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1. Introduction

Summable equations come up in many situations in critical point theory for non-smooth energy functionals,
mathematical physics, control theory, bio-mathematics, difference variational inequalities, fuzzy set theory [1], probability
theory [2] and traffic problems, to mention but a few. In particular, Volterra-type summable equations are fundamental
in investigating dynamical systems [3] and stochastic processes [4, 5]. Some instances are in granular systems, sweeping
processes, oscillation problems, control problems, decision-making problems [6], and so on. The solution of summable
equations is contained in a specific sequence space. So there is a great interest in mathematics to construct new sequence
spaces, see [7]. Mursaleen and Noman [8] examined some new sequence spaces of non-absolute type related to the spaces
¢, and /.., and Mursaleen and Basar [9] constructed and investigated the domain of Cesaro mean of order one in some
spaces of double sequences. Mustafa and Bakery [10] introduced the concept of private sequence space of fuzzy functions
(pssff). Suppose Z is the set of real numbers and Ny is the set of nonnegative integers. We have introduced the space,
(F(u, v)),, which is the domain of the matrix W, = (%, (x)) in El& )» Where
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!
t(b.)F(ath)u,l’ <a<b,
YaX) =< al(t+b+1) -
0, a>b,

(M

fort > 1,0(t) = [7 X le™"dx and u, € (0, ), for all @ € Ny.
In [11], Roopaei and Basar studied the Gamma spaces, containing ¢, ¢ and £e,.
For any 0 < € < 1, Matloka [12] introduced the e-level set of a fuzzy real x as follows:

¥ ={qeZ#: x(q) > €}

The space Z([0, 1]) is the set of all x* is compact, normal, upper semi-continuous, and convex fuzzy numbers. 0
and 1 indicate the additive and multiplicative identity in Z[0, 1], respectively. If x € Z([0, 1]), then

{2

Assume X, y € Z([0, 1]) and the e-level sets are [x]° = [x], X5], []* = [{, ¥5]. A partial ordering for any X, y €
([0, 1]) as follows: x <y if and only if X¢ < ¢ if and only if X% < y7¢ and %3¢ < y7°.

IfI1: N3 — %, g: No x 2([0,1]) — %([0,1]), I : Ng — %([0,1]), and 7 : Ng — Z([0,1]). For every J €r Q(u,v).
Consider the Fuzzy Volterra-Type Non-linear Dynamical Economic Models [13]:

Jo=Ta+ Y, N(a, q)g(q, Jy), )
q=0

and presume L : (p€ (1, v)), = (F&(u, v)),., for certain functional «, is defined as

L(T2)aen, = (ra+qgon(a, 2)8(4; Tq))aeNO. 3)

Mustafa and Bakery [10], investigated the unique solution of fuzzy non-linear matrix system (2) of Kannan-type
(3) in the operators’ ideal generated by a weighted binomial matrix in the Nakano sequence space of extended s-fuzzy
functions. Alsolmi etal. [ 14] examined the unique solution of nonlinear stochastic dynamical matrix systems Kannan-type
in the operators’ ideal generated by a weighted binomial matrix in the Nakano sequence space of extended s-soft functions.
Bakery and Mohammed [15], explained Kannan nonexpansive operators on variable exponent Cesaro sequence space of
fuzzy functions. Younis et al. [16] used numerical iterations to study the convergence of fixed points in graphical Bc-
Kannan-contractions in extended b-metric spaces. They created novel fixed-point results using Be-Kannan contraction
and showed that every Kannan contraction is graphical but not the other way around. They used graphical analysis to
demonstrate that their major findings are more general than the supporting research and that a fourth-order two-point
boundary value problem representing elastic beam deformations may be solved. Some classes of Hammerstein integral
equations and fractional differential equations have sufficient criteria for the existence of solutions discovered by Younis
and Singh [17]. They extended the notion of Kannan mappings in view of F-contraction in the setting of b-metric like
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spaces. In the realm of stochastic differential equations, it is imperative to consider the following noteworthy publications
to enhance the literature review: The study conducted by Li et al. [18] examined the presence and Hyers-Ulam stability
of random impulsive stochastic functional differential equations with finite delays. Shu et al. [19] investigated mild
solutions and controllability for Riemann-Liouville fractional stochastic evolution equations with nonlocal conditions of
order 1 < o < 2. The mild equation solutions were shown using the Laplace transform of the Riemann-Liouville derivative.
They also estimated resolve operators with Riemann-Liouville fractional derivatives of the same order. They focused
on the approximate controllability of nonlinear Riemann-Liouville fractional nonlocal stochastic systems of the same
order, assuming the related linear system is controllable. Final findings were obtained utilizing the Lebesgue-dominated
convergence theorem for approximation controllability. To find almost periodic solutions for fractional impulsive neutral
stochastic differential equations with indefinite delay in Hilbert space, Ma et al. [20] utilized fractional calculus, operator
semigroups, and the fixed point theorem. Finally, they provided an example to demonstrate the findings. The fuzzy
function space, (rQ;(u, v)),, has been provided with certain geometric and topological structures by us. In this space,
the Kannan contraction operator is confirmed, and the operator has a fixed point. In the final part of this article, we discuss
the myriad applications that may be found for solutions to Fuzzy Volterra-Type Non-linear Dynamical Economic Models
and demonstrate how our discoveries might be employed.

2. The structure of (rQ; (1, v)),

Some of the geometric and topological characteristics of the fuzzy function space (rQ; (u, v)) . have been studied so

far.
The set of all possible fuzzy real sequences is 0. The space of all sequences of positive reals is denoted as 72
Definition 1 (rQ(u, v)), 1= {7 = (7m) €r U : k(1F) < oo, for some 1 > 0}, where (v,) € 2+ and K(7) =
B ['(n+1) A\ ™
) t(m!)‘t( "o munﬁ, 0)
Y=o L(t+m+1) :

Lemma 1 [21] Suppose v, > 0 and u,, r, € Z, for every a € Ny, and p = max{1, sup,v,}, then
g+ ral " < 2P71 (Jual " + |ral™). 4)
Theorem 11If (v,) € .. N2+, then
(Fu(u, v)), = {?: (Tm) €F U : K(1F) < oo, for every 1 > O}.

Proof. Clearly, since (v,) is bounded. O
Theorem 2 Suppose (v,) € [1, )N N4, then (rQ, (u, v)),. is a non-absolute type.
Proof. Obviously, as
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o(T-1.0.0.0....) = (u )Vo+<luo—tm>”+<2lm>—”ﬂl>vz+
i A A 1+1 t+2)(r+1)

s (52 ()

O
Definition 2 Assume that v,, > 1, for every m € Ny. The absolute type space (|rQ|(u, v)) P is defined as:

([FQu|(u, v)), = {?: (7m) €F Ut 9(17) < oo, for some 1 > O}, where

n+1)
IFt+m+1)

i r(mm( z;oﬁ((”munmm) ’
pr) =Y, '

m=0

Theorem 3 (| |(u, v)), G (FQ:(u, V), if (va) € (1, )Mo N 7., with (W) ¢ vy

Proof. Suppose j € (|r|(u, v)) ,, since

‘p)

; t(b!)r(zzomua]}l,O) b t(b!)r(zzomuam,O) '

< < oo,
= C(t+b+1) *b;) L+b+1)

(—1)%a'I'(t)
T(a+1)u,

Assume 2 is a linear space of sequences of fuzzy functions, e, = (0, 0, ..., 1, 0, 0, ---), while 1 locates at the
m'" position and [m] marks an integral part of m € .

Definition 3 [10] The space r2 is called a pssff, if it verifies the following conditions:

(1) If m € Ny, then e,, €r 2,

(ii) Suppose 7 = (Tm) €F U, |[W| = (|Wn|) €F 2 and |7| < [Wp], for all m € Ny, then |7| €p 2,

(iif) ( L€ 2.t (T €r 2.

Notations 1 [22]

(1) % is the space of finite sequences of fuzzy numbers.

26=(0,0,0, ...).

(3) MI and MD indicate the space of all monotonic increasing and decreasing sequences of positive reals, respectively.

Definition 4 [23] A subspace of the pssff is said to be a pre-modular pssff (p-m-pssff), when one has a function
K :r 2 — [0, o) verifies the following conditions:

(a) Assume 7 €¢ 2, k(|F|) =0 <= 7= 0, and k(7) > 0,

(b) Suppose 7 € 2 and 1 € Z, then Ey > 1 so that x(17) < |[1|Egk(F),

(c) there are Go > 1 such that x(7+7) < Go(x(7) + k(7)), for all 7, 7 €p 2,

Hence j € (¢ (u, v)),.. When we puti = < ) ,wehavei€ (FQ(u, v)),and i & (|rQ|(u, v)) .00
acNy
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(d) k(|im|) < k(| jm|), whenever |iy| < |jul, for every m € Ny,

(e) there are Do > 1 with x(|7]) < x(|7[]]) < Dok (|7]),

(f) the closure of .% =p 2,

(g) there are § > 0 such that k(ft, 0,0, 0, ...) > &|u|x(1, 0, 0, O, ...).

Definition 5 [23] The pssff p 2y is called a pre-quasi normed pssff (p-gN-pssff), when « satisfies the conditions
(a)-(c) of Definition 2The space r 2y is said to be a pre-quasi Banach pssff (p-qB-pssff), if 72 is complete equipped with
K.

Theorem 4 [10] If the space is p-m-pssff, then it is p-qN-pssff.

Theorem 5 Assuming that

(h1) (vq) € MIN Lo with vy > 1,

r “ r -
(h2) < (a+1) ua) € MD or, ((a—H)ua> € MIN/. and one has A > 1 with
0 a=0

I'a+1) I(a+1)
IF(2a+t+1) C(a+1)
Tat2) ‘2 S Ayt

then (pQ(u, v)) is a p-qB-pssff.
Proof. First, we have to prove that (<, (u, v)) is a p-m-pssff.
(a) Clearly, k(|7|) =0 < 7= 0 and k(7) > 0.
The conditions (i1) and (c): When i, j € (rQ(u, v)), one has

w4+t A\ "
o (g7 (ZW OF(( +1))uw(rw+mw), 0)
K(r+m)=
( ) q;o C(t+q+1)
_ Cw+1) 2\ \ " _ Cw+t) _ \\"
uTt(y?  —=~ YT|(Y?  ——Ly, 0
< gp-1 i ! (WOF( ) ) +i ’ <WOF(W+1)ume’
= = T(+q+1) = T(i+q+1)

=271 (k(F) + K (7)) < oo,

therefore, 7+ 7 € (pC (u, v))x.
The condition (b): Assume 6 € Z, 7 € (r;(u, v)), and since (v,) € MIN /., one has

Cla+r)  \\" Cla+t) _ \\"
Ko7 = Y " <Za *Flas )" 0> <sup|8 ¥ i <Z“ T+ )" O)
= Tt +q+1) =Py Tt +q+1)

< Ep| |k (F) < oo,

where Ey = max{l, supp, |5|"b’1} > 1. Therefore, 87 € (p (4, v))«-
Since (v4) € MIN 4w and vy > 1, we have
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s [ (Borare@ )

=0 [(t+q+1)
_ Tla+t) —— \\" [(a+t) 2\
T (X! =——F% 0 It —— 0
J’i‘ ! T< =0 gt 1) ") ) LY ! T( =0 T 1) ") o4 Z( 'tubrt-i-b))
- C(t+q+1) 5 L(t+q+1) bT(t+q+1)
w (Dt +D)up\ " & " e (Tt D)\ & 1\
gsup(t t+ Mb) Z( ) gsup<t (t—i—' )uh> Z( > < oo,
g=b _ t+q+1) g=b b! a=b q+1

Therefore, e, € (rQ(u, v))y, for every b € Np.
The conditions (i2) and (d): Suppose |i,| < |74|, for every a € Ny and [F| € (rQ(u, v)), one can see

I'(a+1t P vim
- m'm‘( a OF(( +1))ua|la|, 0)

we(lil) = ZO Ttmtl)

m=

Cla+t) . =\\"™"
i mm‘( i OF( Jrl)ua|ra|,0>
— L(t+m+1)

IN

= K([7]) <o,

therefore [i| € (F (u, v))x.
The conditions (i3) and (e): If (|74]) € (r€ (u, v))«, so that (v,) € MIN /., and (

C(a+t) v
N qm( =0 T(q +1)ua|r \ 0)

k(ira b Z T(t+q+1)

I(a+1t)
I'la+1)

ua> € MD, one has
a=0

_ C(a+1 "2 _ Cla+r) 2\ ™!
2q!zr(z§q()r(( ))ua|r[]| 0) - (2q+1)!tf(2§q“(a)ualr[“]lﬂ)

[t +2q+1) L

Vg Yq
T qu:owuamﬂ]\» 0 g xe! F(cH-t) uu|’”[ 11,0
“=T(a+1) 2 + Z

I(t+q+1) o

_(T(2q+1) _ I'(2a+1) I'2a+t+1) o A\\ "
TEd e AL a 0
s 1 (r(zq+1)”2q|rq|+za0<r(2a+1)”2“+ T(2a+2) 2! 7l
Bl I(t+q+1)
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q 1"(2a+t)u 1"(2a—|—t+1)u 7). Y
71—‘(2614-1) 2a 41—‘(261—‘1-2) 2a+1 als

[(t+q+1)

_ F(a+t) - Y4 v,
g _\arl) = r =.0)\

q!tT( . p uu|ra|a 0) +i 2(6]!)IT( azo%ua‘raL O)
T(t+q+1) o) C(t4+q+1)

_ Cla+t) . =\\"
o 2(q')lf< Zowua|}’a|,0)

+
ng C(t+q+1)

where Do > (2%~ +-2P~1 4-2P) > 1. Therefore, (|7g]]) € (FQ (1, v))x.

The condition (f): Clearly, the closure of % =p Q;(u, v).

The condition (g): One has 0 < § < sup, |u|"»~! with x(&Z, 0, 0, 0, ...) > &§|u|k(1,0, 0, 0, ...), for all u # 0 and
6>0,ifu=0.

By Theorem 4, the space (p€; (1, v)) is a p-qN-pssff. Second, to prove that (rQ,(u, v)) is a Banach space, assume
A™ = (Am)>_ is a Cauchy sequence in (p€; (i, v)), one has for every y € (0, 1), we have mg € Ny so that m, n > my,

hence
Vb
(e (Kt e (A7 - ) )
S — a
A — AT) = .
K( ) b;) T(t+b+1) <7

Ta+1) — — = -

SoT <Z’a’0 F((aj—_l))ua (A —An), 0) < 7. Since (#%([0, 1]), T) is a complete metric space. So (A?) is a Cauchy
a

sequence in Z([0, 1]), for fixed a € No. Hence it is convergent to A9 € %([0, 1]). Therefore, k(A" — A0) < P, for all

m > my. Obviously, from setup (c) that A® € (rQ;(u, v))x. O

Remark 1 The importance of this space is that we can construct a family of probability density functions as follows:

_ Cla+1) — =\\"
1(b)T 2’5207( )ua]a, 0

F(b) = T(a+1)
-~ x(5) L(t+b+1)

) . 3(a+1) — 1

(1) Figure 1 explains the pdf whent =1, u, =1, v, = ——=, and j, = —— and the pdf whent =1, u, =
a+?2 a+1
1 3 1 — 1
= (a+ ),andja:

ar1 a+?2 a+1’
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L5T(a+ DI(15) _ 3(a+1)

— 1
(2) Figure 2 explains the pdf whent = 1.5, u, = and j, = arl and the pdf when
a

[(a+1.5) +2 7
1.3 (a+ 1)[(1.5) 3(a+1) — 1
e G 15 a+15) " Tar2 MT
i ) 2 3(a+1) — 1
igure 3 explains the pdf whent =2, u, = ——,v, = ———=, and j, = and the pdf whent =2, u, =
(3 F 3 expl the pdf when r =2 i ) d 1 d the pdf when r =2
a a
2 L3ty 1
(a+1)(a+2)" "  a+2° Ja =TT
. . 3(a+1) - — 1
(4)F1gure4explamsthepdfwhent:1,ua:l,va:m,andh:e*“ andthepdfwhent:1,ua:ﬁ,va:
3(a+1 - —
(Cl+2),and]a:e—“.
1.5I DI(1.5 3 1 - —
1gure 5 explains the pdf whent = 1.5, u, = a L Vg = a ,and j, = e~ % and the pdf when
(5) Figure 5 explains the pdf when = 1.5 l"((a+—|—l)5() ) (a:z) d7 d the pdf wh
1.5T(a+1)I(1.5) 3(a+1) - —
t=15u,= = dj,=e“.
e G 15 (a+15) """ a2 MSeTe
i i 2 3(a+1) - —
(6) Figure 6 explains the pdf when ¢t = 2, ua:a—ﬂ,va:ﬁ,and Jja = e % and the pdf whent =2, u, =
2  3(a+1)

,and j, =e %

(a—i—l)(a—i—Z)’va a+2

3. Kannan’s contraction fixed points

This section is devoted to discussing the existence of fixed points of Kannan contraction operators acting on this new
space under the setups of Theorem 5. Several numerical examples are offered to explain our results.

Many mathematicians used the Banach Fixed Point Theorem [24] to generalize some contraction operators, for
instance, the Kannan contraction operator [25], Kannan operators in modular vector spaces [26], Kannan p-qN contraction
operator [15], and Kannan p-qN non-expansive operator [15].

Definition 6 [15] A p- -qN-pssff k on r2 verifies the Fatou property, whenever for every {z )} Cr 2 such that
lim, e k(i@ —7) =0 and j €p 2y, one has k(j —i) < sup, infy> K(j —il@).

We will use the following notations:

L (b (za Or((aj-i )) taTa 0) ’ bIfT <za Or((ai?) Uaja 0)
SIHEEDY and k3 (j) = ) :
= T(t+b+1) = I(t+b+1)

for every j €p Q(u, v).
Theorem 6 The function k; verifies the Fatou property.
Proof. If {j@} C (5Q(u, V), With limg_e K1 (j@) —
(P (u, v)),,» then

Jj) = 0. Obviously, j € (rQ(u, v)),. Forallic
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i)=Y “”(ZaOFfiﬂuAM—h»o) ik
"\ E T(t+b+1)

Catn) — ~@ )" Tla+t) 7@ — =\\"” 5
(Z“ O a1y el ) 0> Ay (Z“ 0 Flag 1 ele o) 0)
I(t+b+1) = I(t+b+1)

IN
agk

< inf i (i — /().
_sgp;rzlq 1(i—j9)

O
Theorem 7 The function k, does not verify the Fatou property.

Proof. Suppose {j@} C (5O (u, V), With limp ., K2(j@ —J) = 0. Evidently, j € (5Q(u, V))g, Forallie
(FQ:(u, v)),,, we have

Mm(zb [a+1) Amy%0> !

_ oo a=| OF( +1)
KZ(Z_])_[Z;) T(+b+1)
Vh JRE— Vh
L (v (z Bt - ), 6 L (b (xSt G 7, 6
< pp-1 Z I(a+1) +Z C(a+1)"
- b=0 L(t+b+1) ) C(t+b+1)

<2P*1 inf I ) .
< Sipégq@(’ 7))

Therefore, k> does not verify the Fatou property. O
. . I, .

Definition 7 [15] An operator G :p 2 —r 2 is said to be a Kannan x-contraction, when one has € € [0, 5), with
k(Gj— Gk) < e(x(Gj—j)+ k(Gk —k)), for every j, k €p 2i. If G(j) = j, then j €p 2y is said to be a fixed point of
G.

Theorem 8 Assume G : (4 (u, v)),, — (F4(u, v)),, is Kannan ki-contraction operator, then G has a unique fixed
point.

Proof. Suppose k €r Q;(u, v), then G’k € Q,(u, v). Since G is a Kannan k;-contraction, we have
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K (G 1% — G'%) < e (K‘l (GP 1k — GPR) + K (G"% — G”*‘E)) =

2
K1 (GP 1k — GPF) < I%KI(GZ’%—G”—IE) < (188) ki (G k- GP ) < ...

e\’ -
<| —— Gk —k).
= (1_8) K1 ( )
Therefore, for every a, b € Ny with a > b we have

ki (G’k—G%k) < e (K‘] (GPk— G"'k) + 11 (G — G“—IE))

<e ((lie)b_l + <1f£>a_1> K1 (Gk — k).

Hence {G"k} is a Cauchy sequence in (r€ (u, V), - Since (p (u, v)),, is p-qB. Theng € (r(u, v)),, such that
lim,_... G’k = g. To prove that G(g) = g. As k) verifies the Fatou property, we have

b
— o) < . bH1T _ GPR) < . 4 T —
k1 (Gg—q) < Sl;péglel(G k—Gk) < sgpyg 1—s ki (Gk—k) =0,

so G(g) = g. Hence, g is a fixed point of G. To prove the uniqueness of the fixed point. For two different fixed points
i, 4 € (FQ(u, v)),, of G. Then

ki(i—q) < k1 (Gi— Gg) < € (k1 (Gi—i) + k1(Gg—7q)) =0.

Soi=7. 0
Corollary 1 Assume G : (r(u, v)),, — (F€(u, v)),, is Kannan kj-contraction, then G has a unique fixed point
b1
_ £ _
g with k (G’k—q) < ¢ <1£) k1 (Gk — k).

Proof. By Theorem 8, there is a unique fixed point g of G. Then

b7
a(6F-0) = (T Ga) < & (-6 D)+ ma(G7-0)) —e (1 0 (GE- ).

O
Definition 8 [15] Let 2y be a p-qN-pssff, G :r 2 —r 2 and j € 2. The operator G is called k-sequentially
continuous at j, if and only if, assume lim; . k(g; — j) = 0, then lim; .. k(Gg; — Gj) = 0.
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In the next theorem, we explain how Kannan-type contractions are different from Banach contractions, taking into
account the continuity of the mappings.

Theorem 9 Supposing that G : (pQ,(u, v)),, = (Fs(u, v)),,. The element ke (rQ(u, v))
point of G, when the next setups are satisfied:

(c1) G is Kannan k»-contraction,

(c2) G is Kk»-sequentially continuous at k € (€, (u, V) ey

(c3) there is u € (p (u, v)),, with {G7u} has {G%u} converges to k.

Proof. If k is not a fixed point of G, we get Gk # k. By the setups (c2) and (c3), we have

% is the unique fixed

lim x(G%i—k) = 0and lim k(G4 % — Gk) = 0.

qi— qi—re°

According to the proofs of theorem 5 and theorem 8, since G is Kannan k»-contraction, we have

0 < ka(Gk—F) = K2 ((Gk— G ') + (G — ) + (G4 — Gm))

_ _ e 4!
<27 %1 (G u— Gk) + 2%k, (G —k) +2° e (1) k> (G — ).

Let g; — oo, there is a contradiction. Hence, k is a fixed point of G. For the uniqueness of k, let we have two different
fixed points k, 7 € (rQ:(u, v)),, of G. Hence

K2 (k—7) < K2(Gk — GF) < € (k2(Gk — k) + k2 (GF —F)) = 0.

Therefore, k = 7. O
Example 1 Suppose

s (o (@rsrem), e (52).2), 7 (9 (@)L (552).0),

and

_ ! = /2a43\" _
F relof ((—&% Ik (B), k1 (F) €0, 1 h
orevet e (9 ( (s <a+2>ao)>m 0 €0 L. one s

K‘l(AE—AT") = Kl(g—z < L KI(Z)"'_KI(?)) =

7) S 427( (Kl(AE—ﬁ)—I—Kl(A?—?)).
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For all ki (h), k1 (7) € [1, =), one has

K1 (AE—A?) = Kl(

Forall x(h) € [0, 1) and k; (7) € [1, =), we get

— h 7 1 3h 1 47 1 47
AT—AF) = (21— Dy < 2 Ty < 21 il
Kl( h r) K1(4 5)— 427K1(4)+ 464K1(5)— 427<K1<4)+K1(5))
—L(K(AE 7))+ K1 (AT *))
= 427 1 1 r r)).

Then A is Kannan kj-contraction. Since k; verifies the Fatou property. From Theorem 9, A has a unique fixed

L T ! < 2a+3\" . — — —
t0. 1f (o c (of ((—%L T th limy .. k1 (h®) — KO = 0, where 40
point 6. If {A(")} C < P (((a+5)f‘(a+t)>a0’ (a+2 >a0>>K1 with limy,_,.. k1 ( ) = 0, where €

! “ 2a+3\° . . . .
(Qi ((a) , ( at ) > so that k7 (h(0)) = 1. Since K is continuous, we obtain
(a+5)(a+1)) g \a+t2 ), 0/)/

_ ® 50 ©
lim &1 (AR®) — ARO)) = lim (hT - h?) = K (h—) > 0.

bh—so0 b—yoo

Hence A is not ki-sequentially continuous at 2(0). This gives A is not continuous at /(0.

— ! ~ 2a+3\"7 —
Forall b, Fe (QF ( [ — e S h), kx(F) € [0, 1), we h
orall h, 7 € ( » <<(a+5)r(a+t))ao’ <a+2 >a0>)1(2 uppose k»2(h), k2(7) € [0, 1), we have

ks (AL — AF) = KQ(Z ~D<

e 2 ()4 0) = = (m@i—T) + (7).

4 4 27

N‘N
~

Suppose ka2 (h), k2(F) € [1, o), we have

ho7

_ 1
Kz(Ah—A?):Kz(S 5

(Kz(@) + Kz(f)) — - (KZ(AE—E) + Kz(A?—?)).

<
)< 5 5 4

o=

For all k,(h) € [0, 1) and K3 (F) € [1, =), we have

- hoT 2 3h, 1 A4F 2 3h
Kz(Ah—Aﬂ:Kz(Z—g)SﬁKZ(Z)+ZK2(—)§—(KQ(

(Kz(AE—E)Jer(A?—?)).

BN |
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k2 (h) €10, 1),

Kg(h) S [1, 00).

Clearly, A is k»-sequentially continuous at 6 and {A9h} has a subsequence {A%/h} converges to 8. By Theorem 9,

h
Therefore, A is Kannan k»-contraction and A9(h) = ‘%’ 7
59’

6 is the unique fixed point of A.
Example 2 Assume

s (o (@rsram). o (52).0), - (@ (@) (652).),

and
_ = — 1
@R, Folm) €0, %),
— 1 — 1
A(h) =< —e7 ——
W={ta =1,
1 1
—ey, h()(m) € (§> 1]
. — 1
Since ho, 7o € [0, §)’ one has
_ 1 — — 2 3 7
—AF) = 1o (= (o — 7o, Ty — 71, o — T3, ...)) < ——= (12 (2 -
K2 (Ah — A7) K2(4(h0 0, hy =71, hp =72, ...)) < \57<K2( 1 )+ K 1 ))

< \% (KZ(AE—E) + Kz(ATf—?)).

— 1
For every hy, 7y € (5’ 1], then for every € > 0, one has

k(AR — AF) = 0 < s(KZ(AE—B) n KZ(A?—?)>.

— 1 1
For every hy € [0, 5) and 7y € (g, 1], we have

ko (AR — AF) = K‘z(g) < \/%Kz(szh) - \%7 AL—T) < \%(KZ(AB—EH Kz(Af—?)).

. . . . . . 1 —
Therefore, A is Kannan k»-contraction. Evidently, A is k»-sequentially continuous at —ej and there is h =

— al * 2a+3\" o 1 .
ho, hy, ho, ) e ([ Q[ | ————— , with hy € [0, =) so that the sequence of iterates
( 0 : ? ) ( p(((a+5)r(a+t>>a0 (a+2 )aO))Kz 0 [ 3) a
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_ 11 _ P B 1_
{A%h} = {ZZZI i + Eh} has a subsequence {A%h} = {Zajzl il + Eh} converges to e By Theorem 9, the

1 1
operator A has one fixed point ga. Recall that A is not continuous at —ej.
_ a! = 2a+3\7 — 1
Forallh, 7€ (Qf [ [ ———— , . Ifhy, 79 € [0, =), we have
( p(((a+5)r(a+t))u0 <a+2 )aO))Kl 0 [ 3)

KNAE—A?)ZK}(%(%—%,E—W,E—ﬁ,...))g ! (K,(3ﬁ)+,<l(f))

< 427<K](AE—E)+1<1(A7—7)>.
— _ 1
If ho, 79 € (5, 1], then for every € > 0, we have

K1 (AR — A7) =0 < & (1 (AR — ) + K1 (47— 7)).

— 1 1 .
Assume hg € [0, g) and 7 € (g, 1], one obtains

i1 (AT — AF) = K‘l(g) < \4@"1(?) — %KI(AE_;[) < %(KI(AE_ZHM(A?J)).

Therefore, A is Kannan xj-contraction mapping. Since k satisfies the Fatou property. By Theorem 8, the operator

1
A has a unique fixed point ga.

4. Applications

In this section, we have introduced a solution in (FQ; (u, v)) x, to Volterra-type summable equation of fuzzy functions
(2) with the setups of Theorem 5.

Theorem 10 The Fuzzy Volterra-Type Non-linear Dynamical Economic Model (2) has one and only one solution in

Vb 1
(FQ:(u, v)),,» when 7 : Ng — Z([0, 1]), one has € € # with sup, |€| b e [0, E) and for all b € Ny, then

b a
a;O (q%on(a, q9)lg(q, Jg) —2(q, m)]) g((a:)) “

<le|

b o
y <ra—m Y (e, ¢)s(a. m) Hatr),
a=0

q=0

+ €] Ug| -

bl & _\ T(a+1)
agb (raﬂfrqg,)n(% 9)8(q, 71q)> Tat1)
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Proof. Suppose the setups are confirmed. If the operator L : (p€ (u, v)) — (ru(u, v))
(3). So

x, is defined by equation

1
Vp r

bt (z’;o i((;’j_ i)) ug(LIg — L), 0)

ki (L —Ln) bgo T(t+b+1)

bYtT(iﬁzo (Xyer, (e, q)lg(q, Jy) —2(q, Tq)])@ua, 0) 1’

= It+b+1)

=

_ _N\T _ Vb
b1t (ZZO (rTﬁJa +Xo-oIl(a, 9)g(q, Jq)) F((;li?)ua, 0>

= L(t+b+1)

o=

r N\
iz (z’;zo (o T Eg-oTla. a)sla. ) ot e o)

= It+b+1)

Yb [ — .
—suple| » (k1 (LT —7)+ ki (LT —=17)) -
b

O
From Theorem 8, one has a unique solution of (2) in (p€(u, v)),, -
b! ” 2b+3\"
Example3Let (QF ((—— ) (=2 .
P ( P<<<b+1)r(b+t>>bo <b+2>bo)>,q

Assume the Fuzzy Volterra-Type Non-linear Dynamical Economic Models:

o T A1 ad a+q j:lfz

]a—cos(2a—|—1)+22 e (%)

=0 Jo T+
sothatr, d >0and j_,(¢), j—1(t) > 0, for every t € Z and assume

s (e (). (552),0)), - (3 (Grrem) e (52),0),

is defined by
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oo s o
LGa)z0 = (cosCa+ 1)+ Y, 2“+q%) : 6)
= JotgF+17e70

1
Clearly, we get € € & with sup, |8|% € (o, 5) and for all b € Ny, one has

b oo o
I Fp Ty ) AL
a=0 \g=0 jgfl + l]z +1 F(a + 1)

b ) T
o . s [(a+t)
<le| cos(Qa+1)—ja+ Y 20 —= Ug|+
agb< ng o +@+1) Plat)
b oo ey
_— r t
lel| Y cos(2a+1)fm+22“+qin”72 (a+ )ua .
a=0 q=0 T]j_l +C]2 +1 F(a+ 1)
. o b! ~ 2b+3\"
By Theorem 11, the system (5) has a unique solution in (QF —_ s | —— ) .
Y Y ® 1 P (((b+1)r(b+f)>ho <b+2 )h 0) K|

Theorem 11 Suppose L : (p(u, v)),, — (F(u, v)),, is defined by (3) and vo > 1. The Fuzzy Volterra-Type
Non-linear Dynamical Economic Model (2) has a unique solution [ € (¢, (u, v))Kz, if the next setups are verified:
(HIFTT: N3 — %, g:Nox ([0, 1)) = Z([0, 1]), j:No — 2([0, 1]), 7: Nog — Z([0, 1]), k:No — 2([0, 1]),

1
assume one has € € % with 2P~ !'sup, |¢|" € [0, E) and for every b € Ny, then

b a
y (Z (a, 9)[g(q, Jq) — (g, kq)]> géaii)) e

a=0 \¢eNy

b > a
<lel| Y <ra—ja+ Y. Mi(a. g)sls m) ot +

q=0

, - a
ey <ra—ka+ Y T(a, 9)g(q, "q>> ;(ai?)“ '

a=0 q=0

(2) L is kp-sequentially continuous at [ € (pQ; (u, v))
(3) there is i € (r(u, v))
Proof. We have

K2

with {W4i} has {W4%ii} converging to [.

K2
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T(a+t —  —  \\"
- qtr( 70 ( )ua(L]a—LkaLO)
iy :Z I'(a+1)
q=0 r(t+q+1)

= q!”(ZZo(quNoH(a, q)[8(q: Jq) — (g, k:;)})wua,o) '

= C(t+q+1)

— g F 0 Vq
q'T (Zgo (ﬁ—ja + X0 1l(a; q)e(g; jq>) F((Zi?)um O)

<20 suple]'
q q;) L(t+q+1)

- T e —\ Dla+t N\
w [ 9417 (ZZ=0 (ra —ka+ X5 01(a, q)g(q, kq)) %u 0>

+ 2P~ sup|e|'e
q ng C(t+q+1)

=2P"Tsuple|" (ko (Lj — ) + ko (Lk —k)) .
q

By Theorem 9, we obtain a unique solution I € (rQ; (u, v))y, of equation (2).

4 b! ~ 2b+3\"
E le 4 Consid o (| —e—— — .
rample s Fomee ( d <<(b+1)r(b+t)>b07 ( b+2 )bO))Kz

Suppose the summable equations (5).

o L) (220, (04 () (25

b+2

).a)).

- b! = 2b+3\"
defined by (6). If L is k»-sequentially continuous at [ € (Q[f (((b-i—t)) , (+) >) , and there is

(b+1)C

b! ~ 2b+3\" . - = . = .
€ (Qi ((Mw) oo’ (b++2) bO) > . with {L%i} has {L9/i} converging to /. Obviously, one has € € #Z

2b+3

1
with 2P~ !sup, |¢| +2 €0, 5) and for every b € Ny, we have
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b = b
Z 2207]647*2(24_26 Mua
a=0 \g=0 j¢  +q*+1 [(a+1)

<lel

, - N
— R L + Ja—2 I(a+r)
Z(cos(2a+l)—1a+qz:2“ m_—_——1 >F(a+1)u“

a=0 =0 i+

b v b
—_— — _ C(a+t)
+ 2
+lel| ) <cos(2a+1)—ka+§ 2etm _——14 )F(a+l)ua

a=0 q=0 kf:l—qu—Fl

1

According to Theorem 11, the Volterra-type summable equation of fuzzy functions (5) has a unique solution / €
(@ (Frrmea).. (552).))
Q —_—— o | ——= .
PANNO+DT0b+1) ) g \0+2 ) 0] /),

5. Conclusion

In this article, we offered some topological and geometric properties of (rQ;(u,v)),. The existence of a fixed point
in the Kannan contraction operator on this space is discussed. Many numerical experiments were conducted to verify our
hypotheses. Fuzzy Volterra-Type Non-linear Dynamical Economic Models are also studied. All contraction operators in
this new fuzzy function space are examined for their fixed points, and a novel generic solution space for multiple stochastic
nonlinear dynamical systems is presented.
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09 (@) 09 (b)
0.8 08+
07 0.7
0.6 0.6
o - \
OS5+ BOSH
0.4 04+
0.3 03f\
02+ 02+
0.1 \ 0.1 N o
% 2 4 6 8 10 . 12 14 16 18 20 % 2 4 6 8 10 , 12 14 16 18 20
Figure 1. (a) The pdf whent =1, u, = 1 _ 3+ and j, = ! and (b) the pdf whent =1, u, = ! _ 3a+1) and j, = !
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