2 (i2 ̸= i1). But this is not
the end of the matter. In fact, in the virtual game of player i1, the change of the escape strategy choice of i2 as information
release will change the information set and thus the strategic choice of any other member i3 (i3 ̸= i2) too, …, and so on,
until player i1 has estimated any other member i′2s (i2 ̸= i1) estimation of any other member i′3s (i3 ̸= i2) estimation of …
any other member i′ns (in ̸= in−1) change in his information set and strategic choice. At this point, in the virtual game of
player i1, the influences of the optimal escape strategy choices of all players on the information sets and strategic choices
of all players are taken into account, and the information sets of all players become stable.

Herein, our methodology is finding all kinds of possible information sets, then analyzing the equilibrium of a player’s
virtual game on the basis of stable information sets.
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Given the feasible coalition situation c of the game, in the virtual game of player k1, the feasibility of coalition
situation c means that in coalition situation c, all the players are trusted by other members of the coalitions which they
belong to. For any player j ∈C+, the conditions that he is trusted by other coalition members are shown as follows:

(1) ∑i∈Cc
k

[
Mv(i)k2

(Cc(i)
k )−W

−Cc(i)
k (i)

k2

]
+∑ j∈C+

k , j/∈Cc
k

[
Mv( jF )

k2
(Cc( jF )

k )−W
−Cc( jF )

k ( jF )
k2

]
> 0, i, j ̸= k2;

(2) ∑i∈Cc
k

[
Mv(i)Th

(Cc(i)
k )−∑t∈Th

W
−Cc(i)

k (i)
t

]
+∑ j∈C+

k , j/∈Cc
k

[
Mv( jF )

Th
(Cc( jF )

k )−∑t∈Th
W

−Cc( jF )
k ( jF )

t

]
> 0, i, j ̸= k2, k2 ∈

Th ⊂Ck;

(3) V (i)
Cc

k
−∑t∈Cc

k
W

−Cc(i)
k (i)

t > 0, i ∈Cc
k ; V ( jF )

Cc( jF )
k

−∑
t∈Cc( jF )

k

W
−Cc( jF )

k ( jF )
t > 0, j ∈C+

k , j /∈Cc
k .

The above conditions can be simply denoted as:

∑
i∈Ck

[
Mv(i)k2

(Ck)−W−Ck(i)
k2

]
> 0, i ̸= k2;

∑
i∈Ck

[
Mv(i)Th

(Ck)− ∑
t∈Th

W−Ck(i)
t

]
> 0, i ̸= k2, k2 ∈ Th ⊂Ck;

V (i)
Ck

− ∑
t∈Ck

W−Ck(i)
t > 0, i ∈Ck.

Herein, that somemember is trusted by coalitionC refers to that he is trusted by the extensive coalitionC+. Extensive
coalitionC+ includes all its nominal members, as well as those who are considered to escape from other coalitions through
deviation and join coalitionC.

In coalition situation c, the n nominal coalitions have been formed, what each player k1 should decide includes not
only his escape strategy through deviation, but also the strategic choice he will adopt in the terminal node (core) coalition
which he will join (his false strategic choice in an intermediate node coalition is just a means of information publishing,
not a real strategic choice).

In fact, the strategic choice of some player k1 in his escape target coalition must be subject to the goal of the target
coalition’s maximum expected cooperative payoff, therefore, in feasible coalition situation c, what player k1 needs to
decide includes his escape strategy e(k1)

k1
, and the strategic combination choice that “should” be adopted by the core

coalition which he belongs to. Herein, the core coalition is his terminal node coalition in his virtual game, consisting
of the nominal members who are considered not to escape from the coalition through deviation, and those who claim to
escape from other coalition through deviation and are considered to take the core coalition as his terminal node coalition.
Amember of the core coalition is considered to honor his promise and take the core coalition as his terminal node coalition
in player k1’s virtual game.

Escape strategy e(k1)
k1

of player k1 should be considered to be feasible too, that is to say, if ek1(k1)
k ̸= 0, then,
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∑
i∈C

c(k1)
k

[
Mv(k1, i)

k1
(Cc(k1, i)

k )−W
−C

c(k1, i)
k (k1, i)

k1

]
+ ∑

j∈C
+(k1)
k , j/∈C

c(k1)
k

[
Mv(

k1, jF)
k1

(C
c(k1, jF)
k )−W

−C
c(k1, jF)
k (k1, jF)

k1

]
> 0,

i, j ̸= k1;

∑
i∈C

c(k1)
k

[
Mv(k1, i)

Th
(Cc(k1, i)

k )− ∑
t∈Th

W
−C

c(k1, i)
k (k1, i)

t

]
+ ∑

j∈C+
k , j/∈C

c(k1)
k

[
Mv(

k1, jF)
Th

(C
c(k1, jF)
k )− ∑

t∈Th

W
−C

c(k1, jF)
k (k1, jF)

t

]
> 0,

i, j ̸= k1, k1 ∈ Th ⊂Ck;

V (k1, i)

C
c(k1, i)
k

− ∑
t∈C

c(k1, i)
k

W
−C

c(k1, i)
k (k1, i)

t > 0, i ∈Cc(k1, i)
k ;

V (k1, jF )

C
c(k1, jF )
k

− ∑
t∈C

c(k1, jF )
k

W
−C

c(k1, jF )
k (k1, jF )

t > 0, j ∈Cc(k1, jF )
k ;

we can denote the above conditions as:

∑
i∈Ck

[
Mv(k1, i)

k1
(Ck)−W−Ck(k1, i)

k1

]
> 0, i ̸= k1;

∑
i∈Ck

[
Mv(k1, i)

Th
(Ck)− ∑

t∈Th

W−Ck(k1, i)
t

]
> 0, i ̸= k1, k1 ∈ Th ⊂Ck;

V (k1, i)
Ck

− ∑
t∈Ck

W−Ck(k1, i)
t > 0, i ∈Ck.

That is, whether he honors his commitment to escape through deviation or not, player k1 must be trusted by his escape
target coalition.

Obviously, in coalition situation c, in the virtual game of player k1, his optimal escape strategy e∗(k1)
k1

and the optimal
strategic combination choice s∗(k1)

CT
of the core coalition (as his terminal node coalition) are the optimal response to his

estimations of the optimal escape strategies e∗(k1)
−k1

of other players and other core coalitions’ optimal strategic combination
choices s∗(k1)

−CT
, the goal of his decision-making is to maximize his expected cooperative payoff distribution (from his escape

target core coalition):
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(e∗(k1)
k1

, s∗(k1)
Cc

T
) = argmax(

e(
k1)

k1
, s(

k1)
Cc

T

)x̃(k1)
k1

(Cc
T )
[(

e(k1)
k1

, s(k1)
Cc

T

)
;
(

e∗(k1)
−k1

, s∗(k1)
−Cc

T

)]
,

whereCc
T is the escape target coalition of player k1 in escape situation (e

(k1)
k1

, e∗(k1)
−k1

), ek1(k1)
T = T ; x̃(k1)

k1
(Cc

T ) is player k1’s
estimation of his expected cooperative payoff distribution from core coalitionCc

T he belongs to.
Or, because player k1’s goal of the maximum expected cooperative payoff distribution is consistent with his goal of

theminimum expected escape-payoff deriving from deviation, the goal of player k1’s decision-making is also his minimum
expected escape-payoff deriving from deviation:

(e∗(k1)
k1

, s∗(k1)
Cc

T
) = argmin

(e
(k1)
k1

, s
(k1)
Cc

T
)

W−Cc
T (k1)

k1

[
(e(k1)

k1
, s(k1)

Cc
T
); (e∗(k1)

−k1
, s∗(k1)

−Cc
T
)
]
,

where W−Cc
T (k1)

k1
represents the expected escape-payoff deriving from deviation of player k1 when he escapes from core

coalitionCc
T through deviation.

The n levels virtual game of player k1.
In coalition situation c, assume that player k1 is a member of coalitionC, k1 ∈C, given player k1’s estimation of the

optimal strategic combination choices e∗(k1)
−k1

of other coalitions, when player k1 decides his optimal escape strategy and the
optimal strategic combination choice that the core coalition he belongs to “should” adopt, the goal of his decision-making
is his maximum expected cooperative payoff distribution (from his escape target core coalitionCc

T when he escapes from
C through deviation). As mentioned above, in escape situation (e(k1)

k1
, e∗(k1)

−k1
), the goal of player k1’s maximum expected

cooperative payoff distribution from the escape target core coalitionCc
T is consistent with the goal of maximum expected

cooperative payoff of core coalitionCc
T .

In the first level virtual game of player k1, in coalition situation c, given the escape situation
{

e(k1)
k1

, e∗(k1)
−k1

[
I(k1)

(
ek1 ,

e∗(k1)
−k1

)]}
(where e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]
are the equilibrium escape strategic choices of other players when his escape

strategy is e(k1)
k1

, and the information sets of all the players are I(k1)
[
e(k1)

k1
, e∗(k1)

−k1

]
). At this time, player k1 can make up

three different member sets of coalitionCi:
(1) Nominal member set M(k1)

i , that is, the member set of coalitionCi in coalition situation c when there is no escape
behavior of the members to be considered; nominal coalitionCi is formed by all the nominal members;

(2) Extensive member set M+(k1)
i

{
e(k1)

k1
,e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
,e∗(k1)

−k1

)]}
, that is, the member set of coalition Ci formed

after all its members escape from other coalitions through deviation (including false escape through deviation). In this
member set, all the members in the nominal member set are included, as well as the players in other coalitions who claim
to join coalitionCi through deviation; the extensive members form extensive coalitionC+(k1)

i ;
(3) Coremember setMc(k1)

i

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
, that is, in extensivemember setM+(k1)

i

{
e(k1)

k1
, e∗(k1)

−k1[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
, the member subset formed by those who are considered to eventually join coalitionCi and decide

not to escape from coalitionCi through deviation (that is to say, the extensive members who are considered to take coalition
Ci as their escape target coalition); the core members form core coalitionCc(k1)

i .
At the same time, in player k1’s first level virtual game, when some player plays different escape strategies, player

k1’s estimation of the information sets of other players are different too, because the implementation process of escape
strategy itself is a process of information release. When a player plays different escape strategies, the information he
releases will be different. Therefore, player k1 has different estimations of the optimal escape strategies of other players
in different escape situations. Denote player k1’s estimation of the optimal escape strategic choice of any player when
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player k1 plays escape strategy e(k1)
k1

which he considers feasible as e∗(k1)
−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]
, in coalition situation c of

the virtual game of player k1, when player k1 plays feasible escape strategy e(k1)
k1

, his estimation of the escape situation

will be
{

e(k1)
k1

, e∗(k1)
−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
.

When player k1 chooses escape strategy e(k1)
k1

that is considered feasible, first of all, player k1 needs to estimate the

information sets I(k1)(e(k1)
k1

, e∗(k1)
−k1

) of all the players and the corresponding escape strategic choices e∗(k1)
−k1

[
I(k1)

(
e(k1)

k1
,

e∗(k1)
−k1

)]
of other players, here, the condition that his escape strategy e(k1)

k1
is considered feasible is that, if ek1(k1)

k ̸= 0 (that

is, player k1 chooses coalitionCk as his escape target coalition (e
k1(k1)
k = T ) or his false escape target coalition (ek1(k1)

k = F),
then,

∑
i∈Ck

[
Mv(k1, i)

k1
(Ck)−W−Ck(k1, i)

k1

]
> 0, i ̸= k1;

∑
i∈Ck

[
Mv(k1, i)

Th
(Ck)− ∑

t∈Th

W−Ck(k1, i)
t

]
> 0, i ̸= k1, k1 ∈ Th ⊂Ck;

V (k1, i)
Ck

− ∑
t∈Ck

W−Ck(k1, i)
t > 0, i ∈Ck.

When the information sets of all the players are I(k1)(e(k1)
k1

, e∗(k1)
−k1

), assume that player k1’s estimation of the strategic

combination choice of any other core coalition Cc(k1)
h

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}(
Cc(k1)

h

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)(

e(k1)
k1

, e∗(k1)
−k1

)]}
̸= Cc(k1)

T

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]})
is s∗∗(k1)

Cc
h

{
e(

k1)
k1

, e(
k1)∗
−k1

[
I(k1)

(
e(

k1)
k1

, e
∗(k1)
−k1

)]}, then the optimal
strategic combination that the escape target coalition of player k1 should adopt (that is, in player k1’s first level
virtual game, the optimal strategic combination which maximizes the cooperative payoff of core coalition
Cc(k1)

T

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
is considered to be:
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s◦(k1)

C
c(k1)
T

{
e(

k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e(

k1)
k1

, e
∗(k1)
−k1

)]}

= argmax
s
(k1)

C
c(k1)
T

{
e
(k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e
(k1)
k1

, e
∗(k1)
−k1

) ]}
V (k1)

C
c(k1)
T (·)

(s(k1)

C
c(k1)
T

{
e(

k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e(

k1)
k1

, e
∗(k1)
−k1

)]},

s∗∗(k1)

−C
c(k1)
T

{
e(

k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e(

k1)
k1

, e
∗(k1)
−k1

)]})

= argmax
s
(k1)

C
c(k1)
T

{
e
(k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e
(k1)
k1

, e
∗(k1)
−k1

) ]} ∑
i∈C

c(k1)
T

{
e(

k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e(

k1)
k1

, e
∗(k1)
−k1

)]}u(k1)
i (s(k1)

C
c(k1)
T

{
e(

k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e(

k1)
k1

, e
∗(k1)
−k1

)]},

s∗∗(k1)

−C
c(k1)
T

{
e(

k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e(

k1)
k1

, e
∗(k1)
−k1

)]}).

This maximization model above determines the optimal strategic combination choice of core coalition Cc(k1)
T

{
e(k1)

k1
,

e∗(k1)
−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
in escape situation

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
(in player k1’s first level virtual

game); of course, it also determines player k1’s optimal strategy in escape situation
{

e(k1)
k1

, e∗(k1)
−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
(in player k1’s first level virtual game):

s◦(k1)
k1

(e(k1)
k1

, e∗(k1)
−k1

) ∈ s◦(k1)

C
c(k1)
T

{
e(

k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e(

k1)
k1

, e
∗(k1)
−k1

)]}.

Strategic combination s◦(k1)

C
c(k1)
T

{
e(

k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e(

k1)
k1

, e
∗(k1)
−k1

)]} is the one that player k1’s escape target core coalition

Cc(k1)
T

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
should adopt when player k1 plays escape strategy e(k1)

k1
in player k1’s first

level virtual game, this strategic combination is considered to maximize the cooperative payoff of core coalition
Cc(k1)

T

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
when player k1 plays escape strategy e(k1)

k1
and at the same time maximize

the cooperative payoff distribution of player k1 himself. Denote the cooperative payoff distribution that player k1

gets from core coalition Cc(k1)
T

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
as x̃◦(k1)

k1

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
, and his

escape-payoff deriving from deviation asW
◦−C

c(k1)
T

{
e(

k1)
k1

,e
∗(k1)
−k1

[
I(k1)

(
e(

k1)
k1

,e
∗(k1)
−k1

)]}
(k1)

k1
when he escapes from core coalition

Cc(k1)
T

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
through deviation (we will examine the cooperative payoff distribution

x̃◦(k1)
k1

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
that player k1 gets from core coalitionCc(k1)

T

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
and his escape-payoff deriving from deviationCc(k1)

T in the following).
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Under the escape strategy e(k1)
k1

, the reasonwhy player k1 considers that core coalitionCc(k1)
T

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
,

e∗(k1)
−k1

)]}
“should” adopt strategic combination s◦(k1)

C
c(k1)
T

{
e(

k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e(

k1)
k1

, e
∗(k1)
−k1

)]}which canmaximize the cooperative
payoff of core coalitionCc(k1)

T

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
is that core coalitionCc(k1)

T

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
,

e∗(k1)
−k1

)]}
’s maximum cooperative payoff means the maximum cooperative payoff distributions of all the core members

of core coalition Cc(k1)
T

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
, and also the maximum cooperative payoff distribution

x̃◦(k1)
k1

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
of player k1. Therefore, player k1’s escape strategic choice is aimed at his

maximum cooperative payoff x̃◦(k1)
k1

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
distribution from his target core coalition

Cc(k1)
T

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
:

e∗(k1)
k1

= argmax
e(

k1)
k1

x̃◦(k1)
k1

(
Cc(k1)

T

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]})
.

Or, the goal of his escape strategic choice is his minimum expected escape-payoff deriving from deviation:

e∗(k1)
k1

= argmin
e
(k1)
k1

W
◦−C

c(k1)
T

{
e(

k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e(

k1)
k1

, e
∗(k1)
−k1

)]}
(k1)

k1
.

The escape target core coalition of player k1 isCc(k1)
T

{
e∗(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e∗(k1)

k1
, e∗(k1)

−k1

)]}
, the strategic combination

that this core coalition “should” adopt is:

s∗(k1)

C
c(k1)
T

{
e
∗(k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e
∗(k1)
k1

, e
∗(k1)
−k1

)]} = s◦(k1)

C
c(k1)
T

{
e
∗(k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e
∗(k1)
k1

, e
∗(k1)
−k1

)]}.

The cooperative payoff that core coalitionCc(k1)
T

{
e∗(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e∗(k1)

k1
, e∗(k1)

−k1

)]}
“should” get is:

V (k1)

C
c(k1)
T (·)

(s∗(k1)

C
c(k1)
T

{
e
∗(k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e
∗(k1)
k1

, e
∗(k1)
−k1

)]}, s∗∗(k1)

−C
c(k1)
T

{
e
∗(k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e
∗(k1)
k1

, e
∗(k1)
−k1

)]})

= ∑
i∈C

c(k1)
T

{
e
∗(k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e
∗(k1)
k1

, e
∗(k1)
−k1

)]}u(k1)
i (s∗(k1)

C
c(k1)
T

{
e
∗(k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e
∗(k1)
k1

, e
∗(k1)
−k1

)]},

s∗∗(k1)

−C
c(k1)
T

{
e
∗(k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e
∗(k1)
k1

, e
∗(k1)
−k1

)]}).

The expected cooperative payoff distribution x̃o(k1)
k1

(
Cc(k1)

T

{
e∗(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e∗(k1)

k1
, e∗(k1)

−k1

)]})
of player k1 is the

maximum expected cooperative payoff distribution that player k1 can get in coalition situation c:
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x̃∗(k1)
k1

= x̃◦(k1)
k1

(
Cc(k1)

T

{
e∗(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e∗(k1)

k1
, e∗(k1)

−k1

)]})
.

In player k1’s first level virtual game, when player k1 decides his own optimal escape strategy and the optimal
strategic combination choices of his core coalition, he must estimate the optimal escape strategy e∗(k1)

k2
of any other player

k2(k2 ̸= k1) and the strategic combination choices s∗∗(k1)

−C
c(k1)
T

{
e(

k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e(

k1)
k1

, e
∗(k1)
−k1

)]} of the core coalitions other than
his own. This estimation relies on player k1’s estimation of any other player k2’s estimation of his own equilibrium choices
based on his own information set in player k1’s virtual game. Player k1’s estimation of the escape strategic choice e∗(k1)

k2
of any other player k2 depends on player k2’s choice based on his own information set in player k1’s virtual game:

e∗(k1)
k2

= e∗(k1, k2)
k2

.

The strategic combination choice s∗∗(k1)

C
c(k1)
h

{
e(

k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e(

k1)
k1

, e
∗(k1)
−k1

)]} of any other core coalitionCc(k1)
h

{
e(k1)

k1
, e∗(k1)

−k1[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]} (
Cc(k1)

h

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]}
̸=Cc(k1)

T

{
e(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e(k1)

k1
, e∗(k1)

−k1

)]})
depends on the equilibrium public choice of extensive coalitionC+(k1)

h

{
e∗(k1)

k1
, e∗(k1)

−k1

[
I(k1)

(
e∗(k1)

k1
, e∗(k1)

−k1

)]}
:

s∗∗(k1)

C
c(k1)
h

{
e(

k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e(

k1)
k1

, e
∗(k1)
−k1

)]} ⊆ s
∗∗(k1, C

+(k1)
h )

C
+(k1)
h

{
e(

k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e(

k1)
k1

, e
∗(k1)
−k1

)]};

s∗∗(k1)

C
c(k1)
h

{
e(

k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e(

k1)
k1

, e
∗(k1)
−k1

)]} = argmax

 ∑
i∈C

c(k1)
h (·)

V (k1, i)

C
c(k1, i)
T (·)

(
s(k1, i)

C
c(k1, i)
T (·)

, s∗∗(k1, i)

−C
c(k1, i)
T (·)

)

+ ∑
j∈C

+(k1)
h (·)

j/∈C
c(k1)
h (·)

V (k1, jF )

C
c(k1, j)
h (·)

(
s(k1, jF )

C
c(k1, j)
h (·)

, s∗∗(k1, jF )

C
c(k1, j)
T (·)

, s∗∗(k1, jF )

−C
c(k1, j)
h (·), −C

c(k1, j)
T (·)

)
;

V (k1, jF)

C
c(k1, j)
h (·)

(
s(

k1, jF)

C
c(k1, j)
h (·)

, s
∗∗(k1, jF)

C
c(k1, j)
T (·)

, s
∗∗(k1, jF)

−C
c(k1, j)
h (·), −C

c(k1 , j)
T (·)

)
=V (k1, jF)

C
c(k1, j)
h (·)

(
s(

k1, jF)

C
c(k1 , j)
h (·)

, i(
k1, jF)

j

)(
i(

k1, jF)
j ∈ I(

k1, jF)
j

)
;

where i ∈ Cc(k1)
h (·). Therefore, the escape target core coalition Cc(k1, i)

T (·) of player i is core coalition Cc(k1)
h (·), j ∈

C+(k1)
h (·), j /∈ Cc(k1)

h (·), core coalition Cc(k1, i)
h (·) and core coalition Cc(k1)

h (·) are the same, the escape target coalition

Cc(k1, j)
T (·)of player j when he escapes through deviation is not core coalitionCc(k1)

h (·); V (k1, jF )

C
c(k1, j)
T (·)

(
s(k1, jF )

C
c(k1, j)
h (·)

, s∗∗(k1, jF )

C
c(k1, j)
T (·)

,

s∗∗(k1, jF )

−C
c(k1, j)
h (·), −C

c(k1, j)
T (·)

)
is player k1’s estimation of player j’s (false) estimation of the cooperative payoff of core coalition

Cc(k1, j)
T (·) according to the false signal released by player j, i(k1, jF )

j is player k1’s estimation of the false signal of player

j, s∗∗(k1, jF )

C
c(k1, j)
T (·)

, s∗∗(k1, jF )

−C
c(k1, j)
h (·), −C

c(k1, j)
T (·)

is player k1’s estimation of player j’s (false) estimation of the strategic combination
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choices of core coalitions (including core coalition Cc(k1, j)
T (·) which player j finally joins ) other than player j’s false

escape target core coalitionCc(k1, j)
h (·) accor-ding to the false signal released by player j, i(k1, jF )

j .

Therefore, in player k1’s virtual game, player j’s
[

j ∈C+(k1)
h (·), j /∈Cc(k1)

h (·)
]
estimation of the strategic combination

choice s∗∗(k1, j)

C
c(k1, j)
h (·)

of core coalitionCc(k1, j)
h (·) is a function of his false signal i(k1, jF )

j :

s∗∗(k1, j)

C
c(k1, j)
h (·)

=s∗∗(k1, j)

C
c(k1, j)
h (·)

(i(k1, jF )
j )

=argmax

 ∑
i∈C

c(k1, j)
h (·)

V (k1, j, i)

C
c(k1, j, i)
T (·)

(
s(k1, j, i)

C
c(k1, j, i)
T (·)

, s∗∗(k1, j, i)

−C
c(k1, j, i)
T (·)

)
+V (k1, jF )

C
c(k1 , j)
h (·)

(
s(k1, jF )

C
c(k1, j)
h (·)

, i(k1, jF )
j

)

+ ∑
k∈C

+(k1, j)
h (·)

k/∈C
c(k1 , j)
h (·)

k ̸= j

V (k1, j, kF )

C
c(k1, j, k)
h (·)

(
s(k1, j, kF )

C
c(k1, j, k)
h (·)

, i∗(k1, j, kF )
j

)
,

where i ∈ Cc(k1, j)
h (·), therefore the escape target core coalition Cc(k1, j, i)

T (·) of player i is core coalition Cc(k1, j)
h (·), k ∈

C+(k1, j)
h (·), k /∈Cc(k1, j)

h (·), core coalition Cc(k1, j, k)
h (·) and core coalition Cc(k1, j)

h (·) are the same, the escape target core
coalitionCc(k1, j, k)

T (·) of player k when he escapes through deviation is not core coalitionCc(k1, j)
h (·); i∗(k1, j, kF )

j is player

j’s estimation of the optimal false signal of any extensive member k
[
k ∈C+(k1, j)

h (·), k /∈Cc(k1, j)
h (·), k ̸= j

]
in player j’s

virtual game.
Player j’s purpose of releasing false signal to his intermediate node coalition Cc(k1, j)

h (·) is to influence the public
choice of the strategic combination choice of core coalitionCc(k1, j)

h (·), thereby maximize the expected cooperative payoff
of player j's terminal node core coalitionCc(k1, j)

T (·):

i∗(k1, jF )
j = argmax

i
(k1, jF )
j ∈I

(k1, jF )
j

V (k1, j)

C
c(k1, j)
T (·)

(
s∗∗(k1, j)

C
c(k1, j)
h (·)

(i(k1, jF )
j ), s∗(k1, j)

C
c(k1, j)
T (·)

, s∗∗(k1, j)

−C
c(k1 , j)
h (·), −C

c(k1 , j)
T (·)

)
.

Obviously, to estimate the strategic combination choice s∗∗(k1)

C
c(k1)
h

{
e(

k1)
k1

, e
∗(k1)
−k1

[
I(k1)

(
e(

k1)
k1

, e
∗(k1)
−k1

)]} of any other core

coalition Cc(k1)
h (·), player k1 needs to estimate any core member i’s [who belongs to core coalition Cc(k1)

h (·)] estimation
of the strategic combination choices s∗∗(k1, i)

−C
c(k1 , i)
T (·)

of other core coalitions −Cc(k1)
h (·), and any extensive member j’s [who

belongs to core coalition Cc(k1)
h (·)] estimation of the strategic combination choice that core coalition Cc(k1)

h (·) “should”
adopt, extensive member j’s estimation of the strategic combination choices s∗∗(k1, j)

−C
c(k1, j)
h (·), −C

c(k1, j)
T (·)

of the core coalitions

other than core coalition Cc(k1, j)
h (·) and his terminal node core coalition Cc(k1, j)

T (·), as well as extensive member j’s
estimation of any extensive member k’s optimal signal i∗(k1, j, kF )

j .
Thus, the virtual game of player k1 enters the second level. In the second level virtual game, in order to get his

optimal escape strategy in coalition situation c, player k1 needs to estimate the escape strategy e∗(k1, k2)
k2

(e(k1)
k1

) of any other
player k2(k2 ̸= k1)when he plays any feasible escape strategy e(k1)

k1
. And in order to get his optimal escape strategy, player
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k2(k2 ̸= k1) needs to estimate the escape strategy e∗(k1, k2, k3)
k3

(e(k1)
k1

, e(k1, k2)
k2

) of any other player k3(k3 ̸= k2)when he plays
any feasible escape strategy e(k1, k2)

k2
. At this point, player k1’s virtual game enters the third level, …

Examine player k1’s virtual game level by level up to the n-th level, we get the virtual game of player k1 with the
information sets of other players stable.

The model of the t-th (1 ≤ t ≤ n) level virtual game of player k1 is shown as follows.
The t-th level virtual game of player k1

In player k1’s t-th level virtual game, player k1 needs to estimate any player k2’s estimation of … any player kt ’s
estimation of the escape strategy e∗(k1, ··· , kt+1)

kt+1
of any other player kt+1(kt+1 ̸= kt) and the strategic combination choices

s∗∗(k1, k2, ··· , kt )

C
c(k1, k2 , ··· , kt )
h

{
e(

k1, k2, ··· , kt )
kt

, e
∗(k1, k2, ··· , kt )
−kt

[
I(k1, ··· , kt )

(
e(

k1)
k1

, ··· ; e(
k1 , k2 , ··· , kt )

kt
, e

∗(k1, k2, ··· , kt )
−k1 , −k2, ··· , −kt

)]} of core coalitionsCc(k1, k2, ··· , kt )
h{

e(k1, k2, ··· , kt )
kt

, e∗(k1, k2, ··· , kt )
−kt

[
I(k1, ··· , kt )

(
e(k1)

k1
, · · · ; e(k1, k2, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−k1, −k2, ··· , −kt

)]}
other than the escape target core

coalition of player kt , when the feasible escape strategies that player k1, player k2, …, player kt−1 play are respectively
e(k1)

k1
, e(k1, k2)

k2
, e(k1, k2, k3)

k3
, …, e(k1, k2, ··· , kt−1)

kt−1
.

In player k1’s t-th level virtual game, when the feasible escape strategies that player k1, player k2, …, player kt−1

play are respectively e(k1)
k1

, e(k1, k2)
k2

, e(k1, k2, k3)
k3

, …, e(k1, k2, ··· , kt−1)
kt−1

, first player kt needs to estimate the information sets

I(k1, ··· , kt )(e(k1)
k1

, · · · , e(k1, ··· , kt )
kt

, e∗(k1, k2, ··· , kt )
−k1, −k2, ··· , −kt

) of all the players, his optimal escape strategic e∗(k1, ··· , kt )
kt

[
I(k1, ··· , kt )(

e(k1)
k1

, · · · , e(k1, k2, ··· , kt )
kt

, e∗(k1, k2, ··· , kt )
−k1, −k2, ··· , −kt

)]
, choice and the strategic combination choice s

C
c(k1 , k2 , ··· , kt )
T

{
e(

k1, k2, ··· , kt )
kt

,

e∗(k1, k2, ··· , kt )
−kt

[
I(k1, ··· , kt )

(
e(k1)

k1
, · · · ; e(k1, k2, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−k1, −k2, ··· , −kt

)]}∗(k1, k2, ··· , kt )
of his escape target core coalition,

where the condition that player k1 considers player k2 considers … player kt considers some escape strategy e(k1, k2, ··· , kt )
kt

is feasible is that if ekt (k1, k2, ··· , kt )
k ̸= 0 (ekt (k1, k2, ··· , kt )

k = T , or, ekt (k1, k2, ··· , kt )
k = F), then,

∑
i∈Ck

[
Mv(k1, k2, ··· , kt , i)

k1
(Ck)−W−Ck(k1, k2, ··· , kt , i)

k1

]
> 0, i ̸= kt ;

∑
i∈Ck

[
Mv(k1, k2, ··· , kt , i)

Th
(Ck)− ∑

t∈Th

W−Ck(k1, k2, ··· , kt , i)
t

]
> 0, i ̸= kt , kt ∈ Th ⊂Ck;

V (k1, k2, ··· , kt , i)
Ck

− ∑
t∈Ck

W−Ck(k1, k2, ··· , kt , i)
t > 0, i ∈Ck.

Assume that under information sets I(k1, ··· , kt )(e(k1)
k1

, · · · , e(k1, ··· , kt )
kt

, e∗(k1, k2, ··· , kt )
−k1, −k2, ··· , −kt

), player k1’s estimation
of player k1’s estimation of … player kt ’s estimation of the strategic combination choice of any core coalition
Cc(k1, k2, ··· , kt )

h

{
e(k1, k2, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−kt

[
I(k1, ··· , kt )

(
e(k1)

k1
, · · · ; e(k1, k2, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−k1, −k2, ··· , −kt

)]}(
̸=Cc(k1, k2, ··· , kt )

T{
e(k1, k2, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−kt

[
I(k1, ··· , kt )

(
e(k1)

k1
, · · · ; e(k1, k2, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−k1, −k2, ··· , −kt

)]})
is s

C
c(k1, k2 , ··· , kt )
h

{
e(

k1, k2, ··· , kt )
kt

,

e∗(k1, k2, ··· , kt )
−kt

[
I(k1, ··· , kt )

(
e(k1)

k1
, · · · ; e(k1, k2, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−k1, −k2, ··· , −kt

)]}∗∗(k1, k2, ··· , kt )
, the strategic combination choice

that core coalition Cc(k1, k2, ··· , kt )
T

{
e(k1, k2, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−kt

[
I(k1, ··· , kt )

(
e(k1)

k1
, · · · ; e(k1, k2, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−k1, −k2, ··· , −kt

)]}
which is player kt ’s escape target “should” adopt (that is, the strategic combination choice that is considered to maximize
the cooperative payoff of core coalitionCc(k1, k2, ··· , kt )

T

{
e(k1, k2, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−kt

[
I(k1, ··· , kt )

(
e(k1)

k1
, · · · ; e(k1, k2, ··· , kt )

kt
,

e∗(k1, k2, ··· , kt )
−k1, −k2, ··· , −kt

)]}
is:
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s◦(k1, k2, ··· ,kt )

C
c(k1, k2, ··· , kt )
T

{
e(

k1 , k2 , ··· , kt )
kt

, e
∗(k1, k2, ··· , kt )
−kt

[
I(k1, ··· , kt )

(
e(

k1)
k1

, ··· ; e(
k1, k2, ··· , kt )

kt
, e

∗(k1 , k2 , ··· , kt )
−k1,−k2, ··· , −kt

)]}

= argmax
s
(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T

{
e
(k1, k2, ··· , kt )
kt

, e
∗(k1, k2, ··· , kt )
−kt

[
I(k1 , ··· , kt )

(
e
(k1)
k1

, ··· ; e
(k1, k2, ··· , kt )
kt

, e
∗(k1, k2, ··· , kt )
−k1, −k2, ··· , −kt

)]}

V (k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T (·)

s(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T

{
e(

k1, k2, ··· , kt )
kt

, e
∗(k1 , k2, ··· , kt )
−kt

[
I(k1, ··· , kt )

(
e(

k1)
k1

, ··· ; e(
k1, k2, ··· , kt )

kt
, e

∗(k1, k2, ··· , kt )
−k1, −k2, ··· , −kt

)]},

s∗∗(k1, k2, ··· , kt )

−C
c(k1, k2, ··· , kt )
T

{
e(

k1, k2, ··· , kt )
kt

, e
∗(k1 , k2, ··· ,kt )
−kt

[
I(k1, ··· , kt )

(
e(

k1)
k1

, ··· ; e(
k1, k2, ··· , kt )

kt
, e

∗(k1, k2, ··· , kt )
−k1, −k2, ··· , −kt

)]}


= argmax
s
(k1 , k2 , ··· , kt )

C
c(k1, k2 , ··· , kt )
T (s

(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T

{
e
(k1 , k2, ··· , kt )
kt

, e
∗(k1 , k2 , ··· , kt )
−kt

[
I(k1, ··· , kt )

(
e
(k1)
k1

, ··· ; e
(k1, k2, ··· , kt )
kt

, e
∗(k1, k2, ··· , kt )
−k1, −k2, ··· , −kt

)]}

∑
i∈C

c(k1, k2, ··· , kt )
T (s

(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T

{
e
(k1, k2, ··· ,kt )
kt

, e
∗(k1, k2, ··· , kt )
−kt

[
I(k1 , ··· , kt )

(
e
(k1)
k1

, ··· ; e
(k1, k2, ··· , kt )
kt

, e
∗(k1, k2, ··· , kt )
−k1, −k2, ··· , −kt

)]}

u(k1, k2, ··· , kt )
i

s(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T (s

(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T

{
e
(k1, k2,··· , kt )
kt

, e
∗(k1, k2, ··· , kt )
−kt

[
I(k1, ··· , kt )

(
e
(k1)
k1

, ··· ; e
(k1, k2, ··· , kt )
kt

, e
∗(k1, k2, ··· , kt )
−k1, −k2, ··· , −kt

)]} ,

s∗∗(k1, k2, ··· , kt )

−C
c(k1, k2, ··· , kt )
T (s

(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T

{
e
(k1, k2, ··· , kt )
kt

, e
∗(k1, k2, ··· , kt )
−kt

[
I(k1 , ··· , kt )

(
e
(k1)
k1

, ··· ; e
(k1, k2, ··· , kt )
kt

, e
∗(k1, k2, ··· , kt )
−k1, −k2, ··· , −kt

)]}

 .

This maximization model also determines (player k1’s estimation of player k2’s estimation of …) player kt ’s
estimation of his optimal strategic choice in the escape situation

{
e(k1, k2, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−kt

[
I(k1, ··· , kt )

(
e(k1)

k1
, · · · ;

e(k1, k2, ··· , kt )
kt

, e∗(k1, k2, ··· , kt )
−k1,−k2, ··· , −kt

)]}
:

s◦(k1, k2, ··· , kt )
kt

(
e(k1, ··· , kt )

kt
, e∗(k1, ··· , kt+1)

k−t

)

∈s◦(k1, k2, ··· , kt )

C
c(k1, k2 , ··· , kt )
T

{
e(

k1, k2, ··· , kt )
kt

, e
∗(k1, k2, ··· , kt )
−kt

[
I(k1, ··· , kt )

(
e(

k1)
k1

, ··· ; e(
k1 , k2, ··· , kt )

kt
, e

∗(k1, k2, ··· , kt )
−k1, −k2, ··· , −kt

)]}.
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s◦(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T

{
e(

k1, k2, ··· , kt )
kt

, e
∗(k1, k2, ··· , kt )
−kt

[
I(k1, ··· , kt )

(
e(

k1)
k1

, ··· ; e(
k1, k2 , ··· , kt )

kt
, e

∗(k1, k2, ··· , kt )
−k1 , −k2 , ··· , −kt

)]} is (player k1’s estimation of

player k2’s estimation of …) player kt ’s estimation of the strategic combination that his escape target core coalition
“should” adopt in the escape situation

{
e(k1, k2, ··· ,kt )

kt
, e∗(k1, k2, ··· , kt )

−kt

[
I(k1, ··· , kt )

(
e(k1)

k1
, · · · ; e(k1, k2, ··· , kt )

kt
, e∗(k1,k2, ··· ,kt )

−k1,−k2, ··· ,−kt

)]}
when player kt plays escape strategy e(k1, ··· , kt )

kt
, this strategic combination will maximize the cooperative payoff of player

kt ’s escape target core coalition Cc(k1, k2, ··· , kt )
T (·) when he plays escape strategy e(k1, ··· , kt )

kt
, and it also means that player

kt gets the maximum expected cooperative payoff distribution from the core coalition. Denote player kt ’s expected
cooperative payoff distribution from core coalitionCc(k1, k2, ··· , kt )

T (·) as x̃◦(k1, k2)
k2

(
Cc(k1, k2)

T

{
e(k1, k2, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−kt[
I(k1, ··· , kt )

(
e(k1)

k1
, · · · ; e(k1, k2, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−k1, −k2, ··· , −kt

)]})
, and player kt ’s estimation of his escape-payoff deriving

from deviation when he escapes from core coalitionCc(k1, k2, ··· , kt )
T (·) through deviation asW

◦−C
c(k1, k2, ··· , kt )
T (·)(k1, k2, ··· , kt )

kt
.

Under escape strategy e(k1, ··· , kt )
kt

, the reason why in player k1’s t-th level virtual game player kt considers the strategic
combination that his escape target core coalitionCc(k1, k2, ··· , kt )

T (·) “should” adopt is s
C

c(k1, k2, ··· , kt )
T

{
e(

k1, k2 , ··· , kt )
kt

, e
∗(k1, k2, ··· , kt )
−kt[

I(k1, ··· , kt )
(

e(k1)
k1

, · · · ; e(k1, k2, ··· , kt )
kt

, e∗(k1, k2, ··· , kt )
−k1, −k2, ··· , −kt

)]}◦(k1, k2, ··· , kt )
, which can maximize the expected cooperative

payoff V (k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T (·)

(
s(k1, k2, ··· , kt )

C
c(k1,k2 , ··· , kt )
T (·)

, s∗∗(k1, k2, ··· , kt )

−C
c(k1, k2, ··· , kt )
T (·)

)
of core coalition Cc(k1, k2, ··· , kt )

T (·), is that the maximum

cooperative payoff of his escape target core coalition Cc(k1, k2, ··· , kt )
T (·) under his escape strategy e(k1, ··· , kt )

kt
means his

expected cooperative payoff distribution x̃◦(k1, k2, ··· , kt )
kt

[
Cc(k1, k2, ··· , kt )

T (·)
]
maximized at the same time. Therefore, the

goal of player kt is his maximum expected cooperative payoff distribution x̃◦(k1, k2, ··· , kt )
kt[

Cc(k1, k2, ··· , kt )
T (·)

]
when he chooses escape strategy e(k1, ··· , kt )

kt
:

e∗(k1, ··· , kt )
kt

(e(k1)
k1

, · · · , e(k1, ··· , kt )
kt−1

) = argmax
e(

k1, ··· , kt )
kt

x̃◦(k1, k2, ··· , kt )
kt

[
Cc(k1, k2, ··· , kt )

T (·)
]
.

Or, the goal of player kt ’s escape strategic choice is his minimum expected escape-payoff deriving from deviation:

e∗(k1, ··· , kt )
kt

(e(k1)
k1

, · · · , e(k1, ··· , kt )
kt−1

) = argmin
e(kt , ··· , kt )

kt

W
◦−C

c(k1, k2, ··· , kt )
T (·)(k1, k2, ··· , kt )

kt
.

The escape target core coalition of player kt is

Cc(k1, k2, ··· , kt )
T

{
e∗(k1, k2, ··· , kt )

kt

(
e(k1)

k1
, · · · , e(k1, ··· , kt−1)

kt−1

)
, e∗(k1, k2, ··· , kt )

−kt

[
I(k1, ··· , kt )(·)

]}
,

I(k1, ··· , kt )(·) = I(k1, ··· , kt )
(

e(k1)
k1

, e(k1, k2)
k2

, · · · , e(k1, ··· , kt−1)
kt−1

, e∗(k1, k2, ··· , kt )
−k1, −k2, ··· ,−kt

)
.

The strategic combination that core coalitionCc(k1, k2, ··· , kt )
T (·) “should” adopt is considered to be:
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s∗(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T

{
e
∗(k1 , k2, ··· , kt )
kt

(
e(

k1)
k1

, ··· , e
(k1, ··· , kt−1)
kt−1

)
, e

∗(k1, k2, ··· , kt )
−kt

[
I(k1, ··· , kt )(·)

]}

=s◦(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T

{
e
∗(k1 , k2 , ··· , kt )
kt

(
e(

k1)
k1

, ··· , e
(k1, ··· , kt−1)
kt−1

)
, e

∗(k1, k2, ··· , kt )
−kt

[
I(k1, ··· , kt )(·)

]}.

The cooperative payoff that core coalitionCc(k1, k2, ··· , kt )
T (·) “should” get is considered to be:

V (k1, k2, ··· , kt )

C
c(k1 , k2 , ··· , kt )
T (·)

(s◦(k1, k2, ··· , kt )

C
c(k1, k2 , ··· , kt )
T

{
e
∗(k1, k2, ··· , kt )
kt

(
e(

k1)
k1

, ··· , e
(k1, ··· , kt−1)
kt−1

)
, e

∗(k1, k2, ··· , kt )
−kt

[
I(k1 , ··· , kt )(·)

]},

s∗∗(k1, k2, ··· , kt )

−C
c(k1, k2, ··· , kt )
T

{
e
∗(k1, k2, ··· , kt )
kt

(
e(

k1)
k1

, ··· , e
(k1, ··· , kt−1)
kt−1

)
, e

∗(k1, k2, ··· , kt )
−kt

[
I(k1, ··· , kt )(·)

]})

= ∑
i∈C

c(k1, k2, ··· , kt )
T

{
e
∗(k1, k2, ··· , kt )
kt

(
e(

k1)
k1

, ··· , e
(k1, ··· , kt−1)
kt−1

)
, e

∗(k1, k2, ··· , kt )
−kt

[
I(k1, ··· , kt )(·)

]}

u(k1, k2, ··· , kt )
i (s◦(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T

{
e
∗(k1, k2, ··· , kt )
kt

(
e(

k1)
k1

, ··· , e
(k1, ··· , kt−1)
kt−1

)
, e

∗(k1, k2, ··· , kt )
−kt

[
I(k1, ··· , kt )(·)

]},

s∗∗(k1, k2, ··· , kt )

−C
c(k1, k2,··· , kt )
T

{
e
∗(k1, k2, ··· , kt )
kt

(
e(

k1)
k1

, ··· , e
(k1, ··· , kt−1)
kt−1

)
, e

∗(k1, k2, ··· , kt )
−kt

[
I(k1, ··· , kt )(·)

]}),

I(k1, ··· , kt )(·) = I(k1, ··· , kt )
[
e(k1)

k1
, e(k1, k2)

k2
, · · · , e∗(k1, k2, ··· ,kt )

kt
(e(k1)

k1
, · · · , e(k1, ··· , kt−1)

kt−1
), e∗(k1, k2, ··· , kt )

−k1,−k2, ··· , −kt

]
.

Player kt ’s estimation of his maximum expected cooperative payoff distribution is considered to be:

x̃∗(k1, ··· , kt )
kt

(e(k1)
k1

, · · · , e(k1, ··· , kt−1)
kt−1

)

=x̃◦(k1, ··· , kt )
kt

(e(k1)
k1

, · · · , e(k1, ··· , kt−1)
kt−1

)(Cc(k1, k2, ··· , kt )
T

{
e∗(k1, k2, ··· , kt )

kt

(
e(k1)

k1
, · · · , e(k1, ··· , kt−1)

kt−1

)
,

e∗(k1, k2, ··· , kt )
−kt

[
I(k1, ··· , kt )(·)

]
);

I(k1, ··· , kt )(·) = I(k1, ··· , kt )
[
e(k1)

k1
, e(k1, k2)

k2
, · · · , e∗(k1, k2, ··· , kt )

kt
(e(k1)

k1
, · · · , e(k1, ··· , kt−1)

kt−1
), e∗(k1, k2, ··· , kt )

−k1, −k2, ··· , −kt

]
.
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In player k1’s t-th level virtual game, player kt must estimate the escape strategic choice e∗(k1, k2, ··· , kt )
−kt

of any other player −kt on the basis of player −kt ’s own information set and the strategic combination
choices s∗∗(k1, k2, ··· , kt )

−C
c(k1, k2, ··· , kt )
T

[
e(

k1, ··· , kt )
kt

, e
∗(k1, k2, ··· , kt )
−kt

(I(k1, ··· , kt )(·)
] of the core coalitions other than player kt ’s escape target core

coalition when he decides his optimal escape strategy and the optimal strategic combination choice of his escape target
core coalition. Player kt ’s decision-making relies on his estimation of the equilibrium escape strategic choice of any player
−kt in player −kt ’s virtual game. Player kt ’s estimation of any other player −kt ’s estimation of his own escape strategic
choice e∗(k1, k2, ··· , kt )

−kt
depends on player −kt ’s choice based on his own information set:

e∗(k1, k2, ··· , kt )
−kt

= e∗(k1, k2, ··· , kt , −kt )
−kt

.

In player k1’s t-th level virtual game, strategic combination choice s∗∗(k1,k2,··· ,kt )

C
c(k1,k2,··· ,kt )
h

{
e(

k1 ,··· ,kt )
kt

,e
∗(k1,k2,··· ,kt )
−kt

[
I(k1,··· ,kt )(·)

]} of any
core coalition Cc(k1, k2, ··· , kt )

h

{
e(k1, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−kt

[
I(k1, ··· , kt )(·)

]}
(̸=Cc(k1, k2, ··· , kt )

T

{
e(k1, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−kt[
I(k1, ··· , kt )(·)

]}
) depends on the public choice game of extensive coalition C+(k1, k2, ··· , kt )

h

{
e(k1, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−kt[
I(k1, ··· , kt )(·)

]}
among its extensive members:

s∗(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
h

{
e(

k1, ··· , kt )
kt

, e
∗(k1, k2, ··· , kt )
−kt

[
I(k1, ··· , kt )

(
e(

k1)
k1

, ··· , e
∗(k1, k2, ··· , kt )
kt

(
e(

k1)
k1

, ··· , e
(k1 , ··· , kt−1)
kt−1

)
, e

∗(k1, k2, ··· , kt )
−k1, −k2, ··· , −kt

)]}

⊆s
∗(k1, k2, ··· , kt , C

+(k1, k2 , ··· , kt )
h )

C
+(k1, k2, ··· , kt )
h

{
e(

k1, ··· , kt )
kt

, e
∗(k1 , k2 , ··· , kt )
−kt

[
I(k1, ··· , kt )

(
e(

k1)
k1

, ··· , e
∗(k1 , k2 , ··· , kt )
kt

(
e(

k1)
k1

, ··· , e
(k1, ··· , kt−1)
kt−1

)
, e

∗(k1, k2, ··· , kt )
−k1, −k2, ··· , −kt

)]};

s∗(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
h

{
e(

k1 , ··· , kt )
kt

, e
∗(k1, k2, ··· ,kt )
−kt

[
I(k1, ··· , kt )

(
e(

k1)
k1

, ··· , e
∗(k1, k2, ··· , kt )
kt

(
e(

k1)
k1

, ··· , e
(k1, ··· , kt−1)
kt−1

)
, e

∗(k1, k2, ··· , kt )
−k1, −k2, ··· , −kt

)]}

= argmax
s
(k1, k2, ··· , kt )

C
c(k1 , k2, ··· , kt )
h (·)

 ∑
i∈C

c(k1, k2, ··· , kt )
h (·)

V (k1, ··· , kt , i)

C
c(k1, k2, ··· , kt , i)
T (·)

(s(k1, ··· , kt , i)

C
c(k1, k2, ··· , kt , i)
T (·)

, s∗∗(k1, ··· , kt , i)

−C
c(k1, k2, ··· , kt , i)
T (·)

)

+ ∑
j∈C

+(k1, k2, ··· , kt )
h (·)

j/∈C
c(k1, k2, ··· , kt )
h (·)

V (k1, k2, ··· , kt , jF )

C
c(k1 , k2, ··· , kt , j)
h (·)

(s(k1, k2, ··· , kt , jF )

C
c(k1, k2 , ··· , kt , j)
h (·)

, s∗∗(k1, k2, ··· , kt , jF )

C
c(k1, k2, ··· , kt , j)
T (·)

, s∗∗(k1, k2, ··· , kt , jF )

−C
c(k1 , k2, ··· , kt , j)
h (·), −C

c(k1, k2, ··· ,kt , j)
T (·)

)

}
;

V (k1, k2, ··· , kt , jF )

C
c(k1 , k2 , ··· , kt , j)
h (·)

(s(k1, k2, ··· , kt , jF )

C
c(k1, k2, ··· , kt , j)
h (·)

, s∗∗(k1, k2, ··· , kt , jF )

C
c(k1, k2, ··· , kt , j)
T (·)

, s∗∗(k1, k2, ··· , kt , jF )

−C
c(k1, k2, ··· , kt , j)
h (·), −C

c(k1 , k2, ··· , kt , j)
T (·)

)

=V (k1, k2, ··· , kt , jF )

C
c(k1, k2 , ··· , kt , j)
h (·)

(s(k1, k2, ··· , kt , jF )

C
c(k1, k2, ··· , kt , j)
h (·)

, i(k1, k2, ··· , kt , jF )
j ), i(k1, k2, ··· , kt , jF )

j ∈ I(k1, k2, ··· , kt , jF )
j ;

Contemporary Mathematics 5096 | Jeanpantz Chen



where i ∈ Cc(k1, k2, ··· , kt )
h (·), therefore the escape target core coalition Cc(k1, k2, ··· , kt , i)

T (·) of player i is core coalition
Cc(k1, k2, ··· , kt )

h (·), j ∈C+(k1, k2, ··· , kt )
h (·), j /∈Cc(k1, k2, ··· , kt )

h (·), core coalitionCc(k1, k2, ··· , kt )
h (·) and core coalitionCc(k1, k2)

h (·)
are the same, player j’s escape target core coalition Cc(k1, k2, ··· , kt , j)

T (·) is not core coalition Cc(k1, k2, ··· , kt )
h (·),

V (k1, k2, ··· , kt , jF )

C
c(k1 , k2, ··· , kt , j)
h (·)

(
s(k1, k2, ··· , kt , jF )

C
c(k1, k2, ··· , kt , j)
h (·)

, s∗∗(k1, k2, ··· , kt , jF )

C
c(k1, k2, ··· , kt , j)
T (·)

, s∗∗(k1, k2, ··· , kt , jF )

−C
c(k1, k2, ··· , kt , j)
h (·), −C

c(k1,k2, ··· , kt , j)
T (·)

)
represents player kt ’s

estimation of the cooperative payoff of core coalition Cc(k1, k2, ··· , kt , j)
T (·) according to the false signal released by player

j, i(k1, k2, ··· , kt , jF )
j is player kt ’s estimation of the false signal released by player j, I(k1, k2, ··· , kt , jF )

j is player kt ’s estimation

of player j’s feasible false signal set, s∗∗(k1, k2, ··· , kt , jF )

C
c(k1, k2, ··· , kt , j)
T (·)

, s∗∗(k1, k2, ··· , kt , jF )

−C
c(k1, k2, ··· , kt , j)
h (·), −C

c(k1, k2, ··· , kt , j)
T (·)

is player kt ’s estimation

of player j’s estimation of the strategic combination choices of core coalitions [including player j’s escape target core
coalitionCc(k1, k2, ··· , kt , j)

T (·)] other than player j’s intermediate node core coalitionCc(k1, k2, ··· , kt , j)
h (·).

Therefore, in player k1’s t-th level virtual game, player j’s
[

j ∈C+(k1, k2, ··· , kt )
h (·), j /∈Cc(k1, k2, ··· , kt )

h (·)
]
estimation

of the strategic combination choice s∗∗(k1, k2, ··· , kt , j)

C
c(k1, k2, ··· , kt , j)
h (·)

of core coalitionCc(k1, k2, ··· , kt , j)
h (·) is a function of the false signal

i(k1, k2, ··· , kt , jF )
j released by him:

s∗∗(k1, k2, ··· , kt , j)

C
c(k1 , k2, ··· , kt , j)
h (·)

= s∗∗(k1, k2, ··· , kt , j)

C
c(k1, k2, ··· , kt , j)
h (·)

(i(k1, k2, ··· , kt , jF )
j )

=argmax

 ∑
i∈C

c(k1, k2, ··· , kt , j)
h (·)

V (k1, k2, ··· , kt , j, i)

C
c(k1, k2, ··· , kt , j, i)
T (·)

(s(k1, k2, ··· , kt , j, i)

C
c(k1 , k2, ··· , kt , j, i)
T (·)

, s∗∗(k1, k2, ··· , kt , j, i)

−C
c(k1, k2, ··· , kt , j, i)
T (·)

)

+V (k1, k2, ··· , kt , jF )

C
c(k1, k2, ··· , kt , j)
h (·)

(s(k1, k2, ··· , kt , jF )

C
c(k1, k2, ··· , kt , j)
h (·)

, i(k1, k2, ··· , kt , jF )
j )

+ ∑
k∈C

+(k1, k2 , ··· ,kt, j)
h (·)

k/∈C
c(k1, k2,··· , kt, j)
h (·)

k ̸= j

V (k1, k2, ··· , kt , j, kF )

C
c(k1, k2,··· , kt , j, k)
h (·)

(s(k1, k2, ··· , kt , j, kF )

C
c(k1, k2, ··· , kt , j, k)
h (·)

, i∗(k1, k2, ··· , kt , j, kF )
j )


,

where i ∈ Cc(k1, k2, ··· , kt , j)
h (·), the escape target core coalition Cc(k1, k2, ··· , kt , j, i)

T (·) of player i is core coalition
Cc(k1, k2, ··· , kt , j)

h (·), k ∈C+(k1, k2, ··· , kt , j)
h (·), k /∈Cc(k1, k2, ··· , kt , j)

h (·), core coalitionCc(k1, k2, ··· , kt , j, k)
h (·) and core coalition

Cc(k1, k2, ··· , kt , j)
h (·) are the same, the escape target core coalition Cc(k1, k2, ··· , kt , j, k)

T (·) of player k is not core coalition
Cc(k1, k2, ··· , kt , j)

h (·); i∗(k1, k2, ··· , kt , j, kF )
j is player j’s estimation of the optimal false signal of any extensive member

k
[
k ∈C+(k1, k2, ··· , kt , j)

h (·), k /∈Cc(k1, k2, ··· , kt , j)
h (·), k ̸= j

]
in his virtual game.

Player j’s purpose of releasing false signals to his intermediate node core coalitionCc(k1, k2, ··· , kt , j)
h (·) is to influence

the public choice s∗∗(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt , j)
h (·)

of strategic combination of core coalition Cc(k1, k2, ··· , kt , j)
h (·), thereby maximize the

cooperative payoff of his escape target core coalitionCc(k1, k2, ··· , kt , j)
T (·):
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i∗(k1, k2, ··· , kt , jF )
j = argmax

i
(k1, k2, ··· , kt , jF)
j ∈I

(k1, k2, ··· , kt , jF)
j

V (k1, k2, ··· , kt , j)

C
c(k1, k2, ··· , kt , j)
T (·)

[
s∗∗(k1, k2, ··· , kt , j)

C
c(k1, k2, ··· , kt , j)
h (·)

(
i(

k1, k2, ··· , kt , jF)
j

)
,

s∗(k1, k2, ··· , kt , j)

C
c(k1, k2, ··· , kt , j)
T (·)

, s∗∗(k1, k2, ··· , kt , j)

−C
c(k1, k2, ··· , kt , j)
h (·), −C

c(k1, k2, ··· , kt , j)
T (·)

]
.

Obviously, in order to estimate the strategic combination choice s∗∗(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
h (·)

of any other core coalition

Cc(k1, k2, ··· , kt )
h (·), player kt needs to estimate any core member i’s [who belongs to core coalition Cc(k1, k2, ··· , kt )

h (·)]
estimation of the strategic combination choices s∗∗(k1, k2, ··· , kt , i)

−C
c(k1, k2 , ··· , kt , i)
T (·)

of other core coalitions −Cc(k1, k2, ··· , kt )
h (·), any

extensive member j’s [who nominally belongs to core coalitionCc(k1, k2, ··· , kt )
h (·)] estimation of the strategic combination

s∗(k1, k2, ··· , kt , j)

C
c(k1, k2 , ··· , kt , j)
T (·)

that this core coalition “should” adopt, member j’s estimation of the strategic combinations

s∗∗(k1, k2, ··· , kt , j)

−C
c(k1, k2, ··· , kt , j)
h (·), −C

c(k1, k2, ··· , kt , j)
T (·)

of the core coalitions other than core coalitionCc(k1, k2, ··· , kt )
h (·) and his escape target

core coalition, and member j’s estimation of the optimal signal i
∗(k1, k2, ··· , kt , j, jF)
j of any other extensive member k.

Thus, the virtual game of player k1 enters the (t + 1)-th level.
…
In the n-th level virtual games of player k1, the information sets of player kn are stable. In this information asymmetric

cooperative game on the basis of stable information sets, how does player kn virtualize his game to determine his own
escape strategy and the strategic combination choice that his escape target core coalition “should” choose?

2.4 Escape strategy and player k1’s virtual game: the virtual game under stable information sets

In order to get player k1’s estimations of the expected escape-payoffs deriving from deviation of players k1, · · · , kn,

W
∗−C

c(k1)
T (k1)

k1
(c), W

∗−C
c(k1 , k2)
T (k1, k2)

k2
(c), . . . , W

∗−C
c(k1, kn)
T (k1, kn)

kn
(c) ,

in his virtual game in coalition situation c, in his n-th level virtual game player k1 must estimate any player kn’s virtual
game based on the stable information sets I(k1, ··· , kn)(e(k1)

k1
, · · · , e(k1, ··· , kn)

kn
).

In player k1’s n-th level virtual game, when the escape strategies of player k1, player k2(k2 ̸= k1), player k3(k3 ̸= k2),
. . ., and player kn(kn ̸= kn−1) are respectively e(k1)

k1
, e(k1, k2)

k2
, · · · , e(k1, ··· , kn)

kn
, all the players get the stable information sets

I(k1, ··· , kn)(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

), thus player k1 can get virtual game Γ(k1, ··· , kn)
kn

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

) in which any player

kn’s estimation of any other player’s optimal escape strategic choices are e∗(k1, ··· , kn)
−kn

[
I(k1, ··· , kn)(e(k1)

k1
, · · · , e(k1, ··· , kn)

kn
)
]
,

and the optimal strategic combination choices of the core coalitions other than his escape target core coalition are
s∗∗(k1, k2, ··· , kn)

−C
c(k1, k2, ··· , kn)
T

(
e(

k1, ··· , kn)
kn

, e
∗(k1 , k2 , ··· , kn)
−kn

).
In fact, virtual game Γ(k1, ··· , kn)

kn
(e(k1)

k1
, · · · , e(k1, ··· , kn)

kn
) is player kn’s estimation model of the escape strategy of

any other player and the strategic combinations of other core coalition when the escape strategies of player k1, player
k2(k2 ̸= k1), player k3(k3 ̸= k2), …, and player kn(kn ̸= kn−1) are respectively e(k1)

k1
, e(k1, k2)

k2
, · · · , e(k1, ··· , kn)

kn
.On the basis

of virtual game Γ(k1, ··· , kn)
kn

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

), player kn can estimate the strategic combination that his escape target
core coalition “should” adopt.
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The virtual game Γ(k1, ··· , kn)
kn

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

).

In game Γ(k1, ··· , kn)
kn

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

), under information sets I(k1, ··· , kn)
kn

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

), given player
kn’s feasible escape strategy e(k1, ··· , kn)

kn
, the strategic combination that player kn’s escape target core coalition “should”

adopt depends on his estimation of the escape strategies of other players and the strategic combination choices of the core
coalitions other than his escape target core coalition.

In coalition situation c, in the first level of virtual game Γ(k1, ··· , kn)
kn

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

), given the escape situation

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

), assume that the strategic combination of any core coalitionCc(k1, ..., kn)
h

(
e(

k1, ··· , kn)
kn

, e
∗(k1, ··· , kn)
−kn

)
[
Cc(k1, ..., kn)

h

(
e(

k1, ··· , kn)
kn

, e
∗(k1, ··· , kn)
−kn

)
̸=Cc(k1, ..., kn)

T

(
e(

k1, ··· , kn)
kn

, e
∗(k1, ··· , kn)
−kn

)]
other than player kn’s escape target

core coalition Cc(k1, k2, ··· , kn)
T

(
e(k1, ··· , kn)

kn
, e∗(k1, k2, ··· , kn)

−kn

)
is player kn’s escape target core coalition in escape situation(

e(k1, ··· , kn)
kn

, e∗(k1, k2, ··· , kn)
−kn

)
is s∗∗(k1, k2, ··· , kn)

C
c(k1, ..., kn)
h (e

(k1, ··· , kn)
kn

, e
∗(k1, ··· , kn)
−kn

)
, the strategic combination that player kn considers his

escape target core coalition Cc(k1, k2, ··· , kn)
T

(
e(k1, ··· , kn)

kn
, e∗(k1, k2, ··· , kn)

−kn

)
“should” adopt [that is to say, the strategic

combinationwhichmaximizes the expected cooperative payoff of core coalitionCc(k1, k2, ··· , kn)
T

(
e(k1, ··· , kn)

kn
, e∗(k1, k2, ··· , kn)

−kn

)
is:

s∗(k1, k2, ··· , kn)

C
c(k1, k2, ··· , kn)
T (e

(k1, ··· , kn)
kn

, e
∗(k1, k2 , ··· , kn)
−kn

)

= argmax
s
(k1, k2, ··· , kn)

C
c(k1, k2, ··· , kn)
T (e

(k1 , ··· , kn)
kn

, e
∗(k1, k2, ··· , kn)
−kn

)

V (k1, k2, ··· , kn)

C
c(k1, k2, ··· , kn)
T (·)

(s(k1, k2, ··· , kn)

C
c(k1, k2 , ··· , kn)
T (e

(k1, ··· , kn)
kn

, e
∗(k1, k2, ··· , kn)
−kn

)
,

s∗∗(k1, k2, ··· , kn)

−C
c(k1, k2, ··· , kn)
T (e

(k1, ··· , kn)
kn

, e
∗(k1 , k2, ··· , kn)
−kn

)
)

= argmax
s
(k1, k2 , ··· , kn)

C
c(k1, k2, ··· , kn)
T (e

(k1, ··· , kn)
kn

, e
∗(k1 , k2, ··· , kn)
−kn

)

∑
i∈C

c(k1, k2, ··· , kn)
T (e

(k1, ··· , kn)
kn

, e
∗(k1, k2, ··· , kn)
−kn

)

u(k1, k2, ··· , kn)
i (s(k1, k2, ··· , kn)

C
c(k1, k2, ··· , kn)
T (e

(k1, ··· , kn)
kn

, e
∗(k1, k2, ··· , kn)
−kn

)
, s∗∗(k1, k2, ··· , kn)

−C
c(k1, k2 , ··· , kn)
T (e

(k1, ··· , kn)
kn

, e
∗(k1, k2, ··· , kn)
−kn

)
).

In the first level of virtual game Γ(k1, ··· , kn)
kn

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

), in order to decide his own optimal escape
strategy and the strategic combination that his escape target core coalition “should” adopt, player kn needs to
estimate the escape strategic choice e∗(k1, k2, ··· , kn)

−kn
of any other player −kn and the strategic combination choices

s∗∗(k1, k2, ··· , kn)

−C
c(k1, k2, ··· , kn)
T (e

(k1, ··· , kn)
kn

, e
∗(k1, k2, ··· , kn)
−kn

)
of the core coalitions other than his escape target core coalition, which relies on his

estimation of the equilibrium escape strategic choice of any other player −kn in the virtual game based on player −kn’s
own information set. Player kn’s estimation of the escape strategic choice e∗(k1, k2, ··· , kn)

−kn
of any other player −kn depends

on player −kn’s choice based on player −kn’s own information set:

e∗(k1, k2, ··· , kn)
−kn

= e∗(k1, k2, ··· , kn, −kn)
−kn

.
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The strategic combination choice s∗∗(k1, k2, ··· , kn)

C
c(k1, k2, ··· , kn)
h (e

(k1 , ··· , kn)
kn

, e
∗(k1 , k2, ··· , kn)
−kn

)
of any other core coalitionCc(k1, k2, ··· , kn)

h

(e(k1, ··· , kn)
kn

, e∗(k1, k2, ··· , kn)
−kn

) depends on the public choice of strategic combination of extensive coalitionC+(k1, k2, ··· , kn)
h

(e(k1, ··· , kn)
kn

, e∗(k1, k2, ··· , kn)
−kn

):

s∗∗(k1, k2, ··· , kn)

C
c(k1, k2 , ··· , kn)
h

(
e(

k1 , ··· , kn)
kn

, e
∗(k1, k2, ··· , kn)
−kn

) ⊆ s∗∗(k1, k2, ··· , kn)

C
+(k1, k2, ··· , kn)
h

(
e(

k1, ··· , kn)
kn

, e
∗(k1 , k2 , ··· , kn)
−kn

);

s∗∗(k1, k2, ··· , kn)

C
c(k1, k2, ··· , kn)
h

(
e(

k1, ··· , kn)
kn

, e
∗(k1 , k2, ··· , kn)
−kn

)

= argmax
s
(k1, k2, ··· , kn)

C
c(k1, k2, ··· , kn)
h (·)

 ∑
i∈C

c(k1, k2, ··· , kn)
h (·)

V (k1, k2, ··· , kn, i)

C
c(k1, k2, ··· , kn, i)
T (·)

(s(k1, k2, ··· , kn, i)

C
c(k1, k2, ··· , kn, i)
T (·)

, s∗∗(k1, k2, ··· , kn, i)

−C
c(k1, k2, ··· , kn, i)
T (·)

)

+ ∑
j ∈C+(k1, k2, ··· , kn)

h (·)
j /∈Cc(k1, k2, ··· , kn)

h (·)

V (k1, k2, ··· , kn, jF)

C
c(k1, k2, ··· , kn, j)
h (·)

(s(
k1, k2, ··· , kn, jF)

C
c(k1, k2, ··· , kn, j)
h (·)

,

s
∗∗(k1, k2, ··· , kn, jF)

C
c(k1, k2, ··· , kn, j)
T (·)

, s
∗∗(k1, k2, ··· , kn, jF)

−C
c(k1, k2, ··· , kn , j)
h (·), −C

c(k1, k2, ··· , kn, j)

T (·)
)

}
;

V (k1, k2, ··· , kn, jF)

C
c(k1, k2, ··· , kn, j)
h (·)

(
s(

k1, k2, ··· , kn, jF)

C
c(k1, k2, ··· , kn, j)
h (·)

, s
∗∗(k1, k2, ··· , kn, jF)

C
c(k1 , k2 , ··· , kn, j)
T (·)

, s
∗∗(k1,k2, ··· , kn, jF)

−C
c(k1, k2, ··· , kn, j)
h (·), −C

c(k1, k2, ··· , kn, j)

T (·)

)

=V (k1, k2, ··· , kn, jF)

C
c(k1, k2 , ··· , kn, j)
h (·)

(
s(

k1, k2, ··· , kn, jF)

C
c(k1, k2, ··· , kn , j)
h (·)

, i(
k1, k2, ··· , kn, jF)

j

)
, i(

k1, k2, ··· , kn, jF)
j ∈ I(

k1, k2, ··· , kn, jF)
j ;

where i ∈ Cc(k1, k2, ··· , kn)
h (·), therefore the escape target core coalition Cc(k1, k2, ··· , kn, i)

T (·) of player i is core coalition
Cc(k1, k2, ··· , kn)

h (·), j ∈C+(k1, k2, ··· , kn)
h (·), j /∈Cc(k1, k2, ··· , kn)

h (·), core coalition Cc(k1, k2, ··· , kn, i)
h (·) and core coalition

Cc(k1, k2, ··· , kn)
h (·) are the same, player j’s escape target core coalitionCc(k1, k2, ··· , kn, j)

T (·) is not core coalitionCc(k1, k2, ··· , kn)
h

(·); V (k1, k2, ··· , kn, jF)

C
c(k1 , k2, ··· , kn, j)
h (·)

(
s(

k1, k2, ··· , kn, jF)

C
c(k1, k2, ··· , kn , j)
h (·)

, s
∗∗(k1, k2, ··· , kn, jF)

C
c(k1, k2 , ··· , kn, j)
T (·)

, s
∗∗(k1, k2, ··· , kn, jF)

−C
c(k1, k2, ··· , kn, j)
h (·), −C

c(k1, k2, ··· , kn, j)

T (·)

)
represents player

kn’s estimation of the cooperative payoff of core coalition Cc(k1, k2, ··· , kn, j)
T (·) according to the false signal released by

player j, i(
k1, k2, ··· , kn, jF)

j is player kn’s estimation of the false signal released by player j, I(
k1, k2, ··· , kn, jF)

j is player kn’s

estimation of player j’s feasible false signal set, s
∗∗(k1, k2, ··· , kn, jF)

C
c(k1, k2, ··· , kn, j)
T (·)

, s
∗∗(k1, k2, ··· , kn, jF)

−C
c(k1, k2, ··· , kn, j)
h (·), −C

c(k1 , k2 , ··· , kn, j)

T (·)
is player kn’s

estimation of player j’s estimation of the strategic combination choices of the core coalitions [including player j’s escape
target core coalitionCc(k1, k2, ··· , kn, j)

T (·)] other than player j’s intermediate node core coalitionCc(k1, k2, ··· , kn, j)
h (·).
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Therefore, player j’s
[

j ∈C+(k1, k2, ··· , kn)
h (·), j /∈Cc(k1, k2, ··· , kn)

h (·)
]
estimation of the strategic combination choice

s∗∗(k1, k2, ··· , kn, j)

C
c(k1 , k2 , ··· , kn, j)
h (·)

of core coalitionCc(k1, k2, ··· , kn, j)
h (·) is a function of the false signal i(

k1, k2, ··· , kn, jF)
j released by him:

s∗∗(k1, k2, ··· , kn, j)

C
c(k1 , k2 , ··· , kn, j)
h (·)

=s∗∗(k1, k2, ··· , kn, j)

C
c(k1, k2, ··· , kn, j)
h (·)

(
i(

k1, k2, ··· , kn, jF)
j

)

= argmax

 ∑
i∈C

c(k1, k2, ··· , kn, j)
h (·)

V (k1, k2, ··· , kn, j, i)

C
c(k1, k2, ··· , kn, j, i)
T (·)

(
s(k1, k2, ··· , kn, j, i)

C
c(k1, k2, ··· , kn, j, i)
T (·)

, s∗∗(k1, k2, ··· , kn, j, i)

−C
c(k1, k2, ··· , kn, j, i)
T (·)

)

+V (k1, k2, ··· , kn, jF)

C
c(k1, k2, ··· , kn, j)
h (·)

(
s(

k1, k2, ··· , kn, jF)

C
c(k1, k2, ··· , kn, j)
h (·)

, i(
k1, k2, ··· , kn, jF)

j

)

+ ∑
k ∈C+(k1, k2, ··· , kn, j)

h (·)
k /∈Cc(k1, k2, ··· , kn, j)

h (·)
k ̸= j

V (k1, k2, ··· , kn, j, kF)

C
c(k1, k2, ··· , kn, j, k)
h (·)

(
s(

k1, k2, ··· , kn, j, kF)

C
c(k1, k2, ··· , kn , j, k)
h (·)

, i
∗(k1, k2, ··· , kn, j, kF)
j

)}

where i ∈ Cc(k1, k2, ··· , kn, j)
h (·), the escape target core coalition Cc(k1, k2, ··· , kn, j, i)

T (·) of player i is core coalition
Cc(k1, k2, ··· , kn, j)

h (·), k∈C+(k1, k2, ··· , kn, j)
h (·), k /∈Cc(k1, k2, ··· , kn, j)

h (·), core coalitionCc(k1, k2, ··· , kn, j, k)
h (·) and core coalition

Cc(k1, k2, ··· , kn, j)
h (·) are the same, the escape target core coalition Cc(k1, k2, ··· , kn, j, k)

T (·) of player k is not core coalition

Cc(k1, k2, ··· , kn, j)
h (·); i

∗(k1, k2, ··· , kn, j, kF)
j is player j’s estimation of the optimal false signal of any extensive member

k
[
k ∈C+(k1, k2, ··· , kn, j)

h (·), k /∈Cc(k1, k2, ··· , kn, j)
h (·), k ̸= j

]
in his virtual game.

Player j’s purpose of releasing false signals to his intermediate node core coalitionCc(k1, k2, ··· , kn, j)
h (·) is to influence

the public choice s∗∗(k1, k2, ··· , kn)

C
c(k1 , k2 , ··· , kn, j)
h (·)

of strategic combination of core coalition Cc(k1, k2, ··· , kn, j)
h (·), thereby maximize the

cooperative payoff of his escape target core coalitionCc(k1, k2, ··· , kn, j)
T (·) :

i∗(k1, k2, ··· , kt , jF )
j = argmax

i
(k1, k2, ··· , kt , jF)
j ∈I

(k1, k2, ··· , kt , jF)
j

V (k1, k2, ··· , kt , j)

C
c(k1, k2, ··· , kt , j)
T (·)

[
s∗∗(k1, k2, ··· , kt , j)

C
c(k1 , k2 , ··· , kt , j)
h (·)

(
i(

k1, k2, ··· , kt , jF)
j

)
,

s∗(k1, k2, ··· , kt , j)

C
c(k1, k2 , ··· , kt , j)
T (·)

, s∗∗(k1, k2, ··· , kt , j)

−C
c(k1 , k2, ··· , kt , j)
h (·), −C

c(k1, k2, ··· , kt , j)
T (·)

]
.

Obviously, in order to estimate the strategic combination choice s∗∗(k1, k2, ··· , kn)

C
c(k1 , k2 , ··· , kn)
h (·)

of any other core coalition

Cc(k1, k2, ··· , kn)
h (·), player kn needs to estimate any core member i’s [who belongs to core coalition Cc(k1, k2, ··· , kn)

h (·)]
estimation of the strategic combination choices s∗∗(k1, k2, ··· , kn, i)

−C
c(k1, k2, ··· , kn, i)
T (·)

of other core coalitions −Cc(k1, k2, ··· , kn)
h (·), and

any extensive member j’s [who nominally belongs to core coalition Cc(k1, k2, ··· , kn)
h (·)] estimation of the strategic
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combination s∗(k1, k2, ··· , kn, j)

C
c(k1, k2, ··· , kn, j)
T (·)

that this core coalition “should” adopt, member j’s estimation of the strategic combinations

s∗∗(k1, k2, ··· , kn, j)

−C
c(k1, k2, ··· , kn, j)
h (·), −C

c(k1, k2, ··· , kn, j)
T (·)

of the core coalitions other than core coalitionCc(k1, k2, ··· , kn)
h (·) and his escape target

core coalition, and member j’s estimation of the optimal signal i
∗(k1, k2, ··· , kn, j, kF)
j of any other extensive member k.

Thus, the virtual game Γ(k1, ··· , kn)
kn

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

) enters the second, the third, … level up to the one in which
the equilibrium solution to game Γ(k1, ··· , kn)

kn
(e(k1)

k1
, · · · , e(k1, ··· , kn)

kn
) can be achieved.

The model of t-th level of virtual game Γ(k1, ··· , kn)
kn

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

) is shown as follows.
The t-th level of virtual game Γ(k1, ··· , kn)

kn
(e(k1)

k1
, · · · , e(k1, ··· , kn)

kn
).

In the t-th level of virtual game Γ(k1, ··· , kn)
kn

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

), player it−1 needs to estimate the optimal escape
strategy e(k1, ··· , kn, i1, ··· , it )

it of any other player it(it ̸= it−1), and the optimal strategic combination choices of the core
coalitions other than player it−1’s escape target core coalition.

In coalition situation c, in the t-th level of virtual game Γ(k1, ··· , kn)
kn

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

), assume that the strategic

combination of any core coalitionCc(k1, ..., kn, i1, ··· , it−1)
h

(
e(k1, ..., kn, i1, ··· , it−1)

it−1
, e∗(k1, ..., kn, i1, ··· , it−1)

−it−1

)[
Cc(k1, ..., kn, i1, ··· , it−1)

h(
e(k1, ..., kn, i1, ··· , it−1)

it−1
, e∗(k1, ..., kn, i1, ··· , it−1)

−it−1

)
̸=Cc(k1, ..., kn, i1, ··· , it−1)

T

(
e(k1, ..., kn, i1, ··· , it−1)

it−1
, e∗(k1, ..., kn, i1, ··· , it−1)

−it−1

)]
other

than player it−1’s escape target core coalition
[
Cc(k1, ..., kn, i1, ··· , it−1)

T (e(k1, ..., kn, i1, ··· , it−1)
it−1

, e∗(k1, ..., kn, i1, ··· , it−1)
−it−1

) is

player it−1’s escape target core coalition in escape situation (e(k1, ..., kn, i1, ··· , it−1)
it−1

, e∗(k1, ..., kn, i1, ··· , it−1)
−it−1

)
]
is

s∗∗(k1, ..., kn, i1, ··· , it−1)

C
c(k1, ..., kn, i1, ··· , it−1)
h

(
e
(k1 , ..., kn, i1, ··· , it−1)
it−1

, e
∗(k1, ..., kn, i1 , ··· , it−1)
−it−1

), the strategic combination that player it−1 considers that his

escape target core coalitionCc(k1, ..., kn, i1, ··· , it−1)
T (e(k1, ..., kn, i1, ··· , it−1)

it−1
, e∗(k1, ..., kn, i1, ··· , it−1)

−it−1
) “should” adopt [that is to say,

the strategic combination which maximizes the expected cooperative payoff of core coalitionCc(k1, ..., kn, i1, ··· , it−1)
T

(e(k1, ..., kn, i1, ··· , it−1)
it−1

, e∗(k1, ..., kn, i1, ··· , it−1)
−it−1

) ] is:

s◦(k1, ..., kn, i1, ··· , it−1)

C
c(k1, ..., kn, i1, ··· , it−1)
T (e

(k1, ..., kn, i1, ··· , it−1)
it−1

, e
∗(k1, ..., kn, i1, ··· , it−1)
−it−1

)

= argmax
s
(k1, ..., kn, i1, ··· , it−1)

C
c(k1, ..., kn, i1, ··· , it−1)
T

(
e
(k1 , ..., kn, i1, ··· , it−1)
it−1

, e
∗(k1, ..., kn, i1, ··· , it−1)
−it−1

)
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V (k1, ..., kn, i1, ··· , it−1)

C
c(k1, ..., kn , i1 , ··· , it−1)
T (·)

s(k1, ..., kn, i1, ··· , it−1)

C
c(k1, ..., kn, i1, ··· , it−1)
T

(
e
(k1, ..., kn , i1 , ··· , it−1)
it−1

, e
∗(k1, ..., kn , i1 , ··· , it−1)
−it−1

),

s∗∗(k1, ..., kn, i1, ··· , it−1)

−C
c(k1, ..., kn , i1, ··· , it−1)
T

(
e
(k1, ..., kn, i1, ··· , it−1)
it−1

, e
∗(k1 , ..., kn, i1, ··· , it−1)
−it−1

)


= argmax
s
(k1, ..., kn, i1, ··· , it−1)

C
c(k1, ..., kn, i1, ··· , it−1)
T

(
e
(k1, ..., kn, i1, ··· , it−1)
it−1

, e
∗(k1, ..., kn , i1 , ··· , it−1)
−it−1

)

∑
i∈C

c(k1, ..., kn, i1, ··· , it−1)
T

(
e
(k1 , ..., kn, i1, ··· , it−1)
it−1

, e
∗(k1 , ..., kn, i1, ··· , it−1)
−it−1

)u(k1, ..., kn, i1, ··· , it−1)
i

s(k1, ..., kn, i1, ··· , it−1)

C
c(k1, ..., kn, i1, ··· , it−1)
T

(
e
(k1, ..., kn , i1 , ··· , it−1)
it−1

, e
∗(k1, ..., kn , i1, ··· , it−1)
−it−1

),

s∗∗(k1, ..., kn, i1, ··· , it−1)

−C
c(k1, ..., kn, i1, ··· , it−1)
T

(
e
(k1, ..., kn, i1, ··· , it−1)
it−1

, e
∗(k1, ..., kn, i1, ··· , it−1)
−it−1

)
 .

Denote player it−1’s estimation of his escape-payoff deriving from deviation when he escapes from core coalition
Cc(k1, ..., kn, i1, ··· , it−1)

T

(
e(k1, ..., kn, i1, ··· , it−1)

it−1
, e∗(k1, ..., kn, i1, ··· , it−1)

−it−1

)
deriving from deviation as

W
◦−C

c(k1, ..., kn, i1, ··· , it−1)
T

(
e
(k1, ..., kn , i1 , ··· , it−1)
it−1

, e
∗(k1, ..., kn , i1, ··· , it−1)
−it−1

)
(k1, ..., kn, i1, ··· , it−1)

it−1
, obviously, the goal of player it−1’s

escape strategic choice is his minimum expected escape-payoff deriving from deviation:

e∗(k1, ..., kn, i1, ··· , it−1)
it−1

= argmin
e
(k1 , ..., kn, i1, ··· , it−1)
it−1

W
◦−C

c(k1 , ..., kn, i1, ··· , it−1)
T

(
e
(k1, ..., kn, i1, ··· , it−1)
it−1

, e
∗(k1, ..., kn, i1, ··· , it−1)
−it−1

)
(k1, ..., kn, i1, ··· , it−1)

it−1
.

The strategic combination that core coalition Cc(k1, ..., kn, i1, ··· , it−1)
T

(
e∗(k1, ..., kn, i1, ··· , it−1)

it−1
, e∗(k1, ..., kn, i1, ··· , it−1)

−it−1

)
“should” adopt is considered to be:
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s∗(k1, ..., kn, i1, ··· , it−1)

C
c(k1, ..., kn , i1 , ··· , it−1)
T

(
e
∗(k1, ..., kn, i1, ··· , it−1)
it−1

, e
∗(k1, ..., kn, i1, ··· , it−1)
−it−1

)

= argmax
s
(k1, ..., kn , i1 , ··· , it−1)

C
c(k1 , ..., kn, i1 , ··· , it−1)
T

(
e
∗(k1, ..., kn, i1, ··· , it−1)
it−1

, e
∗(k1, ..., kn, i1, ··· , it−1)
−it−1

)

V (k1, ..., kn, i1, ··· , it−1)

C
c(k1 , ..., kn, i1, ··· , it−1)
T (·)

s(k1, ..., kn, i1, ··· , it−1)

C
c(k1, ..., kn , i1, ··· , it−1)
T

(
e
∗(k1 , ..., kn, i1, ··· , it−1)
it−1

, e
∗(k1 , ..., kn, i1, ··· , it−1)
−it−1

),

s∗∗(k1, ..., kn, i1, ··· , it−1)

−C
c(k1 , ..., kn, i1, ··· , it−1)
T

(
e
∗(k1, ..., kn, i1, ··· , it−1)
it−1

, e
∗(k1, ..., kn, i1, ··· , it−1)
−it−1

)
 .

In the t-th level of virtual game Γ(k1, ··· , kn)
kn

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

), player it−1 must estimate the escape strategic

choice e∗(k1, ..., kn, i1, ··· ,it−1)
−it−1

of any other player −it−1 on the basis of player −it−1’s own information set and the strategic

combination choices s∗∗(k1, ..., kn, i1, ··· , it−1)

−C
c(k1, ..., kn, i1, ··· , it−1)
T

(
e
∗(k1, ..., kn, i1, ··· , it−1)
it−1

, e
∗(k1, ..., kn, i1, ··· , it−1)
−it−1

) of the core coalitions other than player
it−1’s escape target core coalition when he decides his optimal escape strategy and the optimal strategic combination choice
of his escape target core coalition. Player it−1’s decision-making relies on his estimation of the equilibrium escape strategic
choice of any player −it−1 in player −it−1’s virtual game. Player it−1’s estimation of any other player −it−1’s estimation
of his own escape strategic choice e∗(k1, ..., kn, i1, ··· , it−1)

−it−1
depends on player−kt ’s choice based on his own information set:

e∗(k1, ..., kn, i1, ··· , it−1)
−it−1

= e∗(k1, ..., kn, i1, ··· , it−1, −it−1)
−it−1

.

The strategic combination choice s∗∗(k1, ..., kn, i1, ··· , it−1)

C
c(k1, ..., kn , i1, ··· , it−1)
h

(
e
(k1 , ..., kn, i1, ··· , it−1)
it−1

, e
∗(k1 , ..., kn, i1, ··· , it−1)
−it−1

) of any core coalition

Cc(k1, ..., kn, i1, ··· , it−1)
h

(
e(k1, ..., kn, i1, ··· , it−1)

it−1
, e∗(k1, ..., kn, i1, ··· , it−1)

−it−1

)
depends on the public choice game of extensive

coalitionC+(k1, ..., kn, i1, ··· , it−1)
h

(
e(k1, ..., kn, i1, ··· , it−1)

it−1
, e∗(k1, ..., kn, i1, ··· , it−1)

−it−1

)
among its extensive members:
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s∗∗(k1, ..., kn, i1, ··· , it−1)

C
c(k1, ..., kn, i1, ··· , it−1)
h (e

(k1, ..., kn, i1, ··· , it−1)
it−1

, e
∗(k1, ..., kn , i1, ··· , it−1)
−it−1

)

⊆ s∗∗(k1, ..., kn, i1, ··· , it−1)

C
+(k1, ..., kn, i1, ··· , it−1)
h (e

(k1, ..., kn, i1, ··· , it−1)
it−1

, e
∗(k1 , ..., kn, i1, ··· , it−1)
−it−1

)
;

s∗∗(k1, ..., kn, i1, ··· , it−1)

C
c(k1, ..., kn , i1 , ··· , it−1)
h (e

(k1, ..., kn , i1 , ··· , it−1)
it−1

, e
∗(k1, ..., kn, i1, ··· , it−1)
−it−1

)

= argmax
s
(k1,..., kn, i1 , ··· , it−1)

C
c(k1 , ..., kn, i1, ··· , it−1)
h (·)

 ∑
i∈C

c(k1, ..., kn, i1, ··· , it−1)
h (·)

V (k1, ..., kn, i1, ··· , it−1, i)

C
c(k1, ..., kn, i1, ··· , it−1, i)
T (·)

(s(k1, ..., kn, i1, ··· , it−1, i)

C
c(k1, ..., kn, i1, ··· , it−1, i)
T (·)

,

s∗∗(k1, ..., kn, i1, ··· , it−1, i)

−C
c(k1, ..., kn, i1, ··· , it−1, i)
T (·)

)

+ ∑
j ∈C+(k1, ..., kn, i1, ··· , it−1)

h (·)
j /∈Cc(k1, ..., kn, i1, ··· , it−1)

h (·)

V (k1, ..., kn, i1, ··· , it−1, jF)

C
c(k1, ..., kn, i1, ··· , it−1, j)
h (·)

(s(
k1, ..., kn, i1, ··· , it−1, jF)

C
c(k1, ..., kn , i1, ··· , it−1, j)
h (·)

,

s
∗∗(k1, ..., kn, i1, ··· , it−1, jF)

C
c(k1, ..., kn, i1, ··· , it−1, j)
T (·)

, s
∗∗(k1, ..., kn, i1, ··· , it−1, jF)

−C
c(k1 , ..., kn, i1, ··· , it−1, j)
h (·), −C

c(k1, ..., kn, i1, ··· , it−1, j)

T (·)
);

V (k1, ..., kn, i1, ··· , it−1, jF)

C
c(k1, ..., kn, i1, ··· , it−1, j)
h (·)

(s(
k1, ..., kn, i1, ··· , it−1, jF)

C
c(k1, ..., kn, i1, ··· , it−1, j)
h (·)

,

s
∗∗(k1, ..., kn, i1, ··· , it−1, jF)

C
c(k1, ..., kn, i1, ··· , it−1, j)
T (·)

, s
∗∗(k1, ..., kn, i1, ··· , it−1, jF)

−C
c(k1, ..., kn, i1, ··· , it−1 , j)
h (·), −C

c(k1, ..., kn, i1, ··· , it−1, j)

T (·)
)

=V (k1, ..., kn, i1, ··· , it−1, jF)

C
c(k1, ..., kn, i1, ··· , it−1, j)
h (·)

(s(
k1, ..., kn, i1, ··· , it−1, jF)

C
c(k1, ..., kn, i1, ··· , it−1, j)
h (·)

,

i(
k1, ..., kn, i1, ··· , it−1, jF)

j ), i(
k1, ..., kn, i1, ··· , it−1, jF)

j ∈ I(
k1, ..., kn, i1, ··· , it−1, jF)

j ;

where i ∈ Cc(k1, ..., kn, i1, ··· , it−1)
h (·), therefore the escape target core coalition Cc(k1, ..., kn, i1, ··· , it−1, i)

T (·) of
player i is core coalition Cc(k1, ..., kn, i1, ··· , it−1)

h (·), j ∈ C+(k1, ..., kn, i1, ··· , it−1)
h (·), j /∈ Cc(k1, ..., kn, i1, ··· , it−1)

h (·), core
coalition Cc(k1, ..., kn, i1, ··· , it−1, i)

h (·) and core coalition Cc(k1, ..., kn, i1, ··· , it−1)
h (·) are the same, player j’s escape target

core coalition Cc(k1, ..., kn, i1, ··· , it−1, j)
T (·) is not core coalition Cc(k1, ..., kn, i1, ··· , it−1)

h (·); and (s(
k1, ..., kn, i1, ··· , it−1, jF)

C
c(k1, ..., kn, i1, ··· , it−1, j)
h (·)

,
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s
∗∗(k1, ..., kn, i1, ··· , it−1, jF)

C
c(k1, ..., kn, i1, ··· , it−1, j)
T (·)

, s
∗∗(k1, ..., kn, i1, ··· , it−1, jF)

−C
c(k1, ..., kn, i1, ··· , it−1, j)
h (·), −C

c(k1, ..., kn, i1, ··· , it−1, j)

T (·)
) represents player it−1’s estimation of

the cooperative payoff of core coalition Cc(k1, ..., kn, i1, ··· , it−1, j)
T (·) according to the false signal released by player

j, i(
k1, ..., kn, i1, ··· , it−1, jF)

j is player it−1’s estimation of the false signal released by player j, I(
k1, ..., kn, i1, ··· , it−1, jF)

j is

player it−1’s estimation of player j’s feasible false signal set, s
∗∗(k1, ..., kn, i1, ··· , it−1, jF)

−C
c(k1, ..., kn, i1, ··· , it−1, j)
T (·)

,

s
∗∗(k1, ..., kn, i1, ··· , it−1, j

F)

−C
c(k1, ..., kn, i1, ··· , it−1, j)
h (·), −C

c(k1, ..., kn, i1 , ··· , it−1, j)
T (·)

is player it−1’s estimation of player j’s estimation of the strategic

combination choices of the core coalitions [including player j’s escape target core coalition Cc(k1, ..., kn, i1, ··· , it−1, j)
T (·)]

other than player j’s intermediate node core coalitionCc(k1, ..., kn, i1, ··· , it−1, j)
h (·).

Therefore, in the t-th level of virtual gameΓ(k1, ··· , kn)
kn

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

), player j’s
[

j ∈C+(k1, ..., kn, i1, ··· , it−1)
h (·),

j /∈Cc(k1, ..., kn, i1, ··· , it−1)
h (·)

]
estimation of the strategic combination choice s∗∗(k1, ..., kn, i1, ··· , it−1, j)

C
c(k1, ..., kn, i1, ··· , it−1, j)
h (·)

of core coalition

Cc(k1, ..., kn, i1, ··· , it−1, j)
h (·) is a function of the false signal i(

k1, ..., kn, i1, ··· , it−1, jF)
j released by him:

s∗∗(k1, ..., kn, i1, ··· , it−1, j)

C
c(k1, ..., kn, i1, ··· , it−1, j)
h (·)

=s∗∗(k1, ..., kn, i1, ··· , it−1, j)

C
c(k1, ..., kn , i1, ··· , it−1, j)
h (·)

(i(
k1, ..., kn, i1, ··· , it−1, jF)

j )

=argmax

 ∑
i∈C

c(k1, ..., kn, i1, ··· , it−1, j)
h (·)

V (k1, ..., kn, i1, ··· , it−1, j, i)

C
c(k1, ..., kn, i1, ··· , it−1, j, i)
T (·)

(s(k1, ..., kn, i1, ··· , it−1, j, i)

C
c(k1, ..., kn, i1, ··· , it−1, j, i)
T (·)

, s∗∗(k1, ..., kn, i1, ··· , it−1, j, i)

−C
c(k1, ..., kn, i1 , ··· , it−1, j, i)
T (·)

)

+V (k1, ..., kn, i1, ··· ,it−1, jF)

C
c(k1, ..., kn, i1, ··· , it−1, j)
h (·)

(
s(

k1, ..., kn, i1, ··· , it−1, jF)

C
c(k1, ..., kn, i1, ··· , it−1, j)
h (·)

, i(
k1, ..., kn, i1, ··· , it−1, jF)

j

)

+ ∑
k ∈C+(k1, ..., kn, i1, ··· , it−1, j)

h (·)
k /∈Cc(k1, ..., kn, i1, ··· , it−1, j)

h (·)
k ̸= j

V (k1, ..., kn, i1, ··· , it−1, j, kF)

C
c(k1, ..., kn, i1, ··· , it−1, j, k)
h (·)

(
s(

k1, ..., kn, i1, ··· , it−1, j, kF)

C
c(k1, ..., kn , i1 , ··· , it−1, j, k)
h (·)

, i
∗(k1, ..., kn, i1, ··· , it−1, j, kF)
j

)}
,

where i ∈ Cc(k1, ..., kn, i1, ··· , it−1, j)
h (·), the escape target core coalition Cc(k1, ..., kn, i1, ··· , it−1, j, i)

T (·) of player i is
core coalition Cc(k1, ..., kn, i1, ··· , it−1, j)

h (·), k ∈C+(k1, ..., kn, i1, ··· , it−1, j)
h (·), k /∈Cc(k1, ..., kn, i1, ··· , it−1, j)

h (·), core coalition
Cc(k1, ..., kn, i1, ··· , it−1, j, k)

h (·) and core coalition Cc(k1, ..., kn, i1, ··· , it−1, j)
h (·) are the same, the escape target core coalition

Cc(k1, ..., kn, i1, ··· , it−1, j, k)
T (·) of player k is not core coalition Cc(k1, ..., kn, i1, ··· , it−1, j)

T (·); i
∗(k1, ..., kn, i1, ··· , it−1, j, kF)
j is

player j’s estimation of the optimal false signal of any extensive member k
[
k ∈C+(k1, ..., kn, i1, ··· , it−1, j)

h (·), k /∈

Cc(k1, ..., kn, i1, ··· , it−1, j)
h (·), k ̸= j

]
in his virtual game.
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Player j’s purpose of releasing false signal to his intermediate node core coalition Cc(k1, ..., kn, i1, ··· , it−1, j)
h (·) is to

influence the public choice s∗∗(k1, ..., kn, i1, ··· , it−1)

C
c(k1, ..., kn, i1, ··· , it−1, j)
h (·)

of strategic combination of core coalition Cc(k1, ..., kn, i1, ··· , it−1, j)
h (·),

thereby maximize the cooperative payoff of his escape target core coalitionCc(k1, ..., kn, i1, ··· , it−1, j)
T (·):

i
∗(k1, ..., kn, i1, ··· , it−1, jF)
j

= argmax

i
(k1, ..., kn, i1, ··· , it−1, jF)
j ∈I

(k1, ..., kn, i1, ··· , it−1 , jF)
j

V (k1, ..., kn, i1, ··· , it−1, j)

C
c(k1, ..., kn, i1, ··· , it−1 , j)
T (·)

(
s∗∗(k1, ..., kn, i1, ··· , it−1, j)

C
c(k1 , ..., kn, i1, ··· , it−1, j)
h (·)

(
i(

k1, ..., kn, i1, ··· , it−1, jF)
j

)
,

s∗(k1, ..., kn, i1, ··· , it−1, j)

C
c(k1, ..., kn, i1, ··· , it−1, j)
T (·)

, s∗∗(k1, ..., kn, i1, ··· , it−1, j)

−C
c(k1, ..., kn, i1, ··· , it−1, j)
h (·), −C

c(k1 , ..., kn, i1, ··· , it−1, j)
T (·)

)
.

Obviously, in order to estimate the strategic combination choice s∗∗(k1, ..., kn, i1, ··· , it−1)

C
c(k1, ..., kn , i1 , ··· , it−1)
h (·)

of any other core

coalition Cc(k1, ..., kn, i1, ··· , it−1)
h (·), player it−1 needs to estimate any core member i’s [who belongs to core coalition

Cc(k1, ..., kn, i1, ··· , it−1)
h (·)] estimation of the strategic combination choices s∗∗(k1, ..., kn, i1, ··· , it−1, i)

−C
c(k1, ..., kn, i1, ··· , it−1, i)
T (·)

of other core coalitions

−Cc(k1, ..., kn, i1, ··· , it−1)
T (·), any extensive member j’s [who nominally belongs to core coalition Cc(k1, ..., kn, i1, ··· , it−1)

h (·)]
estimation of the strategic combination s∗(k1, ..., kn, i1, ··· , it−1, j)

C
c(k1 , ..., kn, i1, ··· , it−1, j)
T (·)

which this core coalition “should” adopt, member j’s

estimation of the strategic combinations s∗∗(k1, ..., kn, i1, ··· , it−1, j)

−C
c(k1, ..., kn, i1, ··· , it−1, j)
h (·), −C

c(k1 , ..., kn, i1, ··· , it−1, j)
T (·)

of the core coalitions other

than core coalitionCc(k1, ..., kn, i1, ··· , it−1)
h (·) and his escape target core coalition, and member j’s estimation of the optimal

signal i
∗(k1, ..., kn, i1, ··· , it−1, j, kF)
j of any other extensive member k.

Thus, the virtual game of Γ(k1, ··· , kn)
kn

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

) enters the (t+1)-th level.
…
Solution to virtual game Γ(k1, ··· , kn)

kn
(e(k1)

k1
, · · · , e(k1, ··· , kn)

kn
).

If for the p-th level of virtual game Γ(k1, ··· , kn)
kn

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

), conditions

s(
k1, ..., kn, i1, ··· , ip−1)

i = s(
k1, ..., kn, i1, ··· , ip)

i , u(
k1, ..., kn, i1, ··· , ip−1)

i = u(
k1, ..., kn, i1, ··· , ip)

i

always hold (that is to say, in the p-th level of virtual game Γ(k1, ··· , kn)
kn

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

), any player ip−1’s estimation
of the virtual game of any other player is the same as the one of player ip−1, in which the strategy sets and the payoff
functions of all the players are the same), virtual game Γ(k1, ··· , kn)

kn
(e(k1)

k1
, · · · , e(k1, ··· , kn)

kn
) is called a p-order game. At

this time, the equilibrium solution e
∗(k1, ..., kn, i1, ··· , ip−1)
ip−1

to the p-level of virtual game Γ(k1, ··· , kn)
kn

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

)

is the Nash equilibrium of the coalition-choosing game under the criterion of minimum escape-payoff deriving from
deviation under information symmetry, that is, the coalition equilibrium of information symmetric cooperative game
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Γ(
k1, ..., kn, i1, ··· , ip−1)

kn

(
N,

{
S(

k1, ..., kn, i1, ··· , ip−1)
i

}
,

{
u(

k1, ..., kn, i1, ··· , ip−1)
i

})
with agreements self-implemented. By

backward induction, from the p-th level of virtual game Γ(k1, ··· , kn)
kn

(e(k1)
k1

, · · · , e(k1, ··· , kn)
kn

) to the first level of virtual game
Γ(k1, ··· , kn)

kn
(e(k1)

k1
, · · · , e(k1, ··· , kn)

kn
), we can finally get the equilibrium solution to game Γ(k1, ··· , kn)

kn
(e(k1)

k1
, · · · , e(k1, ··· , kn)

kn
).

2.5 Solution to the virtual game of player k1

According to the analysis above, under the criterion of maximum expected cooperative payoff distribution, player
k1 can get the expected cooperative payoff distribution of all the players, x̃∗(k1)

k1
(c), x̃∗(k1, k2)

k2
(c), · · · , x̃∗(k1, kn)

kn
(c), in

coalition situation c in his virtual game, that is to say, when the coalition-choosing strategy vector of all the players is
c = (c1, · · · , cn), the cooperative payoff distribution vector of all the players is

x̃ =
[
x̃∗(k1)

k1
(c), x̃∗(k1, k2)

k2
(c), · · · , x̃∗(k1, kn)

kn
(c)
]
.

At this point, we get coalition-choosing game Γ(k1)
Γ (N, {Ci} ,

{
x̃∗(k1, i)

ki
(c)
}
) of playerk1’s virtual game, the

equilibrium of this non-cooperative game is the solution to player k1’s virtual game. The equilibrium of the coalition-
choosing game Γ(k1)

Γ (N,{Ci} ,
{

x̃∗(k1, i)
ki

(c)
}
) of player k1’s virtual game is the coalition equilibrium of player k1’s virtual

game under the criterion of maximum expected cooperative payoff distribution (when the members of each coalition trust
each other).

Under the criterion of minimum expected escape-payoff deriving from deviation (when themembers of each coalition
trust each other), with the expected escape-payoffs deriving from deviation of the players when they escape from the

core coalitions they belong to through deviation,W ∗−C
c(k1)
T (k1)

k1
(c), W

∗−C
c(k1, k2)
T (k1, k2)

k2
(c), · · · , W

∗−C
c(k1, kn)
T (k1, kn)

kn
(c), in

coalition situation c in the virtual game of player k1, we can get the coalition-choosing game Γ(k1)
Γ (N, {Ci} ,{

−W
∗−C

c(k1, i)
T (k1, i)

i (c)

})
under the criterion of minimum expected escape-payoff deriving from deviation (when the

members of each coalition trust each other) in which the estimation vector of the payoff functions of all the players is

W =

[
−W

∗−C
c(k1)
T (k1)

k1
(c), −W

∗−C
c(k1 , k2)
T (k1, k2)

k2
(c), · · · , −W

∗−C
c(k1 , kn)
T (k1, kn)

kn
(c)

]
.

Since the minimization of the expected escape-payoff deriving from deviation (when the members of each coalition
trust each other) of any player and the maximization of his expected cooperative payoff distribution (when the
members of each coalition trust each other) are mutually necessary and sufficient conditions, the coalition-choosing
game Γ(k1)

Γ (N,{Ci} ,
{

x̃∗(k1, i)
ki

(c)
}
) under the criterion of maximum expected cooperative payoff distribution (when the

members of each coalition trust each other) in player k1’s virtual game and the coalition-choosing game Γ(k1)
Γ (N,{Ci} ,{

−W
∗−C

c(k1, i)
T (k1, i)

i (c)

})
under the criterion of minimum expected escape-payoff deriving from deviation (when the

members of each coalition trust each other) have the same Nash equilibrium.

Of course, the Nash equilibrium c∗(k1) of coalition-choosing game Γ(k1)
Γ (N, {Ci} ,

{
−W

∗−C
c(k1 , i)
T (k1, i)

i (c)

}
) under

the criterion of maximum expected cooperative payoff distribution (when the members of each coalition trust each other)
in player k1’s virtual game is not the actual Nash equilibrium of the coalition-choosing game of the information asymmetric
cooperative game with agreements self-implemented, because the players have different information sets. When all the
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players form their virtual games according to their own information sets, they often get different coalition equilibria, that
is, usually,

c∗(k1) ̸=c∗(−k1).

If the coalition equilibrium in any player k1’s virtual game is different from the actual possible coalition equilibrium,
player k1 has the incentive to continue collecting information in order to understand the possible coalition equilibrium,
because the misjudgment of other players’ information sets will cause him to suffer loss. Therefore, before the coalition
equilibrium of information asymmetric cooperative game is formed, player k1 should release and transmit information
through communication and negotiation and receive information released by other players. The changes in the players’
information sets will ultimately make:

c′∗(k1) = c
′∗(−k1)

= c′∗.

At this point, the information asymmetric cooperative game with agreements self-implemented finally reaches its
coalition equilibrium. Obviously, if the information set of some player we refer to in the above analysis is the final
information set before the coalition equilibrium of the information asymmetric cooperative game with agreements self-
implemented is reached, then:

c∗(k1) = c∗(−k1) = c∗.

Before the formation of the coalition equilibrium, the players need to release and receive information, and finally
form a consistent judgment of the coalition equilibrium. Therefore, the information set on the basis of which player k1

forms his virtual game we mentioned above refers to the final information set of player k1 before the coalition equilibrium
is reached.

Secondly, what needs to be mentioned here is that even if we have mentioned in the above model, only the escape
strategy that is considered feasible will be discussed, however, before the end of the backstepping process, it is actually
impossible to accurately determine which escape strategies of the players are considered feasible. Therefore, an alternative
approach is to discuss the virtual game model in which all the escape strategies of the players are considered at first, then
the escape strategies which are considered infeasible are gradually eliminated from the players’ escape strategy sets.

In the above discussion about the coalition equilibrium of player k1’s virtual game, we still miss two important issues
that have not been solved. One is the measurement of the expected cooperative payoff distribution that a player gets from
the core coalition he belongs to, and the other is the measurement of the expected escape-payoff deriving from deviation
of a player when he escapes from the coalition he belongs to through deviation, although we have shown that the goal
of the maximum expected cooperative payoff of a core coalition is consistent with the goal of the maximum expected
cooperative payoff distribution of some core member of this core coalition.

3. Coalition equilibriumof the game and the distribution of the cooperative payoff:
ignoring the opportunistic behaviors in the distribution process
In this section, we will examine the coalition equilibrium of the game and the distribution process of the actual

cooperative payoff of a core coalition when members are unallied in the bargaining game, ignoring the opportunistic
behaviors in the distribution process.
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The basic methodology proposed by Chen [27] can be well applied to the analysis of an information asymmetric
cooperative game with agreements self-implemented: the formation of the coalition equilibrium is the result of the choices
of players who pursue the maximization of their expected cooperative payoff distributions, and the equilibrium of the
bargaining game of a coalition on the cooperative payoff distribution can be obtained by applying the distribution rule of
common payoff. In this section, we’ll examine the condition for the existence of the coalition equilibrium of the game and
define the coalition equilibrium when it does exist. Meanwhile, we’ll divide the actual cooperative payoff of a coalition
into two parts: the cooperative payoff of the coalition when all core members’ judgments of the strategic combination of
their coalition are all correct, and the cooperative payoff of the coalition caused by themisjudgment “cooperation” between
the coalition members. When members are unallied in the bargaining game, the actual cooperative payoff distribution
obtained by a coalitionmember is the sum of the distributions he obtains in the distribution process of these two cooperative
payoffs mentioned above. In Section 4, we will discuss the situation when coalition members are allied in the bargaining
games.

3.1 Unallied bargaining game and the distribution of the cooperative payoff

If information is still asymmetric after the cooperative game with agreements self-implemented is completed, the
Nash equilibrium of the unallied bargaining game of a coalition does not exist, thus the coalition equilibrium of the
information asymmetric cooperative game with agreements self-implemented does not exist. Therefore, in this section we
only discuss the distribution of the cooperative payoff of a coalition when information is symmetric after the cooperative
game with agreements self-implemented is completed. Here, we assume that members of each coalition are unallied in
the bargaining game of the coalition.

Assume that in the coalition equilibrium of player k1’s virtual game, the equilibrium strategic combination that his
escape target core coalition “should” adopt is s∗(k1)

C
c(k1)
T

. Of course, this is not to say that core coalition Cc(k1)
T will take this

strategic combination as its choice. In fact, because the extensive members of the coalition have different estimations of
the “correct” or “should be adopted” equilibrium strategic combination of the core coalition, the extensive members
will decide the strategic combination of the coalition through a public choice game. The public choice of strategic
combination of the extensive coalition is the result of the compromise of the extensive members of the coalition. In
fact, in coalition equilibrium c∗(k1) of the virtual game of player k1, according to his information set, the public choice of
strategic combination of core coalitionCc(k1)

T should be:

s∗∗(k1)

C
c(k1)
T

⊆ s∗∗(k1)

C
+(k1)
T

;
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s∗∗(k1)

C
c(k1)
T

= argmax ∑
i∈C

c(k1)
T

V (k1, i)

C
c(k1, i)
T

(s(k1, i)

C
c(k1, i)
T

, s∗(k1,i)

−C
c(k1, i)
T

)

+ ∑
j∈C

+(k1)
T

j/∈C
c(k1)
T

V (k1, jF)

C
c(k1, j)
h (·)

(s(
k1, jF)

C
c(k1, j)
h (·)

, s
∗∗(k1, jF)

C
c(k1, j)
T (·)

, s
∗∗(k1, jF)

−C
c(k1, j)
h (·), −C

c(k1, j)

T (·)
)

= argmax

 ∑
i∈C

c(k1)
T

V (k1, i)

C
c(k1, i)
T

(
s(k1, i)

C
c(k1, i)
T

, s∗(k1, i)

−C
c(k1, i)
T

)

+ ∑
j∈C

+(k1)
T

j/∈C
c(k1)
T

V (k1, jF)

C
c(k1, j)
h (·)

(s(
k1, jF)

C
c(k1, j)
h (·)

, i(
k1, jF)

j


, i(

k1, jF)
j ∈ I(

k1, jF)
j ;

whereCc(k1, j)
h =Cc(k1)

T ̸=Cc(k1, j)
T .

According to player k1’s information set, core coalitionCc(k1)
T “should” adopt strategic combination s∗(k1)

C
c(k1)
T

. Under this

strategic combination, the expected cooperative payoff that core coalitionCc(k1)
T “should” obtain isV ∗(k1)

C
c(k1)
T

(s∗(k1)

C
c(k1)
T

, s∗∗(k1)

−C
c(k1)
T

).

According to player k1’s information set, how should this expected cooperative payoff be distributed?
Assume that all the members of each coalition are responsible for their own misjudgments, and that the above

assumption is common knowledge of all the players, according to player k1’s information set, the cooperative payoff
V ∗(k1)

C
c(k1)
T

(s∗(k1)

C
c(k1)
T

, s∗∗(k1)

−C
c(k1)
T

) of the core coalition “should” be distributed in accordance with the distribution rule of cooperative

payoff of the coalition when its members are unallied in the bargaining game (Chen [25]).
Assume that there are m members in the member set of core coalition Cc(k1)

T , member set Mq1, q2, ··· , qk composed
of members q1, q2, · · · , qk is a subset of the coalition member set M of core coalition Cc(k1)

T , Mq1, q2, ··· , qk ⊆ M(k ≤
m), θ (k1)(Mq1, q2, ··· , qk) is called the common payoff of member set Mq1, q2, ··· , qk in the virtual game of player k1:

θ (k1)(Mq1, q2, ··· , qk) =V (k1)
Mq1 , q2, ··· , qk

−
k

∑
i=1

W
−C

c(k1)
T (k1)

qi −∑θ (k1)
(2) (Mq1, q2, ··· , qk)−·· ·−∑θ (k1)

(k−1)(Mq1, q2, ··· , qk),

whereV (k1)
Mq1, q2, ··· , qk

is player k1’s estimation of the cooperative payoff of coalitionCc(k1)
T when all the members except those

in member set Mq1, q2, ··· , qk escape from the coalition and join the same coalition as a whole to maximize their escape-
payoff, while members of other coalitions keep their coalition-choosing strategies unchanged, ∑ θ (k1)

( j) (Mq1, q2, ··· , qk) is

the sum of the common payoffs of all the j-member subsets of member set Mq1, q2, ··· , qk , ∑k
i=1 W

−C
c(k1)
T (k1)

qi is the sum of
the escape-payoffs deriving from deviation of all the members in member set Mq1, q2, ··· , qk .
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In the virtual game of player k1, in coalition equilibrium C∗(k1), if the strategic combination that core coalition
Cc(k1)

T “should” adopt is s∗(k1)

C
c(k1)
T

and the strategic combination choices of other core coalitions are s∗∗(k1)

−C
c(k1)
T

, the expected

cooperative payoff distribution of any member qi of core coalitionCc(k1)
T is:

x̃(k1)
qi (s∗(k1)

C
c(k1)
T

, s∗∗(k1)

−C
c(k1)
T

) =W−Cc
T (k1)

qi

+
1
2

m

∑
q j=1
q j ̸=qi

θ (k1)(Mqi, q j)+
1
3

m

∑
q j=1
q j ̸=qi

q j−1

∑
qk=1
qk ̸=qi

θ (k1)(Mqi, q j , qk)+ · · ·+ 1
m

θ (k1)(M1, 2, ··· , m).

According to the virtual game of player k1, in coalition equilibriumC∗(k1), when the cooperative payoff V ∗(k1)

C
c(k1)
T

(s∗(k1)

C
c(k1)
T

, s∗∗(k1)

−C
c(k1)
T

) of core coalition Cc(k1)
T is distributed according to the rule mentioned above, the expected cooperative

payoff distribution that player k1 gets is:

x̃(k1)
k1

(s∗(k1)

C
c(k1)
T

, s∗∗(k1)

−C
c(k1)
T

) =W−Cc
T (k1)

k1

+
1
2

m

∑
q j=1
q j ̸=k1

θ (k1)(Mk1, q j)+
1
3

m

∑
q j=1
q j ̸=k1

q j−1

∑
qk=1
qk ̸=k1

θ (k1)(Mk1, q j , qk)+ · · ·+ 1
m

θ (k1)(M1, 2, ··· , m).

Next, we will examine the distribution of the actual cooperative payoff of core coalitionCc
T . Assume that the strategic

combination adopted by core coalitionCc
T is s∗∗Cc

T

(
s∗∗Cc

T
⊆ s∗∗

C+
T

)
is determined by the public choice game among the extensive

members of the coalition, and that the actual strategic combination choices of other core coalitions are s∗∗−Cc
T
, the actual

cooperative payoff that core coalitionCc
T gets is:

VCc
T

(
s∗∗Cc

T
, s∗∗−Cc

T

)
=

m∗

∑
i=1

ui

(
s∗∗Cc

T
, s∗∗−Cc

T

)
,

where m∗ is the actual number of the members of core coalitionCc
T . Cooperative payoffVCc

T

(
s∗∗Cc

T
, s∗∗−Cc

T

)
= ∑m∗

i=1 ui

(
s∗∗Cc

T
,

s∗∗−Cc
T

)
is core coalitionCc

T ’s actual cooperative payoff that can ultimately be distributed. It does not necessarily equal the
sum of the cooperative payoff distribution expected by the members of the core coalition. Obviously, due to information
asymmetry, the public choice of strategic combination of core coalition Cc

T is not the optimal response to the strategic
combination choices s∗∗−Cc

T
of other core coalitions.

If the estimations of all the core members of core coalition Cc
T of the optimal strategic combination choice of their

core coalition are correct, the maximum cooperative payoff that this core coalition can obtain is:
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maxVCc
T

(
sCc

T
, s∗∗−Cc

T

)
= max

m∗

∑
i=1

ui

(
sCc

T
, s∗∗−Cc

T

)
,

s∗Cc
T
=argmax

sCc
T

V
Cc

T

(
sCc

T
, s∗∗−Cc

T

)
=argmax

sCc
T

m∗

∑
i=1

ui

(
sCc

T
, s∗∗−Cc

T

)
.

The cooperative payoff surplus,

GapCc
T
=V

Cc
T

(
s∗∗Cc

T
, s∗∗−Cc

T

)
−VCc

T

(
s∗Cc

T
, s∗∗−Cc

T

)
≤ 0,

is caused by the inappropriate public choice of strategic combination of the core coalition. And the inappropriate public
choice of strategic combination of the core coalition is caused by the coalition members’ inappropriate public choice of
the strategic combination of the core coalition.

If the estimations of all the core members of core coalition Cc
T of the optimal strategic combination choice of their

core coalition are correct, in coalition equilibrium c∗, when the public choice of strategic combination of core coalition
Cc

T is actually optimal response to the actual strategic combination choices of other core coalitions, that is, s∗∗Cc
T
= s∗Cc

T
, the

cooperative payoff of core coalitionCc
T satisfies

VCc
T

(
s∗∗Cc

T
, s∗∗−Cc

T

)
=VCc

T

(
s∗Cc

T
, s∗∗−Cc

T

)
.

Assume that after the game is completed, there is no longer information asymmetry among the players, and that the
above assumption is common knowledge of all the players, if the estimations of all the core members of core coalitionCc

T
of the optimal strategic combination choice of their core coalition are correct, the distribution of the cooperative payoff of
core coalitionCc

T will be carried out according to the distribution rule in the unallied bargaining game of this core coalition
(Chen [26]):

x̃∗∗k1
(s∗Cc

T
, s∗∗−Cc

T
) =W ∗∗−Cc

T
k1

+
1
2

m∗

∑
q j=1
q j ̸=k1

θ ∗∗(Mk1, q j)+
1
3

m∗

∑
q j=1
q j ̸=k1

q j−1

∑
qk=1
qk ̸=k1

θ ∗∗(Mk1, q j , qk)+ · · ·+ 1
m∗ θ ∗∗(M1, 2, ··· , m∗).

Core coalitionCc
T ’s cooperative payoffVCc

T

(
s∗∗Cc

T
, s∗∗−Cc

T

)
can be regarded as the “cooperation” outcome starting from

strategic combination s∗Cc
T
and through the misjudgments of the public choices of strategic combination of other coalitions.

The distribution of the cooperative payoff VCc
T

(
s∗∗Cc

T
, s∗∗−Cc

T

)
should be based on the distribution of the cooperative payoff

VCc
T

(
s∗Cc

T
, s∗∗−Cc

T

)
, with an additional distribution of the “cooperative” payoff,

GapCc
T
=V

Cc
T

(
s∗∗Cc

T
, s∗∗−Cc

T

)
−VCc

T

(
s∗Cc

T
, s∗∗−Cc

T

)
,

which is caused by the misjudgment cooperation among the core members of core coalitionCc
T .
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For any member k1 of core coalitionCc
T , when he escapes from “cooperation” state s∗∗Cc

T
to state s∗Cc

T
, that is, if member

k1 misjudges but the other members still keep their judgments correct, the loss of the cooperative payoff of core coalition
Cc

T shall obviously be the responsibility of member k1, which is member k1’s escape-payoff. When member k1 escapes,
core coalitionCc

T ’s strategic combination choice is:

s∗Cc
T
(EMk1

) = argmax


m∗

∑
q1=1
q1 ̸=k1

VCc
T

(
sCc

T
, s∗∗−Cc

T

)
+VCc

T

(
sCc

T
, s∗∗(k1)

−Cc
T

)
= argmax

{
(m∗−1)VCc

T

(
sCc

T
, s∗∗−Cc

T

)
+VCc

T

(
sCc

T
, s∗∗(k1)

−Cc
T

)}
,

where s∗Cc
T
(EMk1

) stands for core coalitionCc
T ’s strategic combination choice after member k1 escapes. The escape-payoff

of member k1 is:

W ∗
k1
=VCc

T

[
s∗Cc

T

(
EMk1

)
, s∗∗−Cc

T

]
− VCc

T

(
s∗Cc

T
, s∗∗(k1)

−Cc
T

)
.

If members k1 and k2 escape at the same time, core coalitionCc
T ’s strategic combination choice is:

s∗Cc
T
(EMk1, k2

) = argmax


m∗

∑
q1=1
q1 ̸=k1, k2

VCc
T

(
sCc

T
, s∗∗−Cc

T

)
+VCc

T

(
sCc

T
, s∗∗(k1)

−Cc
T

)
+VCc

T

(
sCc

T
, s∗∗(k2)

−Cc
T

)
= argmax

{
(m∗−2)VCc

T

(
sCc

T
, s∗∗−Cc

T

)
+VCc

T

(
sCc

T
, s∗∗(k1)

−Cc
T

)
+VCc

T

(
sCc

T
, s∗∗(k2)

−Cc
T

)}
.

The common payoff of members k1 and k2 is:

δ ∗ (Mk1, k2

)
=VCc

T

[
s∗Cc

T

(
EMk1, k2

)
, s∗∗−Cc

T

]
−VCc

T

(
s∗Cc

T
, s∗∗−Cc

T

)
−W ∗

k1
−W ∗

k2
.

. . . . . .

When all the members in member set Mk1, k2, ··· , ki escape, core coalitionCc
T ’s strategic combination choice is:

s∗Cc
T
(EMk1, k2, ··· , ki

) = argmax


m∗

∑
q1=1
q1 ̸=k1, k2, ··· , ki

VCc
T

(
sCc

T
, s∗∗−Cc

T

)
+

ki

∑
r1 ̸=k1

VCc
T

(
sCc

T
, s∗∗(r1)

−Cc
T

)

= argmax

{
(m∗− i)VCc

T

(
sCc

T
, s∗∗−Cc

T

)
+

ki

∑
r1 ̸=k1

VCc
T

(
sCc

T
, s∗∗(r1)

−Cc
T

)}
.
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The common payoff of member set Mk1, k2, ··· , ki is:

δ ∗ (Mk1, k2, ··· , ki

)
=VCc

T

[
s∗Cc

T

(
EMk1, k2, ··· , ki

)
, s∗∗−Cc

T

]
−VCc

T
(s∗Cc

T
, s∗∗−Cc

T
)

−
i

∑
j=1

W ∗
k j
−∑δ(2)(Mk1, k2, ··· , ki)−·· ·−∑δ(k−1)(Mk1, k2, ··· , ki),

where ∑i
j=1 W ∗

k j
is the sum of the escape-payoffs of all the members in member set Mk1, k2, ··· , ki , ∑ δ( j)(Mk1, k2, ··· , ki) is

the sum of the common payoffs of all the j-member subsets of member set Mk1, k2, ··· , ki .
The cooperative payoff distribution that member k1 gets from the misjudgment “cooperation” is:

x̃∗k1
=W ∗

k1
+

1
2

m∗

∑
q j=1
q j ̸=k1

δ ∗(Mk1, q j)+
1
3

m∗

∑
q j=1
q j ̸=k1

q j−1

∑
qk=1
qk ̸=k1

δ ∗(Mk1, q j , qk)+ · · ·+ 1
m∗ δ ∗(M1, 2, ··· , m∗).

Herein, in the misjudgment “cooperation”, the members of core coalition Cc
T cannot escape through deviation.

Therefore, in the above-mentioned distribution process, player k1’s reservation distribution is his escape payoff W ∗
ki
in

the misjudgment “cooperation”.
And the actual total cooperative payoff distribution that member k1 gets is:

xk1 = x̃∗k1
+ x̃∗∗k1

.

If in the bargaining game on the distribution of the cooperative payoffVCc
T
(s∗∗Cc

T
, s∗∗−Cc

T
), information is still asymmetric

among the coalition members, the Nash equilibrium of the bargaining game on the distribution of the cooperative payoff
does not exist, because the Nash equilibria of the virtual bargaining games of the members are different.

Similarly, in the bargaining game on the distribution of the “cooperative” payoff,

GapCc
T
=VCc

T

(
s∗∗Cc

T
, s∗∗−Cc

T

)
−V

Cc
T

(s∗Cc
T
, s∗∗−Cc

T
),

caused by the coalition members’ misjudgment “cooperation”, if information is still asymmetric after the game is
completed, the core members of core coalition Cc

T cannot reach the Nash equilibrium of the bargaining game on the
distribution of the “cooperative” payoff

GapCc
T
=VCc

T

(
s∗∗Cc

T
, s∗∗−Cc

T

)
−V

Cc
T

(s∗Cc
T
, s∗∗−Cc

T
).
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3.2 Unallied bargaining game and the coalition equilibrium of the information asymmetric
cooperative game with agreements self-implemented

After investigating the virtual games of the players, now we can define and give the existence proof of the coalition
equilibrium of an information asymmetric cooperative game with agreements self-implemented, when information is
symmetric after the game is completed. It is easy to reach the conclusions in Theorems 3 and 4.

Theorem 3 Ignoring the opportunistic behaviors of coalition members in the distribution process of cooperative
payoff, in information asymmetric cooperative game Γ(N,{Si},{ui}) with agreements self-implemented, assume that
information is still asymmetric after the game is completed, and that the above assumption is common knowledge of all the
players, there exists no Nash equilibrium in the unallied bargaining game of any coalition C. At the same time, there exists
no coalition equilibrium in information asymmetric cooperative game Γ(N,{Si},{ui})with agreements self-implemented
under the criterion of maximum expected cooperative payoff distribution (when the members of each coalition trust each
other).

Proof. The equilibrium of information asymmetric cooperative game Γ(N,{Si},{ui}) with agreements self-
implemented includes two interrelated aspects: the coalition equilibrium of the game and the distribution equilibrium
of the cooperative payoff of each coalition.

If information is still asymmetric after the game is completed, in the bargaining game on the distribution of the
cooperative payoff of a coalition, members will present their requirements for cooperative payoff distribution on the basis
of their virtual games, and the sum of their requirements for cooperative payoff distribution do not necessarily equal the
actual cooperative payoff received by the coalition. That is to say, the distribution equilibrium of the cooperative payoff
of the coalition cannot be achieved; on the other hand, if the distribution equilibrium of cooperative payoff between the
coalition members cannot be achieved, the coalition equilibrium of the game cannot be reached either.

Herein, there exists no coalition equilibrium under the criterion of maximum expected cooperative payoff distribution
(when the members of each coalition trust each other) in information asymmetric cooperative game Γ(N,{Si},{ui}) with
agreements self-implemented, or, there exists no coalition equilibrium under the criterion of minimum expected escape-
payoff deriving from deviation (when the members of each coalition trust each other) in the information asymmetric
cooperative game with agreements self-implemented does not mean that there is no cooperative coalition in the game.
Some players with a high degree of information symmetry (after the completion of the cooperative game) may still
establish cooperative coalitions which aim at exploiting the synergies among them, and reach cooperative payoff
distribution agreements with some kinds of compensation mechanisms. In addition, even if the degree of information
asymmetry among the players is still high after the completion of the cooperative game, those who agree with each other
on the synergy expectations and do not need distribution compensations (perhaps they can set up some compensation
mechanism to benefit from their cooperation) may also reach some forms of distribution agreements and establish
cooperative coalitions designed to take advantage of the synergy expectations among them.

When information among the players is still asymmetric after the completion of the cooperative game, in information
asymmetric cooperative game Γ(N,{Si},{ui}) with agreements self-implemented, there is at least a coalition situation
shown as follows which is feasible.

Theorem 4 Ignoring the opportunistic behaviors of coalition members in the distribution process of cooperative
payoff, in information asymmetric cooperative game Γ(N,{Si},{ui}) with agreements self-implemented, assume that
information is still asymmetric after the game is completed, and that the above assumption is common knowledge of all
the players, if in the cooperative game there exists no compensation mechanism (or, the distribution of any member of
a coalition is just the payoff that he gets in the game), the following coalition situation under the criterion of maximum
expected payoff (when the members of each coalition trust each other) is feasible:
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c∗i =



i, if for any ci ̸= i, u(i)i (i, c∗−i)≥ u(i)i (ci, c∗−i), or, u( j)
i (ci, c∗−i)−W

−Cci ( j)
i ≤ 0,

or, u(i)j (ci, c∗−i)≤W
−Cci (i)
j ( j ∈Cci , j ̸= i);

argmax
ci

u(i)i (ci, c∗−i), if at least for a certain ci ̸= i, u(i)i (i, c∗−i)< u(i)i (ci, c∗−i), u( j)
i (ci, c∗−i)−W

−Cci ( j)
i > 0,

and u(i)j (ci, c∗−i)>W
−Cci (i)
j ( j ∈Cci , j ̸= i).

The proof of Theorem 4 is omitted.
Assume that information is symmetric after the game is completed, in information asymmetric cooperative game

Γ(N, {Si} , {ui}) with agreements self-implemented, there exists the mixed strategic coalition equilibrium under the
criterion of maximum expected cooperative payoff distribution.

Theorem 5 Ignoring the opportunistic behaviors of coalition members in the distribution process of cooperative
payoff, in information asymmetric cooperative game Γ(N,{Si},{ui}) with agreements self-implemented, assume that
information is symmetric after the game is completed, and that the above assumption is common knowledge of all the
players, there exists the mixed strategic coalition equilibrium under the criterion of maximum expected cooperative payoff
distribution (when the members of each coalition trust each other):

c∗i =



i, if for any ci ̸= i, x̃(i)i (i, c∗−i)≥ x̃(i)i (ci, c∗−i), or, ∑
j∈Cci
j ̸=i

[
Mv( j)

i (Cci)−W
−Cci ( j)
i

]
≤ 0,

or, ∑
j∈Cci
j ̸=i

[
Mv( j)

Th
(Cci)− ∑

k∈Th

W
−Cci ( j)
k

]
≤ 0(i ∈ Th ⊆Cci);

argmax
ci

x̃(i)i (ci, c∗−i), if at least for a certain ci ̸= i, x̃(i)i (i, c∗−i)< x̃(i)i (ci, c∗−i),

∑
j∈Cci
j ̸=i

[
Mv( j)

i (Cci)−W
−Cci ( j)
i

]
> 0, and ∑

j∈Cci
j ̸=i

[
Mv( j)

Th
(Cci)− ∑

k∈Th

W
−Cci ( j)
k

]
> 0(i ∈ Th ⊆Cci).

Proof. If in coalition situation c, any player i has synergy with the coalition he belongs to, player i and each member
set he belongs to are trusted by his coalition, then coalition situation c is feasible; if in coalition situation c, some player
i has no synergy with the coalition he belongs to, or, he or some member set he belongs to is not trusted by his coalition,
coalition situation c is infeasible.

Assume thatC is the feasible situation set. First and foremost,Cmust not be an empty set because at least the coalition
situation in which each player chooses to create a 1-person coalition and solely participates in the game is feasible.

In information asymmetric cooperative game Γ(N,{Si},{ui}) with agreements self-implemented, when the
opportunistic behaviors in the distribution process are ignored, all the players must make consistent decisions by
negotiations on choosing coalition situations. Therefore, in the virtual game of any player i, the probability with which
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each player chooses some coalition situation in the mixed-strategic coalition equilibrium must be the same. Assume that
all the players select coalition situations in vector (C1, C2, · · · ,CM) (whereM is the number of feasible coalition situations)
with the same probability vector p = (p1, p2, · · ·, pM), the decision-making problem of player i is Ψ(N, p):

x̃(i)i (p∗) = max
p∈P

x̃(i)i (p), ∀i ∈ N.

It can be further expressed as

max
p

x̃(i)i (p) = max
p

M

∑
I=1

pI x̃
(i)
i (cI).

s.t. max
p

x̃(−i)
−i (p) = max

p

M

∑
I=1

pI x̃
(−i)
−i (cI);

p = (p1, p2, · · · , pM) ∈ P, (p1, p2, · · · , pM)| pI(cI)≥ 0, I = 1, 2, · · · , M;

M

∑
I=1

pI = 1.

If the decision-making problem above of any player i has an optimal solution p∗, p∗ is the mixed-strategic coalition
situation in information asymmetric cooperative game Γ(N,{Si},{ui}) with agreements self-implemented when the
opportunistic behaviors in the distribution process are ignored.

According to Kakutani Fixed Point Theorem, it’s easy to prove that the decision-making problem above has an
optimal solution, but p∗ may not be one and only.

We can also draw the conclusion in Theorem 6.
Theorem 6 Ignoring the opportunistic behaviors of coalition members in the distribution process of cooperative

payoff, in information asymmetric cooperative game Γ(N,{Si},{ui}) with agreements self-implemented, assume that
information is symmetric after the game is completed, and that the above assumption is common knowledge of all the
players, there exists the mixed strategic coalition equilibrium under the criterion of minimum expected escape-payoff
deriving from deviation (when the members of each coalition trust each other):
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c∗i =



i, i f f or any ci ̸= i, W−Ci(i)
i (i, c∗−i)≤W

−Cci (i)
i (ci, c∗−i), or, ∑

j∈Cci
j ̸=i

[
Mv( j)

i (Cci)−W
−Cci ( j)
i

]
≤ 0,

or, ∑
j∈Cci
j ̸=i

[
Mv( j)

Th
(Cci)− ∑

k∈Th

W
−Cci ( j)
k

]
≤ 0(i ∈ Th ⊆Cci);

argmin
ci

W
−Cci (i)
i (ci, c∗−i), i f at least f or a certain ci ̸= i, W−Ci(i)

i (i, c∗−i)>W
−Cci (i)
i (ci, c∗−i),

∑
j∈Cci
j ̸=i

[
Mv( j)

i (Cci)−W
−Cci ( j)
i

]
> 0, and ∑

j∈Cci
j ̸=i

[
Mv( j)

Th
(Cci)− ∑

k∈Th

W
−Cci ( j)
k

]
> 0(i ∈ Th ⊆Cci).

If the distribution scheme of each coalition meets the competitive distribution condition, that is, the distribution of
anymember is no less than his escape payoff deriving from deviation and nomore than his contribution to the coalition, the
coalition equilibrium under the criterion of minimum expected escape-payoff deriving from deviation (when the members
of each coalition trust each other) is equivalent to the one under the criterion of maximum expected cooperative payoff
distribution (when the members of each coalition trust each other).

Proof. According to an analysis similar to the proof of Theorem 5, it is easy to prove that ignoring the opportunistic
behaviors of coalition members in the distribution process of cooperative payoff, in information asymmetric cooperative
game Γ(N,{Si},{ui}) with agreements self-implemented, assume that information is symmetric after the game is
completed, and that the above assumption is common knowledge of all the players, there exists themixed strategic coalition
equilibrium under the criterion of minimum expected escape-payoff deriving from deviation (when the members of each
coalition trust each other). Next, we will prove that the above coalition equilibrium is equivalent to the one under the
criterion of minimum expected escape-payoff deriving from deviation (when the members of each coalition trust each
other).

Ignoring the opportunistic behaviors of coalition members in the distribution process of cooperative payoff, when
competitive distribution condition is satisfied, obviously,
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c∗i = i, if for any ci ̸= i, x̃(i)i (i, c∗−i)≥ x̃(i)i (ci, c∗−i), or,

∑
j∈Cci
j ̸=i

[
Mv( j)

i (Cci)−W
−Cci ( j)
i

]
≤ 0, or, ∑

j∈Cci
j ̸=i

[
Mv( j)

Th
(Cci)− ∑

k∈Th

W
−Cci ( j)
k

]
≤ 0(i ∈ Th ⊆Cci).

⇔c∗i = i, if for any ci ̸= i, W−Ci(i)
i (i, c∗−i)≤W

−Cci (i)
i (ci, c∗−i), or, ∑

j∈Cci
j ̸=i

[
Mv( j)

i (Cci)−W
−Cci ( j)
i

]
≤ 0, or,

∑
j∈Cci
j ̸=i

[
Mv( j)

Th
(Cci)− ∑

k∈Th

W
−Cci ( j)
k

]
≤ 0(i ∈ Th ⊆Cci).

To prove Theorem 6, what we need to do is to prove that when the agreements are self-implemented,

c∗i = argminW
−Cci (i)
i (ci, c∗−i)⇔ c∗i = argmax x̃(i)i (ci, c∗−i).

That is, when some player i minimizes his escape-payoff deriving from deviation in the coalition equilibrium under
the principle of minimum expected escape-payoff deriving from deviation, he can get the highest expected cooperative
payoff distribution. Meanwhile, when some player i maximizes his expected cooperative payoff distribution in the
coalition equilibrium under the principle of expected maximum distribution (when the members of each coalition trust
each other), he can get the lowest expected escape-payoff deriving from deviation.

(1) If c∗i = argmax x̃(i)i (ci, c∗−i), coalition situation (c∗i , c∗−i) is the coalition equilibrium under the principle of
maximum expected distribution (when the members of each coalition trust each other). In this coalition equilibrium of
the virtual game of player i, the distribution x̃(i)i

(
c∗i , c∗−i

)
satisfies the competitive distribution condition:

Mv(i)i (Cc∗i
)(c∗i , c∗−i)≥ x̃(i)i (c∗i , c∗−i)≥W

−Cc∗i
(i)

i (c∗i , c∗−i).

Assume that the coalition-choosing strategy of player i is ci ̸=c∗i , according to the definition of coalition equilibrium
under the principle ofmaximum expected distribution (when themembers of each coalition trust each other), x̃(i)i

(
ci, c∗−i

)
≤

x̃(i)i

(
c∗i , c∗−i

)
. Therefore, player i has the motivation to betray coalition Cci and join the corresponding coalition Cc∗i

in
situation

(
ci, c∗−i

)
through deviation. When player i withdraws from coalition Cci through deviation and join coalition

Cc∗i
, his expected escape-payoff deriving from deviation satisfies:

Mv(i)i (Cc∗i
)≤W

−Cci (i)
i (ci, c∗−i).

Coalition Cc∗i
wouldn’t give a distribution more than Mv(i)i (Cc∗i

) to player i, because Mv(i)i (Cc∗i
) is the marginal

contribution of player i to coalition Cc∗i
through his deviation. According to the competitive distribution condition, we

have:
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x̃(i)i (c∗i , c∗−i)≤ Mv(i)i (Cc∗i
).

Therefore,

W
−Cc∗i

(i)

i (c∗i , c∗−i)≤ x̃(i)i (c∗i , c∗−i)≤W
−Cci (i)
i (ci, c∗−i).

So,

W
−Cc∗i

(i)

i (c∗i , c∗−i)≤W
−Cci (i)
i (ci, c∗−i),

c∗i = argmaxx̃(i)i (ci, c∗−i)⇒ argminW
−Cci (i)
i (ci, c∗−i).

(2) If c∗i = argminW
−Cci (i)
i (ci, c∗−i), coalition situation (c∗i , c∗−i) is the coalition equilibrium under the principle of

minimum expected escape-payoff deriving from deviation (when the members of each coalition trust each other). In this

coalition equilibrium, the expected escape-payoff deriving from deviation of player i, W
−Cc∗i

(i)

i (c∗i , c∗−i), satisfies the
competitive distribution condition:

x̃(i)i (c∗i , c∗−i)≥W
−Cc∗i

(i)

i (c∗i , c∗−i).

Assume that the coalition-choosing strategy of player i is ci ̸=c∗i , according to the definition of coalition equilibrium
under the principle of minimum expected escape-payoff deriving from deviation (when the members of each coalition trust

each other), W
−Cci (i)
i (ci, c∗−i)≥W

−Cc∗i
(i)

i (c∗i , c∗−i). In coalition situation (c∗i , c∗−i) when other players keep their coalition-
choosing strategies unchanged, and player i plays coalition-choosing strategy ci, Mv(i)i (Cci) > W

−Cci (i)
i , the expected

distribution that player i gets from the corresponding coalitionCci which he joins satisfies:

x̃(i)i (ci, c∗−i)≤W
−Cc∗i

(i)

i (c∗i , c∗−i),

becauseW
−Cc∗i

(i)

i (c∗i ,c
∗
−i) is the expected marginal contribution of player i to coalitionCci through deviation, we have:

x̃(i)i (c∗i , c∗−i)≥ x̃(i)i (ci, c∗−i).

So,

c∗i = argminW
−Cci (i)
i (ci, c∗−i)⇒ c∗i = argmax x̃(i)i (ci, c∗−i).
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That is to say,

c∗i = argmin
ci

W
−Cci (i)
i (ci, c∗−i), if at least for a certain ci ̸= i, W−Ci(i)

i (i, c∗−i)>W
−Cci (i)
i (ci, c∗−i),

∑
j∈Cci
j ̸=i

[
Mv( j)

i (Cci)−W
−Cci ( j)
i

]
> 0, and ∑

j∈Cci
j ̸=i

[
Mv( j)

Th
(Cci)− ∑

k∈Th

W
−Cci ( j)
k

]
> 0(i ∈ Th ⊆Cci).

⇔c∗i = argmax
ci

x̃(i)i (ci, c∗−i), if at least for a certain ci ̸= i, x̃(i)i (i, c∗−i)< x̃(i)i (ci, c∗−i),

∑
j∈Cci
j ̸=i

[
Mv( j)

i (Cci)−W
−Cci ( j)
i

]
> 0, and ∑

j∈Cci
j ̸=i

[
Mv( j)

Th
(Cci)− ∑

k∈Th

W
−Cci ( j)
k

]
> 0(i ∈ Th ⊆Cci).

4. Allied bargaining game of a coalition: ignoring the opportunistic behaviors in
the distribution process
When coalition members are allied in the bargaining games, in information asymmetric cooperative

game Γ(N,{Si},{ui}) with agreements self-implemented, each player’s escape payoff deriving from deviation remains
unchanged, just the same one when coalition members are unallied in the bargaining game. Therefore, when coalition
members are allied in the bargaining games, the coalition equilibrium of the game remains the same as the one under the
criterion of minimum expected escape-payoff deriving from deviation (when the members of each coalition trust each
other) when coalition members are unallied in the bargaining games. Therefore, in this section, we won’t examine the
coalition equilibrium of the game anymore.

In this section, we will examine the distribution process of the actual cooperative payoff of a coalition when core
members are allied in the bargaining game, ignoring the opportunistic behaviors in the distribution process. First, we’ll
examine the coalition equilibrium of the bargaining game of a coalition. Secondly, with the methodology used in analyzing
the distribution equilibrium when coalition members are unallied in the bargaining game, we’ll examine the distribution
of the cooperative payoff of a coalition between the cooperative teams, presents the actual cooperative payoff distribution
obtained by a cooperative team of the coalition in the coalition equilibrium.

4.1 Coalition equilibrium of the bargaining game

In information asymmetric cooperative game Γ(N,{Si},{ui}) with agreements self-implemented, assume that
information is symmetric after the game is completed, and that the above assumption is common knowledge of all the
players, there exists the Nash equilibrium in the allied bargaining game of any coalition, and there exists the mixed
strategic coalition equilibrium in the information asymmetric cooperative game with agreements self-implemented when
coalition members are allied in the bargaining games. When coalition members are allied in the bargaining games, the
coalition equilibrium in information asymmetric cooperative game Γ(N,{Si},{ui}) with agreements self-implemented is
the same as the one in the information asymmetric cooperative game with agreements self-implemented when coalition
members are unallied in the bargaining games, the public choice of strategic combination of a coalition when members
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of the coalition are allied in the bargaining game is the same as the one when members of the coalition are unallied in the
bargaining game.

If information is still asymmetric after the game is completed, there is no Nash equilibria in the allied bargaining
games of coalitions, therefore, when members of each coalition are allied in the bargaining game on the distribution of
its cooperative payoff, there exists no coalition equilibrium in information asymmetric cooperative game Γ(N,{Si},{ui})
with agreements self-implemented under the criterion of maximum expected cooperative payoff distribution(when the
members of each coalition trust each other), or, there exists no coalition equilibrium under the criterion of minimum
expected escape-payoff deriving from deviation (when the members of each coalition trust each other) in the information
asymmetric cooperative game with agreements self-implemented.

In this section we only examine the coalition equilibrium of the allied bargaining game of a coalition and the
distribution of the cooperative payoff of the coalition in the case of information symmetry after the completion of the
game.

In the virtual game of player k1, when the core members of core coalitionCc(k1)
T set up the cooperative teams in some

coalition situation, the competition among the m core members (m is the number of the core members of core coalition
Cc(k1)

T ) of core coalition Cc(k1)
T in the unallied bargaining game is replaced by the competition among the m cooperative

teams in the allied bargaining game. It is easy to prove that whether the coalition members are allied in the bargaining
game or not, the coalition equilibria of information asymmetric cooperative game Γ(N,{Si},{ui}) with agreements self-
implemented are the same.

In the virtual game of player k1, in the allied bargaining game Γ(k1)(M, {Ti} ,
{

x̃(k1)
i

}
) of core coalition Cc(k1)

T , let

Mm1, m2, ..., mk denote a subset consisting of cooperative teams m1, m2, . . ., mk of team set M of core coalition Cc(k1)
T in

coalition situation t, Mm1, m2, ..., mk⊆ M(k ≤ m), the common payoff θ (k1)(Mm1, m2, ··· , mk)of team set Mm1, m2, ..., mk is
defined as following:

θ (k1)(Mm1, m2, ··· , mk) =V (k1)
Mm1, m2, ··· , mk

−
k

∑
i=1

W
−C

c(k1)
T (k1)

mi −∑θ (k1)
(2) (Mm1, m2, ··· , mk)−·· ·−∑θ (k1)

(k−1)(Mm1, m2, ··· , mk),

where V (k1)
Mm1 , m2, ··· , mk

is the cooperative payoff of core coalition Cc(k1)
T when all the members except those of the teams in

set Mm1, m2, ..., mk have escaped from the coalition and join the same coalition as a whole, while other coalitions keep
unchanged in the virtual allied bargaining game of player k1; ∑ θ (k1)

( j) (Mm1, m2, ··· , mk) is the sum of the common payoffs

of all the j-team subsets of Mm1, m2, ··· , mk in the virtual allied bargaining game of player k1; ∑k
i=1 W

−C
c(k1)
T (k1)

mi is the sum
of escape-payoffs deriving from deviation of all the core members of the k teams of Mm1, m2, ··· , mk in the virtual allied
bargaining game of player k1.

According to Chen [25], in coalition situation t of the bargaining game in the virtual game of player k1, the
Nash equilibrium in the bargaining game among teams Mm1, m2, ··· , mk about the distribution of the common payoff
θ (k1)(Mm1, m2, ··· , mk) is:

y∗(k1)
m1 =

1
k

θ
(k1) (

Mm1, m2, ··· , mk

)
, i = 1, 2, · · · , k.

That’s to say, the teams that belong to set Mm1, m2, ··· , mk will get the same common payoff distribution.
So, in the virtual game of player k1, in some coalition situation t of the allied bargaining gameΓ(k1)(M, {Ti} ,

{
x̃(k1)

i

}
)

of core coalition Cc(k1)
T on the distribution of the cooperative payoff surplus, the cooperative payoff surplus distribution

that some cooperative team mi can get from core coalitionCc(k1)
T is:
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ỹ(k1)
mi =

1
2

m

∑
m j=1
m j ̸=mi

θ (k1)(Mmi, m j)+
1
3

m

∑
m j=1
m j ̸=mi

m j−1

∑
mk=1
mk ̸=mi

θ (k1)(Mmi, m j , mk)+ · · ·+ 1
m

θ (k1)(M1, 2, ··· , m).

The total distribution that team mi can get is:

x̃(k1)
mi =W−Cc

T (k1)
mi + ỹ(k1)

mi =W−Cc
T (k1)

mi

+
1
2

m

∑
m j=1
m j ̸=mi

θ (k1)(Mmi, m j)+
1
3

m

∑
m j=1
m j ̸=mi

m j−1

∑
mk=1
mk ̸=mi

θ (k1)(Mmi, m j , mk)+ · · ·+ 1
m

θ (k1)(M1, 2, ··· , m).

Thus, we get the Nash equilibrium of the allied bargaining game Γ(k1)(M, {Ti} ,
{

x̃(k1)
i

}
) of core coalitionCc(k1)

T on
the distribution of the cooperative payoff surplus among the cooperative teams formed in any coalition situation t.

After discussing the equilibrium of the non-cooperative game among cooperative teams of core coalition Cc(k1)
T in

coalition situation t of the bargaining game in the virtual game of player k1, we will continue to analyze the coalition
equilibrium of the bargaining game Γ(k1)(M, {Ti} ,

{
x̃(k1)

i

}
) of core coalitionCc(k1)

T in the virtual game of player k1.
Ignoring the opportunistic behaviors of coalition members in the distribution process of cooperative payoff, assume

that information is symmetric after the game is completed, and that the above assumption is common knowledge of all the
players, in the virtual game of player k1, if the coalition situation t∗(k1) = (t

∗(k1)
1 , t∗(k1)

2 , · · · , t∗(k1)
n ) of virtual bargaining

game Γ(k1)(M, {Ti} ,
{

x̃(k1)
i

}
) of player k1 is feasible, and the team-choosing strategy of each coalition member is the

best response to the collective actions of other coalition members, coalition situation t∗(k1) = (t
∗(k1)
1 , t∗(k1)

2 , · · · , t∗(k1)
n ) is

called the coalition equilibrium under the criterion of maximum expected cooperative payoff distribution.
Theorem 7 Ignoring the opportunistic behaviors of coalition members in the distribution process of cooperative

payoff, in information asymmetric cooperative game Γ(N,{Si},{ui}) with agreements self-implemented, assume that
information is symmetric after the game is completed, and that the above assumption is common knowledge of all the
players, in the virtual game of player k1, in the allied bargaining game Γ(k1)(M, {Ti} ,

{
x̃(k1)

i

}
) of core coalition Cc(k1)

T ,
there exists the (mixed strategic) coalition equilibrium under the criterion of maximum expected cooperative payoff
distribution:

∀i = 1, 2, · · · , m,

t∗(k1)
i =


i, if for any ti, x̃(k1)

i (i, t∗(k1)
−i )≥ x̃(k1)

i (ti, t∗(k1)
−i );

argmaxx̃(k1)
i (ti, t∗(k1)

−i ), if at least for a certain ti ̸= i, x̃(k1)
i (i, t∗(k1)

−i )< x̃(k1)
i (ti, t∗(k1)

−i ).

At the same time, in the allied bargaining game Γ(k1)(M, {Ti} ,
{

x̃(k1)
i

}
) of core coalition Cc(k1)

T , there exists the
(mixed strategic) coalition equilibrium under the criterion of minimum expected escape-payoff:
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∀i = 1, 2, · · · , m,

t∗(k1)
i =


i, if for any ti, w(k1)

i (i, t∗(k1)
−i )≤ w(k1)

i (ti, t∗(k1)
−i );

argminw(k1)
i (ti, t∗(k1)

−i ), if at least for a certain ti ̸= i, w(k1)
i (i, t∗(k1)

−i )> w(k1)
i (ti, t∗(k1)

−i ).

If the distribution scheme of each team satisfies the competitive distribution condition, the coalition equilibrium under
the criterion of maximum expected cooperative payoff distribution in allied bargaining game Γ(k1)(M, {Ti} ,

{
x̃(k1)

i

}
)

of core coalition Cc(k1)
T is equivalent to the one under the criterion of minimum expected escape-payoff in game

Γ(k1)(M, {Ti} ,
{

x̃(k1)
i

}
).

The proof of Theorem 7 is omitted.
In the virtual game of player k1, after the formation of coalition equilibrium t∗(k1) of the allied bargaining game

Γ(k1)(M, {Ti} ,
{

x̃(k1)
i

}
) of core coalition Cc(k1)

T , the competition among the m members (m is the number of the

members of core coalition Cc(k1)
T ) of core coalition Cc(k1)

T in the unallied bargaining game is replaced by the competition
among the m cooperative teams in the allied bargaining game. In coalition equilibrium t∗(k1) of allied bargaining game
Γ(k1)(M, {Ti} ,

{
x̃(k1)

i

}
) of core coalition Cc(k1)

T , assume that the team-choosing strategies of the m member of core

coalitionCc(k1)
T are respectively t∗(k1)

1 , t∗(k1)
2 , · · · , t∗(k1)

m , obviously, due to the different information sets, for somemembers
k1, −k1(−k1 ̸= k1), usually, we have:

(t∗(k1)
1 , t∗(k1)

2 , · · · , t∗(k1)
m ) ̸= (t∗(−k1)

1 , t∗(−k1)
2 , · · · , t∗(−k1)

m ).

Obviously, if player k1 finds that his estimation of the coalition equilibrium of the bargaining game is different from
the actual possible coalition equilibrium, his information set is obviously not complete enough. Therefore, player k1 is
motivated to further collect information, which is helpful for increasing his expected cooperative payoff distribution. Thus,
before the cooperative teams sign the cooperation agreements, all the coalition members will further collect information,
such that

(
t
′∗(k1)
1 , t

′∗(k1)
2 , · · · , t

′∗(k1)
m

)
=
(

t
′∗(−k1)
1 , t

′∗(−k1)
2 , · · · , t

′∗(−k1)
m

)
= (t∗1 , t∗2 , · · · , t∗m).

Of course, if the information set that we refer to of a coalition member is his final information set before the
cooperation agreements are signed by cooperative teams, then

(
t∗(k1)
1 , t∗(k1)

2 , · · · , t∗(k1)
m

)
=
(

t∗(−k1)
1 , t∗(−k1)

2 , · · · , t∗(−k1)
m

)
= (t∗1 , t∗2 , · · · , t∗m).

That is,

t∗(−k1) = t∗(−k1) = t∗.
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4.2 Coalition equilibrium of the bargaining game and the distribution of the cooperative payoff

After the formation of coalition equilibrium t∗, in coalition equilibrium t∗ of the bargaining game of core coalition
Cc(k1)

T , if team set Mm∗
1, m∗

2, ··· , m∗
k
is a subset of team set M∗ of core coalition Cc(k1)

T , which consists of cooperative teams
m∗

1,m
∗
2, · · · , m∗

k , Mm∗
1, m∗

2, ··· , m∗
k
⊆M∗(k ≤m), common payoff θ (k1)(Mm∗

1, m∗
2, ··· , m∗

k
) of team set Mm∗

1, m∗
2, ··· , m∗

k
is defined

as following:

θ (k1)(Mm∗
1, m∗

2, ··· , m∗
k
) =V (k1)

Mm∗
1, m∗

2, ··· , m∗
k
−

k

∑
i=1

W
−C

c(k1)
T (k1)

m∗
i

−∑θ (k1)
(2) (Mm∗

1, m∗
2, ··· , m∗

k
)−·· ·−∑θ (k1)

(k−1)(Mm∗
1, m∗

2, ··· , m∗
k
),

whereV (k1)
Mm∗

1, m∗
2, ··· , m∗

k
is the cooperative payoff of core coalitionCc(k1)

T when all the members of other teams except those of
the teams in set Mm∗

1, m∗
2, ··· , m∗

k
have escaped from the core coalition and join the same coalition as a whole to maximize

their escape-payoff, while members of other coalitions keep their coalition-choosing strategies unchanged in player k1’s
virtual game; ∑ θ (k1)

( j)

(
Mm∗

1, m∗
2, ··· , m∗

k

)
is the sum of the common payoffs of all the j-team subsets of set Mm∗

1, m∗
2, ··· , m∗

k
;

∑k
i=1 W

−C
c(k1)
T (k1)

m∗
i

is the sum of the escape-payoffs deriving from deviation of all the members of the k teams in set
Mm∗

1, m∗
2, ··· , m∗

k
.

According to the distribution rule of common payoff, in player k1’s virtual bargaining game of core coalitionCc(k1)
T ,

the common payoff distribution that any cooperative team m∗
i in team set Mm∗

1, m∗
2, ··· , m∗

k
can get is:

ỹ∗(k1)
m∗

i
=

1
k

θ
(k1)(

Mm∗
1, m∗

2, ··· , m∗
k

)
, i = 1, 2, · · · , k.

Therefore, in player k1’s virtual bargaining game Γ(k1)(M, {Ti} ,
{

x̃(k1)
i

}
) of core coalition Cc(k1)

T , the cooperative

payoff surplus distribution that some cooperative team m∗
i of core coalitionCc(k1)

T can get is:

ỹ(k1)
m∗

i
=

1
2

m

∑
m∗

j=1
m∗

j ̸=m∗
i

θ (k1)(Mm∗
i , m∗

j
)+

1
3

m

∑
m∗

j=1
m∗

j ̸=m∗
i

m∗
j−1

∑
m∗

k=1
m∗

k ̸=m∗
i

θ (k1)(Mm∗
i , m∗

j , m∗
k
)+ · · ·+ 1

m
θ (k1)(M1, 2, ··· , m).

The total cooperative payoff distribution that cooperative team m∗
i of core coalitionCc(k1)

T can get is:

x̃(k1)
m∗

i
=ỹ(k1)

m∗
i
+W−Cc

T (k1)

m∗
i

=W−Cc
T (k1)

m∗
i

+
1
2

m

∑
m∗

j=1
m∗

j ̸=m∗
i

θ (k1)(Mm∗
i , m∗

j
)+

1
3

m

∑
m∗

j=1
m∗

j ̸=m∗
i

m∗
j−1

∑
m∗

k=1
m∗

k ̸=m∗
i

θ (k1)(Mm∗
i , m∗

j , m∗
k
)+ · · ·+ 1

m
θ (k1)(M1, 2, ··· , m).

Assume that information is symmetric after the game is completed, and that the above assumption is common
knowledge of all the players, now we can get the Nash equilibrium of core coalition Cc(k1)

T ’s allied bargaining game
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Γ(k1)(M, {Ti} ,
{

x̃(k1)
i

}
) on the distribution of the cooperative payoff, in the coalition equilibrium t∗ of the game in player

k1’s virtual game.
If the number of the members of a cooperative team is 3 or more than 3, after examining the distribution process of

cooperative payoff in the coalition level (that is, the first level) bargaining game, we need to extend the above-mentioned
distribution process-that is, we need to examine the second level, third level, forth level, ... bargaining games, …, step
by step, finally we’ll get the distribution vector of a core coalition with limited members.

Assume that after the game is completed, the information among all the players, including all the members of core
coalition Cc(k1)

T , is symmetric, and that all the members or teams of each core coalition must be responsible for their
own misjudgments. In coalition equilibrium c∗ of the information asymmetric cooperative game with agreements self-
implemented, assume that the public choice of strategic combination of core coalitionCc(k1)

T is s∗∗
C

c(k1)
T

, and that the actual

public choices of strategic combination of other core coalitions are s∗∗T

−C
c(k1)
T

, the cooperative payoff actually obtained by

core coalition Cc(k1)
T after the game is completed is V

C
c(k1)
T

(s∗∗
C

c(k1)
T

, s∗∗T

−C
c(k1)
T

) = ∑m
i=1 ui(s∗∗

C
c(k1)
T

, s∗∗T

−C
c(k1)
T

), this cooperative

payoff is actually available to be distributed by core coalitionCc(k1)
T . If the information is symmetric among all the players

after the game is completed, if the estimations of all the members of core coalition Cc(k1)
T of the strategic combination

choice of the core coalition are correct, that is:

s∗(i)
C

c(k1)
T

= s∗
C

c(k1)
T

, i ∈Cc(k1)
T ,

and accordingly,

s∗∗
C

c(k1)
T

= s∗
C

c(k1)
T

,

where s∗(i)
C

c(k1)
T

is the best response of core coalition Cc(k1)
T to the strategic combination choices s∗∗T

−C
c(k1)
T

of other core

coalitions.
At this point, the distribution of the cooperative payoff V

C
c(k1)
T

(s∗
C

c(k1)
T

, s∗∗T

−C
c(k1)
T

) of core coalitionCc(k1)
T will be carried

out according to the distribution rule in the information symmetric allied bargaining game of core coalition Cc(k1)
T (Chen

[25]):

x̃∗∗m∗
i
=W

−c
c(k1)
T

m∗
i

+
1
2

m

∑
m∗

j=1
m∗

j ̸=m∗
i

δ ∗∗
(

Mm∗
i , m∗

j

)
+

1
3

m

∑
m∗

j=1
m∗

j ̸=m∗
i

∑
m∗

k=1
m∗

k ̸=m∗
i

δ ∗∗
(

Mm∗
i , m∗

j , m∗
k

)
+ · · ·+ 1

m
δ ∗∗ (M1, 2, ··· , m) ,

where w
−C

c(k1)
T

mi is the sum of the escape-payoffs deriving through deviation of all the members of cooperative team
m∗

i , δ ∗
(

Mm∗
i , m∗

j

)
, δ ∗

(
Mm∗

i , m∗
j , m∗

k

)
, · · · , δ ∗ (M1, 2, ··· , m) are respectively the common payoffs of cooperative teams

Mm∗
i , m∗

j
, Mm∗

i , m∗
j , m∗

k
, · · · , M1, 2, ··· , m. By examining the first level, second level, ... bargaining games of core coalition

Cc(k1)
T , we can finally get the cooperative payoff distribution x̃∗∗mi

that any member k1 of core coalitionCc(k1)
T can get.

If not all judgments of the members of core coalitionCc(k1)
T of the public choices of strategic combination of other core

coalitions are correct, then s∗∗
C

c(k1)
T

̸= s∗
C

c(k1)
T

(correspondingly, V
C

c(k1)
T

(s∗∗
C

c(k1)
T

, s∗∗T

−C
c(k1)
T

) ̸= V
C

c(k1)
T

(s∗
C

c(k1)
T

, s∗∗T

−C
c(k1)
T

)), core
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coalition Cc(k1)
T ’s cooperative payoff V

C
c(k1)
T

(s∗∗
C

c(k1)
T

, s∗∗T

−C
c(k1)
T

) can be regarded as the “cooperation” outcome of core

coalition Cc(k1)
T starting from strategic combination s∗

C
c(k1)
T

and through the misjudgments of core coalition Cc(k1)
T ’s

public choice of strategic combination and the public choices of strategic combinations of other core coalitions. The
distribution of the cooperative payoff V

C
c(k1)
T

(s∗∗
C

c(k1)
T

, s∗∗T

−C
c(k1)
T

) should be based on the distribution of the cooperative payoff

V
C

c(k1)
T

(s∗
C

c(k1)
T

, s∗∗T

−C
c(k1)
T

), with an additional distribution of the “cooperative” payoff V
C

c(k1)
T

(s∗∗
C

c(k1)
T

, s∗∗T

−C
c(k1)
T

)−V
C

c(k1)
T

(s∗
C

c(k1)
T

, s∗∗T

−C
c(k1)
T

) which is caused by the misjudgment cooperation among the members of core coalitionCc(k1)
T .

The cooperative payoff distribution of any member k1 of core coalitionCc(k1)
T in the misjudgment “cooperation” is:

x̃∗k1
=W ∗

k1
+

1
2

m∗

∑
q j=1
q j ̸=k1

δ ∗(Mk1, q j)+
1
3

m∗

∑
q j=1
q j ̸=k1

q j−1

∑
qk=1
qk ̸=k1

δ ∗(Mk1, q j , qk)+ · · ·+ 1
m∗ δ ∗(M1, 2, ··· , m∗).

Therefore, the total cooperative payoff distribution that cooperative team m∗
i of core coalitionCc(k1)

T obtains is:

x̃m∗
i
= x̃∗∗m∗

i
+ ∑

j∈m∗
i

x̃∗j .

The cooperative payoff distribution that any member k1 of core coalitionCc(k1)
T can obtain is:

x̃k1
= x̃∗k1

+ x̃∗∗k1
.

5. Coalitions centralizes all the payoffs that their members get in the game to
prevent opportunistic behaviors in the distribution process
Next, we will relax the assumption that coalition members carry no opportunistic behaviors in the distribution process

of cooperative payoff. If coalition members may carry opportunistic behaviors in the distribution process of cooperative
payoff, a coalition can inhibit the opportunistic behaviors of members by centralizing all the payoffs its members get in
the game, the distribution scheme of cooperative payoff can get implemented.

When information is asymmetric, a coalition cannot ensure that its members carry no opportunistic behavior of
refusing the distribution scheme through the prior distribution of its cooperative payoff. Therefore, we do not consider
the situation when the coalitions distribute their cooperative payoffs before the game begins.

However, if information among the players in the game is asymmetric, before the game is completed, the coalition
members cannot accurately estimate the cooperative payoff of the coalition, and it is actually difficult for the coalition
to perform cooperative payoff distribution before the game begins. Therefore, here we only discuss the situation in
which coalitions concentrate the payoffs that all their members get in the game to prevent the members from carrying
opportunistic behaviors in the distribution process of cooperative payoff.

In this section, assuming that coalitions centralize all the payoffs that their members get in the game, we’ll examine
the coalition equilibrium of the game, investigate the condition for its existence, examine the distribution process of the
cooperative payoff of a coalition in the coalition equilibrium if it does exist, when the coalition members are allied or not
in the bargaining game. The methodology used in this section is just the same as that used in analyzing the situation when
the opportunistic behaviors in the distribution process are ignored.
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When coalitions centralize all the payoffs that their members get in the game to prevent opportunistic behaviors in
the distribution process, the coalition equilibrium of the game and the condition for its existence, as well as the distribution
equilibrium of the cooperative payoff of a coalition under the coalition equilibrium are similar to those mentioned in the
previous two sections when opportunistic behaviors in the distribution process are ignored. The only difference is that,
because the coalitions concentrate all members’ payoffs gotten in the game, when a member escapes through deviation
from the coalition he belongs to, his escape payoff deriving from deviation, the cooperative payoff of his target coalition
and his marginal contribution to his target coalition will change.

5.1 Coalition equilibrium and the unallied bargaining games of coalitions

First, assume that members of each coalition are unallied in the bargaining game on the distribution of its cooperative
payoff, we will examine an information asymmetric cooperative game with agreements self-implemented, when the
coalitions centralize all the payoffs that their members get in the game to inhibit the opportunistic behaviors in the
distribution process.

5.1.1Escape-payoff deriving from deviation

When the coalitions centralize all the payoffs that their members get in the game to inhibit the opportunistic behaviors
in the distribution process, between the virtual game of any player k1 and the one when the opportunistic behaviors of
coalition members in the distribution process of cooperative payoff are negligible, the fundamental difference is that the
escape-payoff deriving from deviation of a coalition member has changed: when the coalitions centralize all the payoffs
that their members get in the game to inhibit the opportunistic behaviors in the distribution process, whatever escape
strategy is played by the deviating member, the payoff that he gets in the game is attributed to his nominal coalition and
cannot be attributed to his escape target core coalition. That is,

V̂Cc
i
(·) = VCi

(·) = ∑
j∈Ci

ui(·).

If the payoffs that the members get in the game are attributed to their nominal coalitions, in some escape situation
e in coalition situation c, the cooperative payoff of a core coalition must be the cooperative payoff of the corresponding
nominal coalition.

When the coalitions centralize all the payoffs that their members get in the game to inhibit the opportunistic behaviors
in the distribution process, the conditions that player k1 is trusted by other members of nominal coalition C+

k are shown
as follows:

(1) ∑i∈Cc
k

[
Mv(i)k2

(Cc(i)
k )−Ŵ

−Cc(i)
k (i)

k2

]
+∑ j∈C+

k , j/∈Cc
k

[
Mv(

jF)
k2

(C
c( jF)
k )−Ŵ

−C
c( jF)
k ( jF)

k2

]
> 0, i, j ̸= k2;

(2)∑i∈Cc
k

[
Mv(i)Th

(Cc(i)
k )−∑t∈Th

Ŵ
−Cc(i)

k (i)
t

]
+∑ j∈C+

k , j/∈Cc
k

Mv(
jF)

Th
(C

c( jF)
k )−∑t∈Th

Ŵ
−C

c( jF)
k ( jF)

t

> 0, i, j ̸= k2, k2 ∈

Th ⊂Ck;

(3) V(i)
Cc

k
−∑t∈Cc

k
Ŵ

−Cc(i)
k (i)

t > 0, i ∈Cc
k ; V ( jF )

Cc( jF )
k

−∑
t∈Cc( jF )

k

Ŵ
−Cc( jF )

k ( jF )
t > 0, j ∈C+

k , j /∈Cc
k .

The above conditions can be simply denoted as:
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∑
i∈Ck

[
Mv(i)k2

(Ck)−Ŵ−Ck(i)
k2

]
> 0, i ̸= k2;

∑
i∈Ck

[
Mv(i)Th

(Ck)− ∑
t∈Th

Ŵ−Ck(i)
t

]
> 0, i ̸= k2, k2 ∈ Th ⊂Ck;

V (i)
Ck

− ∑
t∈Ck

Ŵ−Ck(i)
t > 0, i ∈Ck.

In player k1’s t-th level virtual game, in coalition situation c, assume that (player k1’s estimation of player k2’s
estimation of …) the feasible escape strategy that player kt plays is e(k1, ··· , kt )

kt
, his escape target core coalition is

Cc(k1, k2, ··· , kt )
T (e(k1, k2, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−kt
), his estimation of the strategic combination choices of the core coalitions

other than core coalition Cc(k1, k2, ··· , kt )
T (e(k1, k2, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−kt
) are s∗∗(k1, k2, ··· , kt )

−C
c(k1 , k2 , ··· , kt )
T (·)

, and that his estimation of the

escape strategic choices of other players are e∗(k1, k2, ··· , kt )
−kt

. Assume that under his estimation of the information sets
I(k1, ··· , kt )(e(k1)

k1
, · · · , e(k1, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−k1, −k2, ··· , −kt
), player kt considers that the strategic combination that his escape target

core coalition Cc(k1, k2, ··· , kt )
T (e(k1, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−kt
) “should” adopt is s∗(k1, k2, ··· , kt )

C
c(k1 , k2 , ··· , kt )
T (·)

, at this point, the cooperative

payoff that core coalitionCc(k1, k2, ··· , kt )
T (·) “should” get is:

V̂ (k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T

(s∗(k1, k2, ··· , kt )

C
c(k1 , k2, ··· , kt )
T (·)

, s∗∗(k1, k2, ··· , kt )

−C
c(k1, k2, ··· , kt )
T (·)

) = ∑
i∈C

c(k1, k2, ··· , kt )
T

u(k1, k2, ··· , kt )
i (s∗(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T (·)

, s∗∗(k1, k2, ··· , kt )

−C
c(k1 , k2 , ··· , kt )
T (·)

).

If player kt escapes from core coalition Cc(k1, k2, ··· , kt )
T (·) through deviation, that is to say, he chooses a feasible

escape strategy e
′(k1, k2, ··· , kt )
kt

which is different from escape strategy e(k1, k2, ··· , kt )
kt

, at this point, playerkt ’s escape target

core coalition changes toCc(k1, k2, ··· , kt )

T ′

(
e
′(k1, k2, ··· , kt )
kt

, e
′∗(k1, k2, ··· , kt )
−kt

) [
Cc(k1, k2, ··· , kt )

T ′

(
e
′(k1, k2, ··· , kt )
kt

, e
′∗(k1, k2, ··· , kt )
−kt

)
̸=Cc(k1, k2, ··· , kt )

T

(
e(k1, k2, ··· , kt )

kt
, e∗(k1, k2, ··· , kt )

−kt

)
, his estimation of the escape strategic choices of other players changes to

e
′∗(k1, k2, ··· , kt )
−kt

, and his estimation of the strategic combination choices of the core coalitions other than core coalition

Cc(k1, k2, ··· , kt )

T ′

(
e
′(k1, k2, ··· , kt )
kt

, e
′∗(k1, k2, ··· , kt )
−kt

)
changes to s

′∗∗(k1, k2, ··· , kt )

−C
c(k1, k2, ··· , kt )
T

(
e
′(k1, k2, ··· , kt )
kt

, e
′∗(k1, k2, ··· , kt )
−kt

).
Under his new estimation of information sets I(k1, ··· , kt )(e(k1)

k1
, e(k1, k2)

k2
, · · · , e

′(k1, k2, ··· , kt−1)
kt−1

, e
′∗(k1, k2, ··· , kt )
−k1, −k2, ··· , −kt

) of all
the players, player kt considers that the strategic combination that his escape target core coalition “should” adopt is
s
′∗(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )

T ′

(
e
′(k1, k2, ··· , kt )
kt

, e
′∗(k1, k2, ··· , kt )
−kt

), at this point, the cooperative payoff that core coalitionCc(k1, k2, ··· , kt )

T ′ (·) “should”

get is:

V̂ (k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )

T ′
(s

′∗(k1, k2, ··· , kt )

C
c(k1 , k2, ··· , kt )

T ′
(·)
, s

′∗∗(k1, k2, ··· , kt )

−C
c(k1, k2, ··· , kt )

T ′
(·)
) = ∑

i∈C
c(k1, k2, ··· , kt )

T ′
(·)

u(k1, k2, ··· , kt )
i (s

′∗(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )

T ′
(·)
, s

′∗∗(k1, k2, ··· , kt )

−C
c(k1, k2 , ··· , kt )

T ′
(·)
).
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Before player kt escapes from core coalition Cc(k1, k2, ··· , kt )
T (·) through deviation, the cooperative payoff that core

coalitionCc(k1, k2, ··· , kt )

T ′ (·) “should” get is

V̂ (k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )

T ′
(s∗(k1, k2, ··· , kt )

C
c(k1 , k2, ··· , kt )

T ′
(·)
, s∗∗(k1, k2, ··· , kt )

−C
c(k1, k2, ··· , kt )

T ′
(·)
) = ∑

i∈C
c(k1, k2, ··· , kt )

T ′
(·)

u(k1, k2, ··· , kt )
i (s∗(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )

T ′
(·)
, s∗∗(k1, k2, ··· , kt )

−C
c(k1, k2 , ··· , kt )

T ′
(·)
) ,

s∗(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )

T ′
(·)
, s∗∗(k1, k2, ··· , kt )

−C
c(k1, k2, ··· , kt )

T ′
(·)

are respectively the strategic combination choice that core coalition Cc(k1, k2, ··· , kt )

T ′ (·)

“should” adopt and the strategic combination choices of the core coalitions other than core coalition Cc(k1, k2, ··· , kt )

T ′ (·)

before player kt escapes. Therefore, the marginal contribution of player kt to core coalition Cc(k1, k2, ··· , kt )

T ′ (·) when he

escapes through deviation from core coalitionCc(k1, k2, ··· , kt )
T (·) to core coalitionCc(k1, k2, ··· , kt )

T ′ (·) is:

Mv(k1, k2, ··· , kt )
kt

[
Cc(k1, k2, ··· , kt )

T ′ (·)
]
=V̂ (k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )

T ′

(
s
′∗(k1, k2, ··· , kt )

C
c(k1, k2 , ··· , kt )

T ′
(·)
, s

′∗∗(k1, k2, ··· , kt )

−C
c(k1, k2, ··· , kt )

T ′
(·)

)

−V̂ (k1, k2, ··· , kt )

C
c(k1 , k2 , ··· , kt )

T ′

(
s∗(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )

T ′
(·)
, s∗∗(k1, k2, ··· , kt )

−C
c(k1, k2, ··· , kt )

T ′
(·)

)
,

where s
′∗(k1, k2, ··· , kt )

C
c(k1 , k2, ··· , kt )

T ′
(·)
, s

′∗∗(k1, k2, ··· , kt )

−C
c(k1, k2 , ··· , kt )

T ′
(·)

are respectively the strategic combination choice that core coalitionCc(k1, k2, ··· , kt )

T ′

(·) “should” adopt and the strategic combination choices of the core coalitions other than core coalitionCc(k1, k2, ··· , kt )

T ′ (·)
after player kt escapes.

Define the marginal contribution of player kt to his escape target core coalitionCc(k1, k2, ··· , kt )

T ′ (·)
[
Cc(k1, k2, ··· , kt )

T ′ (·) ̸=

Cc(k1, k2, ··· , kt )
T (·)

]
as his expected escape-payoff deriving from deviationwhen he escapes to core coalitionCc(k1, k2, ··· , kt )

T ′ (·)
through deviation:

Ŵ (k1, k2, ··· , kt )
kt

[
Cc(k1, k2, ··· , kt )

T (·)−→C
c(k1, k2, ··· , kt )

T ′ (·)
]
= Mv(k1, k2, ··· , kt )

kt

[
Cc(k1, k2, ··· , kt )

T ′ (·)
]

=V̂ (k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )

T ′

(
s
′∗(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )

T ′
(·)
, s

′∗∗(k1, k2, ··· , kt )

−C
c(k1, k2 , ··· , kt )

T ′
(·)

)
−V̂ (k1, k2, ··· , kt )

C
c(k1, k2 , ··· , kt )

T ′

(
s∗(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )

T ′
(·)
, s∗∗(k1, k2, ··· , kt )

−C
c(k1, k2, ··· , kt )

T ′
(·)

)
.

Obviously, if player kt escapes from core coalition Cc(k1, k2, ··· , kt )
T (·) through deviation, he will choose an escape

strategy which can maximize his expected escape-payoff deriving from deviation, therefore, the expected escape-payoff
deriving from deviation of player kt when he escapes from core coalitionCc(k1, k2, ··· , kt )

T (·) through deviation is:
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Ŵ
−C

c(k1, k2, ··· , kt )
T (·)(k1, k2, ··· , kt )

kt
=

e
′(k1, k2, ··· , kt )
kt

̸= e(k1, k2, ··· , kt )
Max

kt

Cc(k1, k2, ··· , kt )
T ̸=Cc(k1, k2, ··· , kt )

T ′

Mv(k1, k2, ··· , kt )
kt

[
Cc(k1, k2, ··· , kt )

T (·)−→C
c(k1, k2, ··· , kt )

T ′ (·)
]

=
e
′(k1, k2, ··· , kt )
kt

̸= e(k1, k2, ··· , kt )
Max

kt

Cc(k1, k2, ··· , kt )
T ̸=Cc(k1, k2, ··· , kt )

T ′

{
V̂ (k1, k2, ··· , kt )

C
c(k1, k2 , ··· , kt )

T ′

(
s
′∗(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )

T ′
(·)
, s

′∗∗(k1, k2, ··· , kt )

−C
c(k1, k2, ··· , kt )

T ′
(·)

)

−V̂ (k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )

T ′

(
s∗(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )

T ′
(·)
, s∗∗(k1, k2, ··· , kt )

−C
c(k1, k2 , ··· , kt )

T ′
(·)

)}
.

Assume that the escape strategic choice of player kt is e
′(k1, k2, ··· , kt )
kt

, and that his escape target core coalition is
Cc(k1, k2, ··· , kt )

T ′∗ (·) (when player kt escapes from core coalitionCc(k1, k2, ··· , kt )
T (·) to core coalitionCc(k1, k2, ··· , kt )

T ′∗ (·) through

deviation, his marginal contribution to his escape target core coalition Cc(k1, k2, ··· , kt )

T ′∗ (·) reaches the maximum value),
his estimation of the strategic combination choice that his escape target core coalition “should” adopt and the strategic
combination choices of the core coalitions other than his escape target core coalition are respectively s

′′∗(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )

T ′∗
(·)
and

s
′′∗(k1, k2, ··· , kt )

−C
c(k1, k2, ··· , kt )

T ′∗
(·)
, after player kt escapes from core coalition Cc(k1, k2, ··· , kt )

T (·) through deviation the cooperative payoff

that core coalitionCc(k1, k2, ··· , kt )
T (·) can get is V̂ (k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T

(
s
′′∗(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T (·)

, s
′′∗(k1, k2, ··· , kt )

−C
c(k1, k2, ··· , kt )
T (·)

)
, therefore, the expected

marginal contribution of player kt to core coalitionCc(k1, k2, ··· , kt )
T (·) is:

Mv(k1, k2, ··· , kt )
kt

(
Cc(k1, k2, ··· , kt )

T (·)
)
=V̂ (k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T

(
s∗(k1, k2, ··· , kt )

C
c(k1, k2 , ··· , kt )
T (·)

, s∗(k1, k2, ··· , kt )

−C
c(k1 , k2, ··· , kt )
T (·)

)

−V̂ (k1, k2, ··· , kt )

C
c(k1, k2 , ··· , kt )
T

(
s
′′∗(k1, k2, ··· , kt )

C
c(k1, k2, ··· , kt )
T (·)

, s
′′∗(k1, k2, ··· , kt )

−C
c(k1, k2, ··· , kt )
T (·)

)
.

5.1.2Coalition equilibrium and unallied bargaining games

In this section, for the sake of simplicity of analysis, the analysis of the virtual game of any player k1 is omitted.
When the coalitions centralize all the payoffs their members get in the game, the virtual game of player k1 is just similar
to the one when the opportunistic behaviors of the coalition members in the distribution process are negligible.

When the coalitions centralize all the payoffs their members get in the game, the public choice of strategic
combination of an extensive coalition is the outcome of the compromise of the extensive members of the coalition. In
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fact, in coalition situation c in the virtual game of the player k1, according to the information set of player k1, the public
choice of strategic combination of core coalitionCc(k1)

T should be:

s∗∗(k1)

C
c(k1)
T

⊆ s∗∗(k1)

C
+(k1)
T

;

s∗∗(k1)

C
c(k1)
T

= argmax

 ∑
i∈C

c(k1)
T

V̂ (k1, i)

C
c(k1, i)
T

(
s(k1, i)

C
c(k1, i)
T

, s∗(k1, i)

−C
c(k1, i)
T

)

+ ∑
k∈C

+(k1)
h (·)

k/∈C
c(k1)
h (·)

V̂ (k1, jF )

C
c(k1, j)
h (·)

(
s(k1, jF )

C
c(k1, j)
h (·)

, s∗∗(k1, jF )

C
c(k1, j)
T (·)

, s∗∗(k1, jF )

−C
c(k1, j)
h (·), −C

c(k1, j)
T (·)

)


= argmax


∑

i∈C
c(k1)
T

V̂ (k1, i)

C
c(k1 , i)
T

(
s(k1, i)

C
c(k1 , i)
T

, s∗(k1, i)

−C
c(k1, i)
T

)
+ ∑

k∈C
+(k1)
h (·)

k/∈C
c(k1)
h (·)

V̂ (k1, jF)

C
c(k1 , j)
h (·)

(
s(

k1, jF)

C
c(k1, j)
h (·)

, i(
k1, jF)

j

)
[

i(
k1, jF)

j ∈ I(
k1, jF)

j

]
,

whereCc(k1, j)
h =Cc(k1)

T ̸=Cc(k1, j)
T .

Assume that all the members of each coalition are responsible for their own misjudgments, and that the above
assumption are common knowledge of all the players, according to player k1’s information set, the cooperative payoff

V̂ (k1)

C
c(k1)
T

(
s∗(k1)

C
c(k1)
T

, s∗∗(k1)

−C
c(k1)
T

)
of the core coalition “should” be distributed in accordance with the distribution rule of

cooperative payoff of the coalition when its members are unallied in the bargaining game (Chen [25]).
Assume that there are m members in the member setM of core coalitionCc(k1)

T , member set Mq1, q2, ··· , qk composed
of members q1, q2, · · · , qk is a subset of coalition member set M of core coalition Cc(k1)

T , Mq1, q2, ··· , qk ⊆ M(k ≤
m), θ̂ (k1)(Mq1, q2, ··· , qk) is called the common payoff of member set Mq1, q2, ··· , qk in the virtual game of player k1:

θ̂ (k1)(Mq1, q2, ··· , qk) = V̂ (k1)
Mq1 , q2, ··· , qk

−
k

∑
i=1

Ŵ
−C

c(k1)
T (k1)

qi −∑ θ̂ (k1)
(2) (Mq1, q2, ··· , qk)−·· ·−∑ θ̂ (k1)

(k−1)(Mq1, q2, ··· , qk),

where V̂ (k1)
Mq1, q2, ··· , qk

is player k1’s estimation of the cooperative payoff of coalitionCc(k1)
T when all the members except those

in member set Mq1, q2, ··· , qk escape from the coalition and join the same coalition as a whole to maximize their escape-
payoff, while members of other coalitions keep their coalition-choosing strategies unchanged, ∑ θ̂ (k1)

( j) (Mq1, q2, ··· , qk) is

the sum of the common payoffs of all the j-member subsets of member set Mq1, q2, ··· , qk , ∑k
i=1 Ŵ

−C
c(k1)
T (k1)

qi is the sum of
the escape-payoffs deriving from deviation of all the members in member set Mq1, q2, ··· , qk .
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In the virtual game of player k1, in coalition equilibrium c∗(k1), if the strategic combination that core coalition
Cc(k1)

T “should” adopt is s∗(k1)

C
c(k1)
T

and the strategic combination choices of other core coalitions are s∗∗(k1)

−C
c(k1)
T

, the expected

cooperative payoff distribution of some member qi of core coalitionCc(k1)
T is:

x̂(k1)
qi (s∗(k1)

C
c(k1)
T

, s∗∗(k1)

−C
c(k1)
T

) =Ŵ−Cc
T (k1)

qi +
1
2

m

∑
q j=1
q j ̸=qi

θ̂ (k1)(Mqi, q j)

+
1
3

m

∑
q j=1
q j ̸=qi

q j−1

∑
qk=1
qk ̸=qi

θ̂ (k1)(Mqi, q j , qk)+ · · ·+ 1
m

θ̂ (k1)(M1, 2, ··· , m).

According to the virtual game of player k1, in coalition equilibrium c∗(k1), when cooperative payoff V̂ ∗(k1)

C
c(k1)
T

(s∗(k1)

C
c(k1)
T

, s∗∗(k1)

−C
c(k1)
T

) of core coalition Cc(k1)
T is distributed according to the rule mentioned above, the expected cooperative

payoff distribution that player k1 gets is:

x̂(k1)
k1

(s∗(k1)

C
c(k1)
T

, s∗∗(k1)

−C
c(k1)
T

) =Ŵ−Cc
T (k1)

k1

+
1
2

m

∑
q j=1
q j ̸=k1

θ̂ (k1)(Mk1, q j)+
1
3

m

∑
q j=1
q j ̸=k1

q j−1

∑
qk=1
qk ̸=k1

θ̂ (k1)(Mk1, q j , qk)+ · · ·+ 1
m

θ̂ (k1)(M1, 2, ··· , m).

Next, we will examine the distribution of the actual cooperative payoff of core coalitionCc
T . Assume that the strategic

combination adopted by core coalition Cc
T is s∗∗Cc

T

(
s∗∗Cc

T
⊆ s∗∗

C+
T

)
, which is determined by the public choice game among

the extensive members of the coalition, assume that the actual strategic combination choices of other core coalitions are
s∗∗−Cc

T
, the actual cooperative payoff that core coalitionCc

T gets is:

V̂Cc
T

(
s∗∗Cc

T
, s∗∗−Cc

T

)
=

m∗

∑
i=1

ui

(
s∗∗Cc

T
, s∗∗−Cc

T

)
, i ∈Cc

T ,

where m∗ is the actual number of the members of core coalition Cc
T . The cooperative payoff V̂Cc

T

(
s∗∗Cc

T
, s∗∗−Cc

T

)
=

∑m∗
i=1 ui

(
s∗∗Cc

T
, s∗∗−Cc

T

)
is the actual cooperative payoff of core coalitionCc

T that can ultimately be distributed. The cooperative

payoff surplus GapCc
T
= V̂

Cc
T

(
s∗∗Cc

T
, s∗∗−Cc

T

)
− V̂Cc

T

(
s∗Cc

T
, s∗∗−Cc

T

)
is caused by the inappropriate choice of the strategic

combination of the core coalition. And the inappropriate choice of the strategic combination of the core coalition is
caused by the coalition members’ inappropriate choices of the strategic combination of the core coalition.

If the estimations of all the core members of core coalition Cc
T of the optimal strategic combination choice of the

core coalition are correct, in coalition equilibrium c∗, when the public choice of strategic combination of core coalition
Cc

T is actually optimal response to the actual strategic combination choices of other core coalitions, that is, s∗∗Cc
T
= s∗Cc

T
, the

cooperative payoff of core coalition Cc
T satisfies V̂Cc

T

(
s∗∗Cc

T
, s∗∗−Cc

T

)
= V̂Cc

T

(
s∗Cc

T
, s∗∗−Cc

T

)
. If the estimations of all the core
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members of core coalitionCc
T of the optimal strategic combination choice of the core coalition are correct, the distribution

of the cooperative payoff of core coalitionCc
T will be carried out according to the distribution rule in the unallied bargaining

game of this core coalition (Chen [25]):

x̂∗∗k1
(s∗Cc

T
, s∗∗−Cc

T
) = Ŵ ∗∗−Cc

T
k1

+
1
2

m∗

∑
q j=1
q j ̸=k1

θ̂ ∗∗(Mk1, q j)+
1
3

m∗

∑
q j=1
q j ̸=k1

q j−1

∑
qk=1
qk ̸=k1

θ̂ ∗∗(Mk1, q j , qk)+ · · ·+ 1
m∗ θ̂ ∗∗(M1, 2, ··· , m∗).

Core coalition Cc
T ’s cooperative payoff V̂Cc

T

(
s∗∗Cc

T
, s∗∗−Cc

T

)
can be regarded as the “cooperation” outcome of core

coalition Cc
T starting from strategic combination s∗Cc

T
and through the misjudgments of core coalition Cc

T ’s public choice
of strategic combination and the public choices of strategic combinations of other coalitions. The distribution of the
cooperative payoff V̂Cc

T

(
s∗∗Cc

T
, s∗∗−Cc

T

)
should be based on the distribution of the cooperative payoff V̂Cc

T

(
s∗Cc

T
, s∗∗−Cc

T

)
, with

an additional distribution of the “cooperative” payoff GapCc
T
= V̂

Cc
T

(
s∗∗Cc

T
, s∗∗−Cc

T

)
− V̂Cc

T

(
s∗Cc

T
, s∗∗−Cc

T

)
which is caused by

the misjudgment cooperation among the core members of core coalitionCc
T .

According to an analysis similar to the one in the previous sections, member k1’s cooperative payoff distribution
from the misjudgment “cooperation” is:

x̂∗k1
= Ŵ ∗

k1
+

1
2

m∗

∑
q j=1
q j ̸=k1

δ̂ ∗(Mk1, q j)+
1
3

m∗

∑
q j=1
q j ̸=k1

q j−1

∑
qk=1
qk ̸=k1

δ̂ ∗(Mk1, q j , qk)+ · · ·+ 1
m∗ δ̂ ∗(M1, 2, ··· , m∗).

And the actual total cooperative payoff distribution that member k1 gets is:

x̂k1 = x̂∗k1
+ x̂∗∗k1

.

If in the unallied bargaining game on the distribution of the cooperative payoff V̂Cc
T

(
s∗Cc

T
, s∗∗−Cc

T

)
of core coalition

Cc
T , information is still asymmetric among coalition members, the coalition equilibrium of the information asymmetric

cooperative game with agreements self-implemented does not exist.
Similarly, if information is still asymmetric after the information asymmetric cooperative game with agreements

self-implemented is completed, there exists no coalition equilibrium in the bargaining game on the distribution of the
cooperative payoff surplus,

GapCc
T
= V̂

Cc
T

(
s∗∗Cc

T
, s∗∗−Cc

T

)
−V̂Cc

T

(
s∗Cc

T
, s∗∗−Cc

T

)
,

which is caused by the misjudgment “cooperation”.
According to an analysis similar to the one in the previous sections, we can get Theorems 8 and 10.
Theorem 8 If the coalitions centralize all the payoffs that their members get in the game to inhibit the opportunistic

behaviors in the distribution process, in information asymmetric cooperative game Γ(N, {Si} , {ui}) with agreements
self-implemented, assume that information is still asymmetric after the game is completed, and assume that the above
assumption is common knowledge of all the players, there exists no coalition equilibrium under the criterion of
maximum expected cooperative payoff distribution (when the members of each coalition trust each other) and no coalition
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equilibrium under the criterion of minimum expected escape-payoff deriving from deviation (when the members of each
coalition trust each other).

Proof. The equilibrium of information asymmetric cooperative game Γ(N, {Si} , {ui}) with agreements self-
implemented includes two interrelated aspects: the coalition equilibrium of the game and the distribution equilibrium
of the cooperative payoff of each coalition.

If information is still asymmetric after the game is completed, in the bargaining game on the distribution of the
cooperative payoff of some coalition, each member will present his requirement for cooperative payoff distribution on
the basis of his virtual game, and the sum of the core members’ requirements for cooperative payoff distribution do not
necessarily equal the actual cooperative payoff of the coalition. That is, the distribution equilibrium of the cooperative
payoff of the coalition cannot be achieved; on the other hand, if the distribution equilibria of the cooperative payoffs of
the coalitions cannot be achieved, the coalition equilibrium cannot be reached either.

Herein, that there exists no coalition equilibrium under the criterion of maximum expected cooperative payoff
distribution (when the members of each coalition trust each other) in information asymmetric cooperative game
Γ(N, {Si} , {ui}) with agreements self-implemented, or, there exists no coalition equilibrium under the criterion of
minimum expected escape-payoff deriving from deviation (when the members of each coalition trust each other) in the
information asymmetric cooperative game with agreements self-implemented does not mean that there is no cooperative
coalition in the game. Some players with a high degree of information symmetry (after the completion of the cooperative
game) may still establish cooperative coalitions which aim at exploiting the synergies among them, and reach cooperative
payoff distribution agreements with some kinds of compensation mechanisms. In addition, even if the degree of
information asymmetry among the players is still high after the completion of the cooperative game, those who agree
with each other on the synergy expectations and do not need distribution compensations (perhaps they can set up some
compensation mechanisms to benefit from their cooperation) may also reach some distribution agreements and establish
cooperative coalitions designed to take advantage of the synergy expectations among them.

When information among the players is still high asymmetric after the completion of the cooperative game, in
information asymmetric cooperative gameΓ(N, {Si} , {ui})with agreements self-implemented, there is at least a coalition
situation shown as follows which is feasible.

Theorem 9 If the coalitions centralize all the payoffs that their members get in the game to inhibit the opportunistic
behaviors in the distribution process, in information asymmetric cooperative game Γ(N, {Si} , {ui}) with agreements
self-implemented, assume that information is still asymmetric after the game is completed, and the above assumption is
common knowledge of all the players, and that in the cooperative game there exists no compensation mechanism (or, the
distribution of any member of a coalition is just the payoff that he gets in the game), the following coalition situation
under the criterion of maximum expected payoff (when the members of each coalition trust each other) is feasible:

c∗i =



i, if for any ci ̸= i, u(i)i (i, c∗−i)≥ u(i)i (ci, c∗−i), or, u( j)
i (ci, c∗−i)−Ŵ

−Cci ( j)
i ≤ 0,

or, u(i)j (ci, c∗−i)≤ Ŵ
−Cci (i)
j ( j ∈Cci , j ̸= i);

argmax
ci

u(i)i (ci, c∗−i), if at least for a certain ci ̸= i, u(i)i (i, c∗−i)< u(i)i (ci, c∗−i), u( j)
i (ci, c∗−i)−Ŵ

−Cci ( j)
i > 0,

and u(i)j (ci, c∗−i)> Ŵ
−Cci (i)
j ( j ∈Cci , j ̸= i).

Where Ŵ
−Cci
i is the escape-payoff deriving from deviation that member i can get when he escapes from coalition

Cci through deviation.
The proof of Theorem 9 is omitted.
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Assume that information is symmetric after the game is completed, in information asymmetric cooperative game
Γ(N, {Si } , {ui }) with agreements self-implemented, there exists the mixed strategic coalition equilibrium under the
criterion of maximum expected cooperative payoff distribution.

Theorem 10 If the coalitions centralize all the payoffs that their members get in the game to inhibit the opportunistic
behaviors in the distribution process, in information asymmetric cooperative game Γ(N, {Si} , {ui}) with agreements
self-implemented, assume that information is symmetric after the game is completed, and that the above assumption
is common knowledge of all the players, there exists the mixed strategic coalition equilibrium under the criterion of
maximum expected cooperative payoff distribution (when the members of each coalition trust each other):

c∗i =



i, if for any ci ̸= i, x̂(i)i (i,c∗−i)≥ x̂(i)i (ci,c∗−i), or, ∑
j∈Cci
j ̸=i

[Mv( j)
i (Cci)−Ŵ

−Cci ( j)
i ]≤ 0,

or, ∑
j∈Cci
j ̸=i

[Mv( j)
Th
(Cci)− ∑

k∈Th

Ŵ
−Cci ( j)
k ]≤ 0(i ∈ Th ⊆Cci);

argmax
ci

x̂(i)i (ci,c∗−i), if for at least for a certain ci ̸= i, x̂(i)i (i,c∗−i)< x̂(i)i (ci,c∗−i),

∑
j∈Cci
j ̸=i

[Mv( j)
i (Cci)−Ŵ

−Cci ( j)
i ]> 0, and ∑

j∈Cci
j ̸=i

[Mv( j)
Th
(Cci)− ∑

k∈Th

Ŵ
−Cci ( j)
k ]> 0(i ∈ Th ⊆Cci).

∀i = 1,2, · · · ,n.

The proof of Theorem 10 is omitted.
Similarly, we can also draw the conclusion in Theorem 11.
Theorem 11 If the coalitions centralize all the payoffs that their members get in the game to inhibit the opportunistic

behaviors in the distribution process, in information asymmetric cooperative game Γ(N, {Si} , {ui}) with agreements
self-implemented, assume that information is symmetric after the game is completed, and that the above assumption is
common knowledge of all the players, there exists themixed strategic coalition equilibrium under the criterion ofminimum
expected escape-payoff deriving from deviation (when the members of each coalition trust each other):
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c∗i =



i, if for any ci ̸= i,Ŵ (i)
i (i,c∗−i)≤ Ŵ (i)

i (ci,c∗−i),or, ∑
j∈Cci
j ̸=i

[Mv( j)
i (Cci)−Ŵ

−Cci ( j)
i ]≤ 0,

or, ∑
j∈Cci
j ̸=i

[Mv( j)
Th
(Cci)− ∑

k∈Th

Ŵ
−Cci ( j)
k ]≤ 0(i ∈ Th ⊆Cci);

argmax
ci

x̂(i)i (ci,c∗−i), if at least for a certain ci ̸= i, Ŵ (i)
i (i,c∗−i)> Ŵ (i)

i (ci,c∗−i),

∑
j∈Cci
j ̸=i

[Mv( j)
i (Cci)−Ŵ

−Cci ( j)
i ]> 0, and ∑

j∈Cci
j ̸=i

[Mv( j)
Th
(Cci)− ∑

k∈Th

Ŵ
−Cci ( j)
k ]> 0(i ∈ Th ⊆Cci).

∀i = 1,2, · · · ,n.

If the distribution scheme of each coalition meets the competitive distribution condition, the coalition equilibrium
under the criterion of maximum expected cooperative payoff distribution (when the members of each coalition trust each
other) is equivalent to the one under the criterion of minimum expected escape-payoff deriving from deviation (when the
members of each coalition trust each other).

The proof of Theorem 11 is omitted.

5.2 Allied bargaining game and the distribution of the cooperative payoff

If the coalitions centralize all the payoffs that their members get in the game to inhibit the opportunistic behaviors
in the distribution process, in information asymmetric cooperative game Γ(N, {Si} , {ui}) with agreements self-
implemented, assume that information is symmetric after the game is completed, and that the above assumption is common
knowledge of all the players, there exists the coalition equilibrium in the allied bargaining game of each coalition, and
there exists the mixed strategic coalition equilibrium in the information asymmetric cooperative game with agreements
self-implemented when coalition members are allied in the bargaining games. It is easy to prove that when coalition
members are allied in the bargaining games, the coalition equilibrium in information asymmetric cooperative game
Γ(N, {Si} , {ui})with agreements self-implemented is just the same as the one in the information asymmetric cooperative
game with agreements self-implemented when coalition members are unallied in the bargaining games, the public choice
of strategic combination of each coalition when members of the coalition are allied in the bargaining game is the same as
the one when members of the coalition are unallied in the bargaining game.

If information is still asymmetric after the game is completed, there is no Nash equilibrium in the unallied bargaining
game of any coalition, therefore, there exists no coalition equilibrium under the criterion ofmaximum expected cooperative
payoff distribution (when the members of each coalition trust each other) in information asymmetric cooperative game
Γ(N, {Si} , {ui}) with agreements self-implemented, or, there exists no coalition equilibrium under the criterion of
minimum expected escape-payoff deriving from deviation (when the members of each coalition trust each other) in the
information asymmetric cooperative game with agreements self-implemented.

Assume that information is symmetric after the game is completed, and that the above assumption is common
knowledge of all the players, in the virtual game of player k1, when the members of core coalition Cc(k1)

T set up the
cooperative teams in some coalition situation, the competition among them coremembers (m is the number of themembers
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of core coalitionCc(k1)
T ) of core coalitionCc(k1)

T in the unallied bargaining game is replaced by the competition among the
m cooperative teams in the allied bargaining game.

In the virtual game of player k1, in the allied bargaining game Γ(k1)(M, {Ti}, {x̂(k1)
i }) of core coalition Cc(k1)

T , let
Mm1, m2, ··· , mk denote a subset consisting of cooperative teams m1, m2, · · · , mk of team set M of core coalition Cc(k1)

T in
coalition situation t, Mm1, m2, ..., mk ⊆ M(k ≤ m), the common payoff θ̂ (k1)(Mm1, m2, ··· , mk) of team set Mm1, m2, ..., mk is
defined as following:

θ̂ (k1)(Mm1, m2, ··· , mk) = V̂ (k1)
Mm1, m2, ··· , mk

−
k

∑
i=1

Ŵ
−C

c(k1)
T (k1)

mi −∑ θ̂ (k1)
(2) (Mm1, m2, ··· , mk)−·· ·−∑ θ̂ (k1)

(k−1)(Mm1, m2, ··· , mk),

where V̂ (k1)
Mm1, m2, ··· , mk

is the cooperative payoff of core coalition Cc(k1)
T when all the members except those of the teams in

set Mm1, m2, ··· , mk have escaped from the coalition and join the same coalition as a whole to maximize their escape-payoff,
while members of other coalitions keep their coalition-choosing strategies unchanged in the virtual allied bargaining game
of player k1; ∑ θ̂ (k1)

( j) (Mm1, m2, ··· , mk) is the sum of the common payoffs of all the j-team subsets of set Mm1, m2, ··· , mk in

the virtual allied bargaining game of player k1; ∑k
i=1 Ŵ

−C
c(k1)
T (k1)

mi is the sum of the escape-payoffs deriving from deviation
of all the core members of the k teams in set Mm1, m2, ··· , mk in the virtual allied bargaining game of player k1.

In the coalition situation t of the bargaining game in the virtual game of player k1, the Nash equilibrium in the
bargaining game among teams m1, m2, · · · , mk about the distribution of the common payoff θ̂ (k1)(Mm1, m2, ··· , mk) is:

ŷ∗(k1)
m1 =

1
k

θ̂
(k1) (

Mm1, m2, ··· , mk

)
, i = 1, 2, · · · , k.

That’s to say, the teams that belong to set Mm1, m2, ··· , mk will get the same common payoff distribution.
So, in the virtual game of player k1, in some coalition situation t of allied bargaining game Γ(k1)(M, {Ti} ,

{
x̂(k1)

i

}
)

of core coalition Cc(k1)
T on the distribution of the cooperative payoff surplus, the cooperative payoff surplus distribution

that some cooperative team mi can get from core coalitionCc(k1)
T is:

ŷ(k1)
mi =

1
2

m

∑
m j=1
m j ̸=mi

θ̂ (k1)(Mmi, m j)+
1
3

m

∑
m j=1
m j ̸=mi

m j−1

∑
mk=1
mk ̸=mi

θ̂ (k1)(Mmi, m j , mk)+ · · ·+ 1
m

θ̂ (k1)(M1, 2, ··· , m).

The total distribution that team mi can get is:

x̂(k1)
mi =Ŵ−Cc

T (k1)
mi + ŷ(k1)

mi

=Ŵ−Cc
T (k1)

mi +
1
2

m

∑
m j=1
m j ̸=mi

θ̂ (k1)(Mmi, m j)+
1
3

m

∑
m j=1
m j ̸=mi

m j−1

∑
mk=1
mk ̸=mi

θ̂ (k1)(Mmi, m j , mk)+ · · ·+ 1
m

θ̂ (k1)(M1, 2, ··· , m).

If the coalitions centralize all the payoffs that their members get in the game to inhibit the opportunistic behaviors
in the distribution process, assume that information is symmetric after the game is completed, and that the above
assumption is common knowledge of all the players, in the virtual game of player k1, if the coalition situation
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t∗(k1) = (t
∗(k1)
1 , t∗(k1)

2 , · · · , t∗(k1)
n ) of the virtual bargaining game Γ(k1)(M, {Ti} ,

{
x̂(k1)

i

}
) of player k1 is feasible, and the

team-choosing strategy of each coalition member is the best response to the collective actions of other coalition members,
coalition situation t∗(k1) = (t

∗(k1)
1 , t∗(k1)

2 , · · · , t∗(k1)
n ) is called the coalition equilibrium under the criterion of maximum

expected cooperative payoff distribution.
Theorem 12 If the coalitions centralize all the payoffs that their members get in the game to inhibit the opportunistic

behaviors in the distribution process, in information asymmetric cooperative game Γ(N, {Si} , {ui}) with agreements
self-implemented, assume that information is symmetric after the game is completed, and that the above assumption is
common knowledge of all the players, in the virtual game of player k1, in allied bargaining game Γ(k1)(M, {Ti} ,

{
x̂(k1)

i

}
)

of core coalition Cc(k1)
T there exists the (mixed strategic) coalition equilibrium under the criterion of maximum expected

cooperative payoff distribution:

t∗(k1)
i =


i, if for any ti, x̂(k1)

i

(
i, t∗(k1)

−i

)
≥ x̂(k1)

i

(
ti, t∗(k1)

−i

)
;

argmax x̂(k1)
i

(
ti, t∗(k1)

−i

)
, if at least for a certain ti ̸= i, x̂(k1)

i

(
i, t∗(k1)

−i

)
< x̂(k1)

i

(
ti, t∗(k1)

−i

)
.

At the same time, in the allied bargaining game Γ(k1)(M, {Ti} ,
{

x̂(k1)
i

}
) of core coalition Cc(k1)

T there exists the
(mixed strategic) coalition equilibrium under the criterion of minimum expected escape-payoff too:

t∗(k1)
i =


i, if for any ti, w(k1)

i

(
i, t∗(k1)

−i

)
≤ w(k1)

i

(
ti, t∗(k1)

−i

)
;

argmin w(k1)
i

(
ti, t∗(k1)

−i

)
, if at least for a certain ti ̸= i, w(k1)

i

(
i, t∗(k1)

−i

)
> w(k1)

i

(
ti, t∗(k1)

−i

)
.

If the distribution schemes of all teams satisfy the competitive distribution condition, the coalition equilibrium under
the criterion of maximum expected cooperative payoff distribution is equivalent to the one under the criterion of minimum
expected escape-payoff.

The proof of Theorem 12 is omitted.
After the formation of coalition equilibrium t∗, in coalition equilibrium t∗ of the bargaining game of core

coalition Cc(k1)
T , let team set Mm∗

1, m∗
2, ··· , m∗

k
denote a subset of team set M∗ of core coalition Cc(k1)

T , which consists of
cooperative teams m∗

1, m∗
2, · · · , m∗

k , Mm∗
1, m∗

2, ··· , m∗
k
⊆ M∗(k ≤ m), the common payoff θ̂ (k1)(Mm∗

1, m∗
2, ··· , m∗

k
) of team set

Mm∗
1, m∗

2, ··· , m∗
k
is defined as following:

θ̂ (k1)(Mm∗
1, m∗

2, ··· , m∗
k
) = V̂ (k1)

Mm∗
1, m∗

2, ··· , m∗
k
−

k

∑
i=1

Ŵ
−C

c(k1)
T (k1)

m∗
i

−∑ θ̂ (k1)
(2) (Mm∗

1, m∗
2, ··· , m∗

k
)−·· ·−∑ θ̂ (k1)

(k−1)(Mm∗
1, m∗

2, ··· , m∗
k
),

where V̂ (k1)
Mm∗

1, m∗
2, ··· , m∗

k
is the cooperative payoff of core coalition Cc(k1)

T when all the members except those of the teams in
set Mm∗

1, m∗
2, ··· , m∗

k
have escaped from the core coalition and join the same coalition as a whole to maximize their escape-

payoff, while members of other coalitions keep their coalition-choosing strategies unchanged in player k1’s virtual game;

∑ θ̂ (k1)
( j) (Mm∗

1, m∗
2, ··· , m∗

k
) is the sum of the common payoffs of all the j-team subsets of setMm∗

1, m∗
2, ··· , m∗

k
; ∑k

i=1 Ŵ
−C

c(k1)
T (k1)

m∗
i

is
the sum of the escape-payoffs deriving from deviation of all the members of the k teams in set Mm∗

1, m∗
2, ··· , m∗

k
.
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According to the distribution rule of common payoff (Chen [25]), in player k1’s virtual bargaining game of core
coalitionCc(k1)

T , the common payoff distribution that any cooperative team m∗
i in team set Mm∗

1, m∗
2, ··· , m∗

k
can get is:

ŷ∗(k1)
m∗

i
=

1
k

θ̂
(k1)(

Mm∗
1, m∗

2, ··· , m∗
k

)
, i = 1, 2, · · · , k.

Therefore, in player k1’s virtual bargaining game Γ(k1)(M, {Ti} ,
{

x̂(k1)
i

}
) of core coalition Cc(k1)

T , the cooperative

payoff surplus distribution that some cooperative team m∗
i of core coalitionCc(k1)

T can get is:

ỹ(k1)
m∗

i
=

1
2

m

∑
m∗

j=1
m∗

j ̸=m∗
i

θ̂ (k1)(Mm∗
i , m∗

j
)+

1
3

m

∑
m∗

j=1
m∗

j ̸=m∗
i

m∗
j−1

∑
m∗

k=1
m∗

k ̸=m∗
i

θ̂ (k1)(Mm∗
i , m∗

j , m∗
k
)+ · · ·+ 1

m
θ̂ (k1)(M1, 2, ··· , m).

The total cooperative payoff distribution that cooperative team m∗
i of core coalition Cc(k1)

T can get is:

x̂(k1)
m∗

i
=ŷ(k1)

m∗
i
+Ŵ−Cc

T (k1)

m∗
i

=Ŵ−Cc
T (k1)

m∗
i

+
1
2

m

∑
m∗

j=1
m∗

j ̸=m∗
i

θ̂ (k1)(Mm∗
i , m∗

j
)+

1
3

m

∑
m∗

j=1
m∗

j ̸=m∗
i

m∗
j−1

∑
m∗

k=1
m∗

k ̸=m∗
i

θ̂ (k1)(Mm∗
i , m∗

j , m∗
k
)+ · · ·+ 1

m
θ̂ (k1)(M1, 2, ··· , m).

Assume that information is symmetric after the game is completed, and that the above assumption is common
knowledge of all the players, now we can get the Nash equilibrium of core coalition Cc(k1)

T ’s allied bargaining game
Γ(k1)(M, {Ti} ,

{
x̂(k1)

i

}
) on the distribution of the cooperative payoff, in the coalition equilibrium t∗ of the game in player

k1’s virtual game.
Assume that in coalition equilibrium c∗ of the information asymmetric cooperative game with agreements self-

implemented, the public choice of strategic combination of core coalition Cc(k1)
T is s∗∗

C
c(k1)
T

, and the actual public choices

of strategic combination of other core coalitions are denoted as s∗∗T

−C
c(k1)
T

, the cooperative payoff actually obtained by core

coalition Cc(k1)
T after the game is completed is V̂

C
c(k1)
T

(s∗∗
C

c(k1)
T

, s∗∗T

−C
c(k1)
T

), this cooperative payoff is actually available to

be distributed by core coalition Cc(k1)
T . If information is symmetric among all the players after the game is completed,

and the estimations of all the members of core coalition Cc(k1)
T of the strategic combination choice of the core coalition

are correct, that is:

s∗(i)
C

c(k1)
T

= s∗
C

c(k1)
T

, i ∈Cc(k1)
T ,

and accordingly,
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s∗∗
C

c(k1)
T

= s∗
C

c(k1)
T

,

where s∗
C

c(k1)
T

is the best response of core coalition Cc(k1)
T to the strategic combination choices s∗∗T

−C
c(k1)
T

of other core

coalitions.
At this point, the distribution of the cooperative payoff V̂

C
c(k1)
T

(s∗
C

c(k1)
T

, s∗∗T

−C
c(k1)
T

) of core coalitionCc(k1)
T will be

distributed according to the distribution rule in the information symmetric allied bargaining game of core coalition Cc(k1)
T

(Chen [25]):

x̂∗∗m∗
i
= Ŵ

−C
c(k1)
T (k1)

m∗
i

+
1
2

m

∑
m∗

j=1
m∗

j ̸=m∗
i

δ̂ ∗∗(Mm∗
i , m∗

j
)+

1
3

m

∑
m∗

j=1
m∗

j ̸=m∗
i

m∗
j−1

∑
m∗

k=1
m∗

k ̸=m∗
i

δ̂ ∗∗(Mm∗
i , m∗

j , m∗
k
)+ · · ·+ 1

m
δ̂ ∗∗(M1, 2, ··· , m),

where Ŵ
−C

c(k1)
T

m∗
i

is the sum of escape-payoffs of all the members of cooperative teamm∗
i , {δ̂ ∗∗(Mm∗

i , m∗
j
), δ̂ ∗∗(Mm∗

i , m∗
j , m∗

k
),

· · · , δ̂ ∗∗(M1, 2, ··· , m) are respectively the common payoffs of cooperative teams Mm∗
i , m∗

j
, Mm∗

i , m∗
j , m∗

k
, · · · , M1, 2, ··· , m.

By analyzing the first level, second level, ... bargaining games of core coalition Cc(k1)
T , we can finally get the cooperative

payoff distribution x̂∗∗k1
that any member k1 of core coalition Cc(k1)

T can get.
If not all judgments of the members of core coalition Cc(k1)

T of the public choices of strategic combination of other
core coalitions are correct, then s∗∗

C
c(k1)
T

̸= s∗
C

c(k1)
T

, core coalition Cc(k1)
T ’s cooperative payoff V̂

C
c(k1)
T

(s∗∗
C

c(k1)
T

, s∗∗T

−C
c(k1)
T

) can

be regarded as the “cooperation” outcome of core coalition Cc(k1)
T starting from strategic combination s∗

C
c(k1)
T

and through

the misjudgments of core coalition Cc(k1)
T ’s public choice of strategic combination and the public choices of strategic

combinations of other core coalitions. The distribution of the cooperative payoff V̂
C

c(k1)
T

(s∗∗
C

c(k1)
T

, s∗∗T

−C
c(k1)
T

) should be based

on the distribution of the cooperative payoff V̂
C

c(k1)
T

(s∗
C

c(k1)
T

, s∗∗T

−C
c(k1)
T

), with an additional distribution of the “cooperative”

payoff V̂
C

c(k1)
T

(
s∗∗
C

c(k1)
T

, s∗∗T

−C
c(k1)
T

)
− V̂

C
c(k1)
T

(s∗
C

c(k1)
T

, s∗∗T

−C
c(k1)
T

) which is caused by the misjudgment cooperation among the

members of core coalition Cc(k1)
T .

The cooperative payoff distribution of any member k1 of core coalition Cc(k1)
T in the misjudgment “cooperation” is:

x̂∗k1
= Ŵ ∗

k1
+

1
2

m

∑
q j=1
q j ̸=k1

δ̂ ∗(Mk1, q j)+
1
3

m

∑
q j=1
q j ̸=k1

q j−1

∑
qk=1
qk ̸=k1

δ̂ ∗(Mk1, q j , qk)+ · · ·+ 1
m

δ̂ ∗(M1, 2, ··· , m).

The total cooperative payoff distribution that cooperative team m∗
i of core coalition Cc(k1)

T obtains is:

x̂m∗
i
= x̂∗∗m∗

i
+ ∑

j∈m∗
i

x̂∗j .
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6. Conclusions
In this paper we have examined a one-shot information asymmetric cooperative game with agreements self-

implemented, investigated the virtual game of a player, the coalition formation and the bargaining game on the distribution
of the cooperative payoff of a coalition.

In the virtual game of a player, in each coalition situation c, he decides his optimal escape strategy under the criterion
of maximum expected cooperative payoff distribution on the basis of his estimation of the escape strategies of others.
However, his escape strategy itself is also a kind of information release. By analyzing a player’s n-level virtual games, we
can get his virtual game with information sets stable. Then, analyzing the virtual game of this player as the information
sets keeps stable level by level until a stable solution appears, we get the coalition equilibrium of the virtual game of this
player. Of course, due to different information sets, the coalition equilibria of the virtual games of different players are
different. However, the information transmission, communication, and negotiation between the players can ultimately
lead to the convergence of the coalition equilibria of the virtual games of all players.

Ignoring the opportunistic behaviors in the distribution process, assume that information is still asymmetric after the
game is completed, whether the coalition members are allied in the bargaining games or not, there exists no distribution
equilibrium in the bargaining game of a coalition. At the same time, there exists no coalition equilibrium in the information
asymmetric cooperative game with agreements self-implemented. Of course, this does not mean that there is no form of
cooperation in the game.

Ignoring the opportunistic behaviors in the distribution process, in an information asymmetric cooperative game with
agreements self-implemented, assume that information is symmetric after the game is completed, whether the coalition
members are allied in the bargaining games or not, there exists the distribution equilibrium in the bargaining game of
each coalition, and there exists the coalition equilibrium under the criterion of maximum expected cooperative payoff
distribution (when the members of each coalition trust each other) and also the coalition equilibrium under the criterion
of minimum expected escape-payoff deriving from deviation (when the members of each coalition trust each other) in
the game. If the distribution rule of each coalition meets the competitive distribution condition, the above two coalition
equilibria are equivalent.

Ignoring the opportunistic behaviors in the distribution process, when members are unallied in the bargaining game,
in the coalition equilibrium of the game (if it does exist), the distribution of a core coalition’s actual cooperative payoff
would be based on the distribution of the maximum cooperative payoff at the optimal strategic combination of this core
coalition when all its members judge the strategic combination of their coalition correctly, with an additional distribution
of the “cooperative” payoff caused by the misjudgment “cooperation” between its core members. When the core members
are allied in the bargaining games, there exists the coalition equilibrium under the criterion of minimum expected escape-
payoff, or the coalition equilibrium under the criterion of minimum expected escape-payoff which is equivalent to the
former. In the bargaining game among the allied teams of a core coalition, the distribution of the coalition’s actual
cooperative payoff should similarly be based on the distribution of the maximum cooperative payoff at the optimal
strategic combination of the coalition when all the teams judge the strategic combination of their coalition correctly, with
an additional distribution of the “cooperative” payoff caused by the misjudgment “cooperation” between all the teams.

When coalitions centralize all the payoffs that their members get in the game to prevent opportunistic behaviors in the
distribution process, the escape payoff deriving from deviation of a player, the cooperative payoff of his target coalition,
and his marginal contribution to the target coalition will change when he escapes through deviation from the coalition he
belongs to. However, by similar analysis, the coalition equilibrium of the game and the condition for its existence, as well
as the distribution equilibrium of the cooperative payoff of a coalition under the coalition equilibrium are similar to those
when opportunistic behaviors in the distribution process are ignored.
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