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Abstract: The problem of product cost estimation is one of the crucial issues in contemporary manufacturing systems
when new products arrive as customer orders. Product cost estimation determines the success of manufacturers. An
overestimation causes them to lose sales and competitiveness and an underestimation results in a financial crisis. This
should be done at the early of production to reduce the potential costs that can be incurred in the production, distribution,
consumption, and disposal of products. In previous studies, this problem was addressed using different mathematical,
heuristics, multiple-criteria decision-making (MCDM), and artificial intelligence (AI) methods. These methods have
their advantages and disadvantages as stated by several studies. Referring to the previous studies, the integration of
neutrosophic case-based reasoning (N-CBR) and neutrosophic best-worst method (N-BWM) was not applied to solve
the problem of product cost estimation. This study aims to develop a decision support system (DSS) by integrating the
neutrosophic versions of CBR and BWM to solve the problem of product cost estimation at the early production stage.
This implies that the proposed system contributes additional knowledge to the current literature in product cost estimation
and decision-making. This is because, nowadays, neutrosophic set theory (NST) is getting more attention to represent
the knowledge of experts in MCDM. In this study, product orders were treated as multiple-attributed cases incorporating
neutrosophic-based verbal terms, and numeric and categorical cost drivers as case attributes. In addition, this study applied
an object-oriented programming (OOP) approach to represent part-order arrivals as cases with multiple attributes. Optimal
weights of case attributes were determined using a group-based N-BWM. Neutrosophic-based verbal terms of cost drivers
and neutrosophic BWM terms were converted into equivalent single-valued trapezoidal neutrosophic numbers (SVTNNs).
From managerial implication, the proposed system can be applied to estimate the cost of new product orders at the early
production stage in real manufacturing environments by integrating the proposed methodological approaches. In this
study, a numerical example was illustrated in a simulated machining environment to test the soundness of the proposed
system.
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1. Introduction
The problem of product cost estimation is very significant due to the paradigm shift from mass production to

mass customization in modern manufacturing systems [1–3]. Fierce and intense competition in stochastic and dynamic
situations, manufacturers must be responsive and agile to respond quickly to the changes in customer preferences [4, 5].
One of the requirements in such manufacturing environments is developing the right product cost estimation model and
framework [3, 6–8]. This is because product cost estimation has a great effect on product price and supply lead time [9–12].
Most previous studies recommended that suchmodels should be applied at the early stages of production [3, 7, 13, 14]. The
reason is that the early stage of product development contributes only around 15% of the total production cost. However,
nearly 75% of the total product cycle cost savings are met at this early stage of product development [14–20]. This
indicates a large amount of product lifecycle cost savings can be achieved by reducing modifications and reworks during
production and consumption stages [21–23].

Customers often demand products with excellent quality dimensions, lower prices, and short supply lead time
(SLT). To meet this challenge in competitive market situations, manufacturers are required to develop an appropriate cost
estimation framework [17, 20, 24, 25]. The proposed cost estimation systemsmust incorporate structured and unstructured
data of product attributes [3]. If the costs of products are inaccurate and imprecise, misleading decisions can be made by
decision-makers [5, 21, 23, 26, 27]. An overestimation of product costs causes companies to lose sales and competitiveness
and an underestimation results in a financial crisis [6, 16, 28, 29].

Based on the stated problem, the paper aims to develop a decision support system (DSS) that works as a cost estimator
when new product orders are introduced into machining operations. Specifically, it focuses on estimating the cost of
cylindrical products on turning machining operations. The proposed system can retrieve the most similar prior cases. As a
new product order is introduced it finds the past product order with themost similar production cost and adapts the retrieved
solutions to the current problem. The DSS utilizes neutrosophic case-based reasoning (N-CBR) and neutrosophic best-
worst method (N-BWM) for this estimation process to address the truth, indeterminacy, and falsity membership functions
in decision-making. The neutrosophic version of CBR was used to apply unstructured and structured data of product
features to construct cases and measure similarities with hybrid case features. In addition, the N-BWM component of the
proposed DSSwas applied to determine the optimal weights of case attributes by soliciting the knowledge and experiences
from a group of experts. This was used as input to measure the similarities between new product orders as new cases and
previous product orders as prior cases.

As an academic contribution, the combination of N-CBR and N-BWM was not implemented in previous studies
to solve the problems of product estimation. This study addressed this literature gap in DSS theories for estimating
new product costs. In this regard, this paper provided new insights into integrating CBR and BWM in a neutrosophic
environment to estimate production costs for new product orders. This bridges the current knowledge gaps in DSS and
decision-making. In addition, according to the survey of previous studies in DSS, the integration of N-CBR and N-BWM
has not been applied to solve any industrial problems. The reason to integrate these two methods was selected, they
could be easily implemented in manufacturing environments where limited past data are available to apply other machine
learning (ML) methods.

The remaining part of this paper contains five sections. Section 2, reviews related studies. Section 3 explains the
methodological approach for developing the DSS. Section 4 illustrates a numerical example for estimating the cost of
cylindrical products. In Section 5, the findings are briefly discussed. In the last section, conclusions are articulated.

2. Review of related studies
This part reviews related studies and identifies study gaps in the problem of product cost estimation using different

methodological approaches. In addition, this section reviews the limitations of the existing product cost estimation
methods. In general, it theoretically capitalizes on the problem and the study gaps stated in the previous section.

According to a review by Zhao et al. [30], several cost estimation methods were proposed with different limitations
such as labor and time intensiveness, specified design changes, low reusability, and traceability and accuracy. Additional
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limitations of the proposed methods were discussed in other studies [19, 31, 32]. These proposed models were classified
in different ways. For example, Shehab and Abdalla [10] categorized different estimation methods as intuitive, parametric,
variant-based, and generative frameworks. Qian and Ben-Arieh, [33] classified the methods of product cost estimation
into intuitive, analogical, parametric, and analytical models. In other studies, the methods were classified as quantitative
and qualitative approaches (e.g., see [8, 13, 28, 29, 31, 32]). In addition, more classifications are shown in other studies
[7, 9, 19, 34, 35].

The review of related studies in product cost estimation is summarized in Table 1. It incorporates the authors, proposed
estimation models/frameworks, and applied methods for developing models.

Table 1. Summary of related studies

SN Author(s) Framework/model Method Production area

1 Weustink et al. [18] Generic analytical
framework

Hierarchical method at assembly,
component, and feature levels Assembly line

2 Molcho et al. [17] Analytical decision
support tool

Linear regression using
seven input cost factors Abrasive parts

3 Wouters and Stecher [36]
Analytical real-time
cost estimation model

Analysis of real-time
machine and labor hours Machining mechanical parts

4 H’mida et al. [16]
Knowledge-based

integrated product and
costgrammes model

Analysis of part, material,
and process features as constraint

satisfaction from CAD
Machining mechanical parts

5 Park and Simpson [37] Knowledge-based Product
family cost estimation Activity-based costing (ABC) Cordless power screwdriver

6 Zhang and Fuh [38]
Zhang et al. [39]

Machine learning (ML)
based model

Featured-based artificial
neural network (ANN) Packaging

7 Wang [21] ML-based model Featured-based ANN Plastic injection

8 Duran et al. [1] ML model ANN Piping elements

9 Bode [24, 40] ML-based
decision support ANN Bearing products development

10 Cavalieri et al. [27] ML-based
predictive model ANN Automotive industry

11 Loyer et al. [25] ML-based model Support vector regression
and gradient-boosted trees Jet engine components

12 Caputo and pelagagge ML-based model ANN Complex pressure vessels

13 Duverlie and
Castelain [19] CBR-oriented ML model Parametric and CBR Piston parts

14 Zhao et al. [30] Comprehensive framework Knowledge-based engineering Aircraft component

15 Wang et al. [5] ML model Integration of ANN and particle
swarm optimization (PSO) Plastic injection molding

16 Karaoglan and
Karademir [12] ML model ANN-forward and

backward propagation
Electromechanical/

transformer

17 Relich and Świć [22] Decision support framework Integration of parametric, constraint
programming, and simulation

Generic new product
development

18 Tyagi et al. [41] Analytical life-cycle cost
estimation model

Analytical methods to estimate
development, service, and risk costs Gas turbine
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Table 1. (Cont.)

SN Author(s) Framework/model Method Production area

19 Tu et al. [9] Cost index structure Generative and variant cost
estimation method Generic mass customization

20 Chougule and
Ravi [20]

Web-based intelligent
collaborative

engineering system

Parametric using material,
geometric, quality,

and production attributes
Casting

21 Chan et al. [2] ML-based predictive
framework Big data analytics Additive manufacturing

22 Letaief et al. [26] Feature-based ML
framework

Feature-based CAD/
CAM data reuse CAD/CAM-based machining

23 Jung [42] Featured-oriented
analytical model

Featured-based
machining parts Machining

24 Shehab and Abdalla [10] Knowledge-based DSS Feature-oriented CAD CAD/CAM-based machining

25 Özbayrak et al. [43] Mathematical/
simulation model Activity-based costing (ABC) Advanced manufacturing

systems

26 Yeh and Deng [8] ML-based product life
cycle cost estimation

ANN and support
vector machine (SVM)

Airframe structure
manufacturing

27 Campi et al. [44] Analytical models Feature-based Open-die forging

28 Mandolini et al. [14] Knowledge-based
analytical framework Rule-based reasoning Open-die forging

29 Wasim et al. [6] Knowledge-based DSS Feature-based method Lean system

30 Ning et al. [23] ML model Feature-based deep learning Machining

31 Koonce et al. [45] Hierarchy-based
analytical framework Hierarchical structure Concurrent engineering (CE)

Manufacturing

32 Defersha et al. [35] Analytical model Data envelopment analysis (DEA) Landing gears of aircraft

33 Ou-Yang and Lin [46] Analytical framework Feature-based CAD/CAM CE machining

34 Qian and Ben-Arieh [33] ABC-oriented
analytical model

Combined parametric
and ABC methods Machining rotational parts

35 Smith and Mason [47] Predictive ML model Regression and ANN Generic production

36 Hooshmand et al. [11] Generic analytical model
Combined new and

standard variants of cost
driver attributes

Engineer-to-order (ETO)

37 Juan et al. [48] ML-based DSS Integrated CBR and
genetic algorism (GA) Housing customization

38 Chang et al. [49] ML-based product predictor Integrated CBR and ANN Mobile phone products

39 An et al. [50] CBR-oriented ML Integrated CBR and
analytic hierarchy process (AHP) Construction

40 Sajadfar and Ma [51] Feature-oriented ML Linear regression and data mining Welding

41 Kasie and Bright [3] CBR-oriented ML Integrated fuzzy CBR and fuzzy AHP Machining

42 Matel et al. [52] ML ANN Construction consultancy service
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The review of related studies indicates that the problems of product cost estimation were addressed using different
methods. This includes analytical, heuristics, multiple-criteria decision-making (MCDM), machine learning (ML),
simulation, and knowledge-based systems in various problem areas. However, the integration of N-CBR and N-BWM
has not been applied to this problem. Cost estimation can be utilized in neutrosophic environments for case representation
and weighing case features/cost drivers. For instance, if we ask ten customers to state their acceptance of the specific
price (say $ 100) of a product; six customers may accept, three may reject and one of them may be indeterminate. The
situation is expressed using a dependent single-valued neutrosophic set (SVNS) using three membership values (0.6, 0.3,
0.1). This finding may change over time if we conduct other surveys because of uncertainty [53]. This situation indicates
that the membership values in SVNS can be expressed by fuzzy theory [54, 55]. An individual or a group of experts
can independently evaluate the membership values in neutrosophic environments in MCDM [56–59]. The objective of
this research is to address this knowledge gap in DSS and product cost estimation research. It gives new insights into
integrating CBR and BWM in neutrosophic environments to solve the problem of product estimation.

3. Methodological approach
This section explains the theories, preliminaries, and methodological procedures applied in this study.

3.1 Integration of NS, CBR, and BWM

The decision-making process in modern manufacturing systems should include uncertainty, incompleteness, and
vagueness to cope with human thoughts [60, 61]. Decision support models using a CBR methodology can be applied in
such situations [3, 62]. CBR is a popularMLmethodology in AI, which solves the target problems by reusing and adapting
the prior similar solutions retained as cases [63, 64]. Some of the recent applications in different problem domains are
present in various studies (see [3, 62, 65–67]). The advantages of CBR over otherML systems are its training capability by
employing a few historical datasets [65–68], and its accuracy improvement accumulated experiences as many problems
are solved over time [3, 66, 67].

According to Aamodt and Plaza [63], a CBR methodology has four major phases for decision-making
(1) Retrieving the most similar prior case to the current problem;
(2) Reusing the concrete knowledge and experiences from the retrieved case to the new problem;
(3) Revising the retrieved case for adapting it as a solution to the current problem; and,
(4) Retaining the final solution for future retrieval in case a similar problem will be encountered in the future.
Human experts make decisions in uncertain, vagueness and inconsistent situations expertise is well represented in

terms of neutrosophic sets (NS) [55, 62]. An NS is the generalization of fuzzy sets (FS) and intuitionistic fuzzy sets (IFS)
[55, 62, 69]. A case is defined as a neutrosophic case as one or more case features are described using NS versions [62].
Smarandache [70] introduced NS using three membership functions such as truth, indeterminacy, and falsity membership
functions that generalize FS and IFS. Al-Omeri et al. [71] defined a cone metric space in the context of the NST and
basic findings regarding fixed points for weakly compatible mapping. In addition, Wang et al. [72] defined single-
valued neutrosophic sets (SVNS). SVNS and its extensions were widely applied in multiple-criteria decision-making
(MCDM) and DSS research as presented by the following recent studies. Garg [73] developed a multiple-attribute group
decision-making (MAGDM) algorithm using new exponential-logarithm-based SVNS to handle the uncertainties in group
decision-making. Nafei et al. [74] presented a multiple-attribute group decision-making (MAGDM) framework using a
neutrosophic fuzzy set (NFS) for selecting machine tools in manufacturing industries. Al-Omeri et al. [75] presented the
application of a neutrosophic graph to identify the location of an Internet streaming service with the help of Hamming
distance. Other applications were presented in the following studies (e.g., see [53, 55–57, 59, 62, 76, 77]). SVNS can be
applied for case representation in CBR to describe case attributes or cost drivers using the three membership functions
as neutrosophic numbers [53, 62]. The situation of SVNS is defined as a single-valued neutrosophic number (SVNN)
[54–59, 62].
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Cases are often represented in terms of hybrid multiple features of MCDM to find distance-based similarity measures
between target and alternative cases for retrieving the most similar case [3, 65–67, 78, 79]. On the other hand, determining
optimal weights for case features is very useful in case-based MCDM [62, 79]. For optimal weight determination, the
BWM is a popular pairwise comparison approach, initially proposed by Rezaei [80] and improved by Rezaei [81]. The
BWM is easily extended into its neutrosophic version to articulate vagueness, uncertainty, and incompleteness as studied
by Vafadarnikjoo et al. [82], Yucesan and Gul [83], Liou et al. [54]. The BWM is more reliable, flexible, and easier than
other pairwise comparison approaches such as the analytic hierarchy process (AHP) and analytic network process (ANP)
[62, 80–82].

3.2 Preliminaries
The preliminary concepts and basic arithmetic operation of SVTNN, which were applied in this study, are explained

in this subsection. The definitions and membership functions of NS by Smarandache [70], SVNS by Wang et al. [72],
SVNN by Abdel-Basset et al. [56], Abdel-Basset et al. [55, 57] and Chai et al. [84], and single-valued trapezoidal
neutrosophic number (SVTNN) by Deli and Subas [58], Abdel-Basset et al. [55], and Liou et al. [54] were applied in this
paper. The SVTNN applied in this study is shown in Figure 1.

Definition 1 The three membership functions of an SVTNN such as the truth TÃ(x), indeterminacy IÃ(x), and falsity
FÃ(x) membership functions are presented from Equations (1)-(3) respectively.

TÃ(x) =



αÃ

(
x− ã1

ã2 − ã1

)
, ã1 ≤ x ≤ ã2

αÃ , ã2 ≤ x ≤ ã3

αÃ

(
ã4 − x
ã4 − ã3

)
, ã3 ≤ x ≤ ã4

0, otherwise

(1)

IÃ(x) =



(ã2 − x) +θÃ(x− ã1)

ã2 − ã1
, ã1 ≤ x ≤ ã2

θÃ, ã2 ≤ x ≤ ã3

(x− ã3)+θÃ(ã4 − x)
ã4 − ã3

, ã3 ≤ x ≤ ã4

1, otherwise

(2)

FÃ(x) =



(ã2 − x)+βÃ(x− ã1)

ã2 − ã1
, ã1 ≤ x ≤ ã2

βÃ, ã2 ≤ x ≤ ã3

(x− ã3)+βÃ(ã4 − x)
ã4 − ã3

, ã3 ≤ x ≤ ã4

1, otherwise

(3)
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where αÃ, θÃ, and βÃ are the maximum value of TÃ(x), the minimum value of IÃ(x), and the minimum value of FÃ(x)
respectively.

Figure 1. Representation of single-valued trapezoidal neutrosophic number (SVTNN) Ã [54]

Definition 2 According to Deli and Subas [58], Abdel-Basset et al. [55, 56], Yucesan and Gul [83]; let Ã =(
(ã1, ã2, ã3, ã4) ; αÃ, θÃ, βÃ

)
and B̃ =

((
b̃1, b̃2, b̃3, b̃4

)
; αB̃, θB̃, βB̃

)
are two positive SVTNNs, this study applied

the following basic arithmetic operations.
1. Addition

Ã+ B̃ =
((

ã1 + b̃1, ã2 + b̃2, ã3 + b̃3, ã4 + b̃4

)
; min

(
αÃ, αB̃

)
, max

(
θÃ, θB̃

)
, max

(
βÃ, βB̃

))
. (4)

2. Subtraction

Ã− B̃ =
((

ã1 − b̃1, ã2 − b̃2, ã3 − b̃3, ã4 − b̃4

)
; min

(
αÃ, αB̃

)
, max

(
θÃ, θB̃

)
, max

(
βÃ, βB̃

))
. (5)

3. Multiplication of two positive SVTNNs

Ã× B̃ =
((

ã1b̃1, ã2b̃2, ã3b̃3, ã4b̃4

)
; min

(
αÃ, αB̃

)
, max

(
θÃ, θB̃

)
, max

(
βÃ, βB̃

))
. (6)

4. Division of two positive SVTNNs

Ã÷ B̃ =
((

ã1/b̃4, ã2/b̃4, ã3/b̃2, ã4/b̃1

)
; min

(
αÃ, αB̃

)
, max

(
θÃ, θB̃

)
, max

(
βÃ, βB̃

))
. (7)
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5. The inverse of a positive SVTNN Ã

Ã−1 =

((
1
ã4

,
1
ã3

,
1
ã2

,
1
ã1

)
; αÃ, θÃ, βÃ

)
. (8)

6. Multiplying a positive SVTNN Ã by a positive constant k

kÃ =
(
(kã1, kã2, kã3, kã4) ; αÃ, θÃ, βÃ

)
. (9)

Definition 3 According to Liou et al. [54] and Kasie and Bright [62], for an SVTNN Ã, the crisp score of Ã is
estimated as follows:

CSc
(

Ã
)
=

(ã1 +2ã2 +2ã3 + ã4)(2+αB̃ −θB̃ − βB̃)

18
. (10)

Definition 4 In addition, a single-valued triangular neutrosophic number, a special kind of SVTNN that can be
represented as Ã = ((ã1, ã2, ã3) ; αÃ, θÃ, βÃ), when ã2 = ã3 in a general SVTNN [56, 62, 83]

3.3 Methodological procedure proposed DSS

The methodological procedure and integration of the proposed DSS of this paper are indicated in Figure 2. This study
integrates N-CBR and N-BWM to develop the proposed system for solving the problem of product cost estimation. The
methodological procedure incorporates four main phases (a) Data cleaning and case representation phase; (b) Similarity
measure and case retrieval phase; (c) Case reuse and adaptation phase; and (d) Case retraining and indexing phase.

3.3.1Data cleaning and neutrosophic case representation

In real industrial situations, the specifications of product orders from the customers are usually unstructured with
many outliers and noisy data. To address this problem, the proposed system should use an appropriate data-cleaning
strategy. Different rules are required to organize the unstructured data from the customers. This study specifically applied
data cleaning methods to omit and edit outliers and noisy data for cost driver attributes by referring to the descriptions of
simulated product orders from the customers. The researchers implemented several rules to handle the outliers of cost-
driving features. For example, the cost driver features of the workpieces beyond the capability of the machining operations
were prevented by those rules. After cleaning the noises from the cost drivers, cases were represented by organizing
cleaned cost driving features as multiple case attributes. To identify crucial cost drivers as multiple case/product order
attributes, the researchers selected knowledgeable and experienced experts. The selected cost drivers of product orders
were used to construct cases and determine similarities between target and prior cases. Object-oriented programming
(OOP) was applied to represent cases on the Java platform which is a freely available OPP platform.
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Figure 2. Procedures of proposed cost estimating DSS

In total, fourteen cost drivers were identified to represent product orders as cases usingmultiple cost-driving attributes.
The cost drivers were included from three major product features such as work-piece size and material, finished product
quality, and typed machining operations. These features were selected using the recommendation from human experts
and reviews of related studies [3, 7, 11, 14, 18, 26, 44]. The cost drivers of multiple case attributes were expressed using
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numerical, categorical, and linguistic case attributes to make the reasoning and decision-making process more flexible
[65–67].

To represent products using multiple cost-driving attributes, various neutrosophic-based linguistic terms were
transformed into their equivalent SVTNNs according to the proposal by Abdel-Basset et al. [55, 59] and Kasie and Bright
[62]. Finally, the crisp score (CSc) of the SVTNNs was estimated using Equation (10). The results of these conversions
are presented in Table 2.

Table 2. Proposed neutrosophic conversion scale of linguistic terms (see [55, 59, 62])

Linguistic terms SVTNN Ã EstimatedCSc(Ã)

Extremely minimum (EMi) ((0.0, 0.0, 0.1, 0.2); 0.8, 0.2, 0.15) 0.041
Highly minimum (HMi) ((0.0, 0.1, 0.2, 0.3); 0.85, 0.2, 0.1) 0.128

Minimum (Min) ((0.1, 0.2, 0.3, 0.4); 0.9, 0.1, 0.15) 0.221
Fairly minimum (FMi) ((0.2, 0.3, 0.4, 0.5); 0.9, 0.15, 0.1) 0.309

Medium minimum (MMi) ((0.3, 0.4, 0.5, 0.6); 0.85, 0.0, 0.1) 0.413
Medium (Med) ((0.4, 0.5, 0.6, 0.7); 0.95, 0.15, 0.1) 0.495

Medium maximum (MMa) ((0.5, 0.6, 0.7, 0.8); 0.9, 0.1, 0.1) 0.585
Fairly maximum (FMa) ((0.6, 0.7, 0.8, 0.9); (0.95, 0.1, 0.15) 0.675

Maximum (Max) ((0.7, 0.8, 0.9, 1.0); (0.9, 0.1, 0.0) 0.793
Highly maximum (HMa) ((0.8, 0.9, 1.0, 1.0); (0.95, 0.1, 0.1) 0.856

Extremely maximum (EMa) ((0.9, 1.0, 1.0, 1.0); (1.0, 0.0, 0.1) 0.951

3.3.2Determination of optimal weights cost driving case attributes

After the selection of cost-driving multiple attributes of cases, the researchers determined the optimal weights of
cost-driving attributes using the neutrosophic version of the BWM. The contribution of each cost driver was evaluated
by a group of experts using BWM-based neutrosophic linguistic terms. These terms were converted into their proposed
BWM-based SVTNNs and the average values of expert ratings were calculated using Equation (9). Finally, the estimated
crisp of the average SVTNN was determined by applying Equation (10). The conversion scales from linguistic terms
into SVTNNs and their estimated crisp values are presented in Table 3. Similar approaches were applied in some recent
studies in other problem domains [54, 59, 83].

Table 3. Conversion scale of BWM-linguistic terms into SVTNNs and estimated crisp scores

BWM-based linguistic preference BWM-based SVTNN Ã EstimatedCSc(Ã)

Equally preferred (EP) ((1, 1, 1, 1); 1.0, 0.0, 0.0) 1.000
Nearly equally preferred (NEP) ((1, 1, 1.5, 2); 0.95, 0.1, 0.0) 1.267

Intermediate between equal and moderate (IEM) ((1, 2, 2.5, 3); 0.9, 0.1, 0.1) 1.950
Moderately preferred (MP) ((2, 3, 3.5, 4); 0.85, 0.1, 0.0) 2.903

Intermediate between moderate and high (IMH) ((3, 4, 4.5, 5); 0.9, 0.15, 0.1) 3.681
Highly preferred (HP) ((4, 5, 5.5, 6); 0.9, 0.05, 0.15) 4.650

Intermediate between high and very high (IHVH) ((5, 6, 6.5, 7); 0.95, 0.1, 0.1) 5.653
Very highly preferred (VHP) ((6, 7, 7.5, 8); 0.9, 0.15, 0.1) 6.570

Intermediate between very high and extreme (IVHE) ((7, 8, 8.5, 9); 0.95, 0.1, 0.15) 7.350
Extremely preferred (ExP) ((8, 9, 9.5, 9); 1.0, 0.05, 0.05) 8.539

To apply the neutrosophic version of BWM; the researchers followed eight steps.
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Step 1: Select m experts that can evaluate pairwise the importance of cost-driving case attributes at three levels
depending on the BWM-based linguistic terms presented in Table 3.

Step 2: Guide your experts to identify n cost drivers at their respective hierarchical levels.
Step 3: Consult your experts to select the best and the worst cost drivers at each level.
Step 4: Guide the experts to evaluate the cost drivers independently based on the best over others and generate a

preference matrix of the equivalent BWM-based SVTNNs.

ÃB =

Ã1
B1 · · · Ã1

Bn
...

. . .
...

Ãm
B1 · · · Ãm

Bn

 (11)

where Ãi
B j is the preference of the best cost driver over a cost driver j ( j = 1, 2, . . .n) by an expert i (i = 1, 2, . . . , m).

Step 5: Guide the experts to evaluate the cost drivers independently based on others to the worst and generate a
preference matrix of the equivalent BWM-based SVTNNs.

ÃW =

Ã1
1W · · · Ã1

nW
...

. . .
...

Ãm
1W · · · Ãm

nW


T

(12)

where Ãi
jW is the preference of a cost driver j ( j = 1, 2, . . .n) over the worst cost driver by an expert i (i = 1, 2, . . . , m).

Step 6: Calculate the averages of individual ratings of preferences from the matrices generated from Step 4 and Step
5. To apply Equations (13) and (14), the preliminary neutrosophic operations from Equations (1) and (9) were utilized
and different SVTNNs were obtained.

ÃB =
∑m

i=1 Ãi
B j

m
=
[
ÃB1, ÃB2, . . . , ÃBn

]
(13)

ÃW =
∑m

i=1 Ãi
jW

m
=
[
Ã1W , Ã2W , . . . , ÃnW

]T
(14)

where j = 1, 2, . . .n.
Step 7: Calculate the estimated crisp scores of SVTNNs from Step 6 using Equation (13) as CSc

(
ÃB j

)
= aB j and

CSc
(

Ã jW

)
= a jW .

Step 8: Determine the optimal weights of cost drivers of multiple case attributes (w∗
1, w∗

2, . . . , w∗
n) using the

optimization models of BWM. According to Rezaei [81], a linear programming optimization model can be applied to
the results of Step 7 as follows:

Minξ L

subject to
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∣∣wB −aB jw j
∣∣≤ ξ L, for all j

∣∣w j −a jW wW
∣∣≤ ξ L, for all j

n

∑
j=1

w j = 1

w j ≥ 0 for all j (15)

where ξ L is a consistency index of the linear optimization model. The index ξ L ≈ 0 shows a good level of consistency.

3.3.3Case similarity measure and retrieval

After case representation and determining the optimal contributions/weights of the selected cost drivers, a case
similarity is required to retrieve the most similar prior case to the current problem. The weighted Euclidean distance is
the most recognized function based on the nearest neighbor (NN) pattern recognition [3, 65]. This study used this pattern
recognition function. The researchers applied this function using the two steps. Firstly, the linear distances between
pairs of each cost-driving attribute were calculated. Lastly, the cumulative weighted Euclidean distances between the
prior and new two cases were determined. Similar approaches were applied by several recent studies (e.g., [3, 65–67]).
The optimal weights of cost drivers, which were determined by N-BWM were normalized. To calculate the cumulated
weighted Euclidean distance between any target product order/case T and a prior product order/case P; the following
equation was applied.

DEuc(T, P) =

√
n

∑
j=1

[w j(Dlin(aT
j , aP

j ))]
2
, 0 ≤ Dlin

(
aT

j , aP
j
)
≤ 1 (16)

where:
n is the number of cost drivers of a multiple attribute case.
wj is the normalized optimal weight of a jth cost driver.
Dlin

(
aT

j , aP
j

)
is the linear distance between individual pair-values of cost-driving attributes of target and prior cases.

aT
j , aP

j are the values of the jth cost driver for target and prior product orders respectively.
An individual linear distance, Dlin

(
aT

j , aP
j

)
, for specific types of cost drivers such as numeric, categorical, and

linguistic attributes, used different approaches. For numeric and categorical cost-driving attributes, the study used a
similar approach to the functions applied by Kasie and Bright [3] and Kasie and Bright [65].

Neutrosophic linguistic cost drivers, the linguistic terms were converted into equivalent SVTNNs using the
conversion scales presented in Table 2. Then the crisp score of the SVTNNs was estimated using Equation (7). Finally,
the estimated scores were treated as numeric cost-driving attributes [62] using Equation (14).

In pattern recognition, distance and similarity measures are inversely related, the weighted similarity measure
between target and prior product orders/cases, SEuc(T, P), was found by applying the inverse of an exponential function
[66, 67]:
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SEuc(T, P) =
1

exp(DEuc(T, P))
, 0 ≤ SEuc(T, P) ≤ 1 (17)

Using this similarity measure between the target and prior cases, the most similar case to the target problem was the
retrieved case for reuse and adaptation to the current product order or target problem.

3.3.4Case reuse and adaptation

After retrieving the best prior case to the target product order, the next crucial activity is reusing and adapting the
cost estimates of the retrieved product order to the target problem [3]. Depending on the similarity measure between
the two cases, different rules were proposed for reuse and adaptation of the retrieved cost estimate. If the retrieved and
target product orders are highly similar i.e., SEuc(T, P)≈ 1, the retrieved cost estimate has a great chance for direct reuse
except for minor adjustments if there are significant changes in time value of money and process efficiency. If there are
important variations between the two cases, SEuc(T, P)< 1, an adaptation of the retrieved cost estimate from the retrieved
case is highly applicable. For example, if parameter differences are encountered between the two cases, the retrieved cost
estimate can be modified using parametric cost estimation methods. Similarly, if the removal and/or addition of new
features is considered, feature-oriented cost estimation methods can be applied for adaptations (see [3]).

3.3.5Case retaining and indexing

This phase is used to retain and index the current (reused and revised) cost estimate with its cost-driving case attributes
for future retrieval as similar new product orders arrive. These indexed cases will serve as solutions for future similar
order arrivals. In addition, the proposed DSS provides an opportunity for human experts to interact with the proposed
decision of the system. If human experts accept the proposed decision from the DSS, they can implement the decisions.
Otherwise, they can modify the proposal before its application.

4. Analysis of numerical example
This part illustrates the integration of CBR and BWM in neutrosophic environments using the methodological

procedure presented in Figure 2. The four phases presented in Section 3 are numerically illustrated in this section. The
methodological integration of the proposed system was applied in a simulated environment of a machining process. A
turning machining process was simulated to machine various types of cylindrical products.

4.1 Data cleaning and case representation
Initially, order arrival descriptions by customers were cleaned by using data cleaningmethods to omit and edit outliers

and noisy data of cost-driving attributes. Different rules were implemented to handle the outliers of cost-driving features.
For example, the dimensions (length and diameter) of the work-pieces beyond the capability of the machining operations
were prevented by those rules. After cleaning the noises from the cost drivers, cases were represented by organizing
cleaned cost driving features as multiple case attributes.

The researchers selected four human experts to identify crucial cost-driving case attributes. The experts were
identified depending on their capabilities for estimating the production costs of machining processes. In total, the
human experts identified fourteen cost drivers to construct multiple-attributed cases from new and prior product order
arrivals. The researchers clustered the proposed cost drivers into three major hierarchical product features such as
work-piece characteristics (WPC), finished product quality (FPQ), and required machining operations (RMO). The three
classifications were done based on the recommendation of experts and reviews of related studies as stated in the previous
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section. The cost drivers of the multiple-attributed case were expressed using numerical, categorical, and neutrosophic
linguistic terms. The researchers used the linguistic terms presented in Table 2.

Under the hierarchy of WPC, three cost drivers were included such as the length (Len), diameter (Dia), and
composition (Com) of the work-piece/raw material. The first two dimensions of the workpiece are often measured by
numerical values commonly in millimeters (mm). They are usually used as parametric cost estimators [3, 10, 22, 33].
In this study, they were considered as numeric cost-driving attributes of cases. The composition of the raw material can
be expressed using either its alloy type (e.g., carbon steel, stainless steel, cast iron, etc.) or the expensiveness of the
input raw material. In this regard, the expensiveness of the workpiece was preferred to describe the cost of products.
This cost driver was best described using linguistic terms presented in Table 2 to indicate the expensiveness/cheapness of
construction materials.

In the case of FPQ features, the precision (Pre), reliability (Rel), and durability (Dur) of finished product attributes
were incorporated as cost drivers for case construction. All cost drivers under this cluster were described using
neutrosophic linguistic terms to indicate the quality of products since they are difficult to measure using specific units.
The required machining operations were sub-clustered into external and internal features of cost drivers. Under external
features of machining operation, four basic turning operations such as turning (Tur), facing (Fac), grooving (Gro), and
threading (Thr) were considered. Similarly, under internal operations, four fundamental operations such as drilling (Dri),
boring (Bor), reaming (Rea), and tapping (Tap) were included as cost-driving attributes. All external and internal cost
drivers were expressed using categorical attributes of {0, 1} binary integer values. This implies a product order requires
a specific operation, its value for that cost driver is ‘1’; otherwise, it is ‘0’. Similar case representation approaches were
applied by recent studies in other problem domains [3, 65–67]

The researchers represented the simulated prior and target product orders using OOP in the freely available Java
platform. Target product arrivals (Ta1-Ta7) were generated as new cases or target problems and three prior order arrivals
(Pa1-Pa3) were generated as prior case or solution alternatives with assigned production cost estimates (PCE). The
generated cases incorporating their fourteen cost drivers are presented in Table 4. The prior PCEs were used as retrieved
solutions that could be reused/and or adapted for target product orders.

Table 4. Neutrosophic cases of product orders

Ta or Pa Cost-driving attributes of product orders/cases
PCE

Len Dia Com Pre Rel Dur Tur Fac Gro Thr Dri Bor Rea Tap

Ta1 730 320 MMa Med FMa FMi 1 1 0 0 1 1 0 1
Ta2 920 430 FMi Max MMi FMa 1 0 1 0 1 0 1 1
Ta3 570 200 Max MMi EMa FMa 1 0 0 1 0 1 0 0
Ta4 720 330 MMa MMi FMa FMi 1 1 0 0 1 1 0 1
Ta5 580 200 Max MMi EMa FMa 1 0 0 1 0 1 0 0
Ta6 920 440 FMi Max MMi FMa 1 1 1 0 1 0 1 1
Ta7 710 330 MMa MMi FMa FMi 1 1 0 0 1 1 0 1
Pa1 900 430 MMi Max Med FMa 1 0 1 0 1 0 1 1 PCE1
Pa2 560 220 HMa FMi EMa HMa 1 0 1 1 0 1 0 0 PCE2
Pa3 740 310 MMa MMa FMa FMi 1 1 0 0 1 0 1 1 PCE3

4.2 Determination of optimal weights for cost drivers
The cost drivers of multiple-attributed cases were hierarchically rated by the selected four experts using BMM-based

terms presented in Table 3. In general, steps 2-8 in Section 3.3.2 were applied for optimal weight determinations of
cost drivers. At three levels of clustered cost drivers, the best and the worst cost drivers were selected. The experts
independently rated the cost drivers based on the concept of BWM i.e., the best to others and others to the worst rating
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approaches. The researchers converted the expert ratings in the linguistic terms into their equivalent SVTNNs using the
conversion scale in Table 2 and Equation (11) (best to others) and Equation (12) (others to worst). The average values
of group-based expert ratings were determined using Equation (13) (best to others) and Equation (14) (others to worst).
Using the outputs from Equations (13) and (14), the optimal weights of cost drivers were determined using Equation (15)
at the respective clustered levels.

The three major cost drivers (n = 3) were evaluated by the selected four experts (m = 4). In this case, the WPC
was identified as the best cost driver, and the FPQ was considered the worst cost driver by a group of experts. The group
evaluation of the best to others is presented in Table 5 and others to the worst are shown in Table 6 respectively.

Table 5. The best to others for major cost drivers using N-BWM

Ex/CD WPC RMO FPQ

Ex1 EP IEM MP
Ex2 EP NEP IEM
Ex3 EP MP IMH
Ex4 EP NEP MP

Average, aB j 1.000 1.847 2.859

Note Ex = Expert, CD = Cost driver

Table 6. Others to the worst for major cost drivers using N-BWM

CD/Ex Ex1 Ex2 Ex3 Ex4 Average, a jW

WPC MP IEM IMH MP 2.859
RMO IEM NEP MP IEM 2.016
FPQ EP EP EP EP 1.000

Using Equation (15), the optimal weights were found as wB = w1 = 0.541 for WPC, w2 = 0.292 for RMO, wW = w3

= 0.167 for FPQ, and ξ L = 0.097.
Under the cluster ofWPC cost drivers, Len was selected as the best cost driver and Com was taken as the worst cost

driver. The rating of the best to others is indicated in Table 7 and others to the worst are presented in Table 8 respectively.

Table 7. The best to others for cost drivers underWPC using N-BWM

Ex/CD Len Dia Com

Ex1 EP NEP IMH
Ex2 EP EP IEM
Ex3 EP NEP MP
Ex4 EP EP IMH

Average, aB j 1.000 1.134 3.054
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Table 8. Others to the worst for cost drivers under WPC using N-BWM

CD/Ex Ex1 Ex2 Ex3 Ex4 Average, a jW

Len IMH IEM MP IMH 3.054
Dia MP IEM MP IMH 2.859
Com EP EP EP EP 1.000

The optimal weights were determined as wB = w1 = 0.430 for Len, w2 = 0.427 for Dia, wW = w3 = 0.143 for Com,
and ξ L = 0.0 by applying Equation (15).

For the cost driver under cluster FPQ, Pre was selected as the best cost driver and Dur was taken as the worst cost
driver. The ratings of the best to others and others to the worst are shown in Tables 9 and 10 respectively.

Table 9. The best to others for cost drivers under FPQ using N-BWM

Ex/CD Pre Rel Dur

Ex1 EP MP HP
Ex2 EP IEM IMH
Ex3 EP NEP MP
Ex4 EP MP IMH

Average, aB j 1.000 2.256 3.729

Table 10. Others to the worst for cost drivers under FPQ using N-BWM

CD/Ex Ex1 Ex2 Ex3 Ex4 Average, a jW

Pre HP IMH MP IMH 3.729
Rel MP MP NEP IEM 2.256
Dur EP EP EP EP 1.000

With the help of Equation (15), the optimal weights were determined as wB = w1 = 0.538 for Pre, w2 = 0.308 for Rel,
wW = w3 = 0.154 for Dur, and ξ L = 0.0.

For the two cost drivers under cluster RMO, an external operation (ExO) was considered the best cost driver, and an
internal operation (InO) was taken as the worst cost driver. The ratings of the best to others and others to the worst are
shown in Tables 11 and 12 respectively.

Table 11. The best to others for cost drivers under FPQ using N-BWM

Ex/CD InO ExO

Ex1 EP EP
Ex2 NEP EP
Ex3 EP EP
Ex4 IEM EP

Average, aB j 1.304 1.000
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Table 12. Others to the worst for cost drivers under FPQ using N-BWM

CD/Ex Ex1 Ex2 Ex3 Ex4 Average, a jW

emphInO EP EP EP EP 1.000
ExO EP NEP EP IEM 1.304

Similarly, the optimal weights were determined as wB = w2 = 0.566 for ExO, wW = w1 = 0.434 for InO, and ξ L = 0.0.
For the cost drivers under cluster ExO, Tur was considered as the best cost driver and Gro was taken as the worst

cost driver. The ratings of the best to others and others to the worst are shown in Tables 13 and 14 respectively.

Table 13. The best to others for cost drivers under ExO using N-BWM

Ex/CD Tur Fac Gro Thr

Ex1 EP VP ExP HP
Ex2 EP IMH VP MP
Ex3 EP MP IVHE IMH
Ex4 EP IMH VHP HP

Average, aB j 1.000 4.209 7.257 3.971

Table 14. Others to the worst for cost drivers under ExO using N-BWM

CD/Ex Ex1 Ex2 Ex3 Ex4 Average, a jW

Tur ExP VHP IVHE VHP 7.257
Fac MP IMH IMH MP 3.292
Gro EP EP EP EP 1.000
Thr MP HP IMH MP 3.534

Using Equation (15), the optimal weights were determined as wB = w1 = 0.595 for Tur, w2 = 0.164 for Fac, wW = w3

= 0.076 for Gro, w4 = 0.165 for Thr, and ξ L = 0.093.
Similarly, for the cost drivers under cluster InO, Dri was selected as the best cost driver and Tap was taken as the

worst cost driver. The ratings of the best to others and others to the worst are shown in Tables 15 and 16.

Table 15. The best to others for cost drivers under InO using N-BWM

emphEx/CD Dri Bor Rea Tap

Ex1 EP IEM MP HP
Ex2 EP NEP MP IMH
Ex3 EP MP HP IHVH
Ex4 EP MP IMH HP

Average, aB j 1.000 2.256 3.534 4.659

Volume 6 Issue 2|2025| 2079 Contemporary Mathematics



Table 16. Others to the worst for cost drivers under InO using N-BWM

CD/Ex Ex1 Ex2 Ex3 Ex4 Average, a jW

Dri HP IMH IHVH HP 4.659
Bor MP IMH MP IEM 2.860
Rea IEM NEP MP IEM 2.018
Tap EP EP EP EP 1.000

Finally, the optimal weights were determined as wB = w1 = 0.500 for Dri, w2 = 0.273 for Bor, w3 = 0.136 for Rea,
wW = w4 = 0.091 for Tap, and ξ L = 0.081.

The optimal weights from Tables 5-16 are compiled in Table 17. The local optimal weight of every cost driver at
its clustered level is indicated in (.). The global optimal weight of each cost driver was determined from the product’s
optimal local weights. In all evaluations, the value of ξ L was at an acceptable level.

Table 17. Hierarchical clusters of cost drivers with their optimal local and global weights

Levels of cost drivers from top to bottom Optimal weight

Top/First Second Bottom/Third Global weight determination Global weight (wi)

WPC (0.541) -
Len (0.430) (0.541) (0.430) 0.232
Dia (0.427) (0.541) (0.427) 0.230
Com (0.143) (0.541) (0.143) 0.078

RMO (0.292)

ExO (0.566)

Tur (0.595) (0.292) (0.566) (0.595) 0.098
Fac (0.164) (0.292) (0.566) (0.164) 0.027
Gro (0.076) (0.292) (0.566) (0.076) 0.013
Thr (0.165) (0.292) (0.566) (0.165) 0.027

InO (0.434)

Dri (0.500) (0.292) (0.434) (0.500) 0.063
Bor (0.273) (0.292) (0.434) (0.273) 0.035
Rea (0.136) (0.292) (0.434) (0.136) 0.017
Tap (0.091) (0.292) (0.434) (0.091) 0.012

FPQ (0.167) -
Pre (0.538) (0.167) (0.538) 0.090
Rel (0.308) (0.167) (0.308) 0.051
Dur (0.154) (0.167) (0.154) 0.026

4.3 Case similarity and retrieval
Using the values of cost drivers for cases/product orders presented in Table 4, and the optimal weights of cost-driving

attributes of cases shown in Table 17, the similarity measure between prior and target cases SEul(T, P) was determined
by applying Equation (16). For determining the similarity measure, Equation (16) was utilized to calculate the weighted
Euclidean distance between new and prior product orders, DEul(T, P). For the case of neutrosophic terms such as Com,
Pre, Rel, and Dur, the terms were converted into the equivalent SVTNNs according to the scales presented in Table
2, and their crisp scores were estimated using Equation (10). Finally, they were treated as numeric cost drivers using
the neutrosophic term EMi (0.041) as the minimum and EMa (0.951) as the maximum cost driver values (see Table 2).
By combining Dlin

(
aT

j , aP
j

)
, and the optimal global weight of each cost driver, the weighted Euclidean was calculated

between each target problem and all prior alternative cases using Equation (16). Finally, by considering the inverse
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relationships between distance and similarity, Equation (17) was employed to estimate the similarity between the target
problem and all previously solved problems. The outputs of this similarity measure are compiled in Table 18. The
maximum value represents the best similarity between the target product order and the most similar prior order which
is the retrieved case. In this study, this maximum similarity measure is designated as SEuc(T, R). R is a special prior
order/case, which has the most similarity with the current order, called a retrieved product order/case. The cost estimate
for this retrieved case is used as an initial solution that can be reused and revised based on the similarity and the difference
between the target and retrieved product order. The bold values in Table 18 indicate the values of SEuc(T, R).

Table 18. Similarity between new and alternative prior orders, SEuc(T, P)

Ta/Pa Pa1 Pa2 Pa3 Pa4/Ta1 Pa5/Ta2 Pa6/Ta3 Pa7/Ta4 Pa8/Ta5 Pa9/Ta6

Ta1 0.878 0.865 0.956
Ta2 0.991 0.784 0.879 0.874
Ta3 0.783 0.981 0.857 0.861 0.779
Ta4 0.879 0.864 0.951 0.988 0.874 0.857
Ta5 0.784 0.980 0.858 0.862 0.781 0.996 0.859
Ta6 0.988 0.780 0.874 0.870 0.992 0.775 0.871 0.776
Ta7 0.877 0.865 0.951 0.986 0.872 0.859 0.997 0.860 0.869

Moreover, Table 19 shows the retried prior orders for the target problems, the similarity between the target and
retrieved orders, and the PCEs that should be reused and revised for the target problems. In addition, this table indicates
the number of prior alternatives with their corresponding PCEs as a new target problem arrives in the system. This figure
increases when several production costs are estimated since PCEs are retained for future retrieval. This was observed
when problems (Ta4-Ta7) were arrived. The previous product arrivals Ta1, Ta3, Ta2, and Ta4 were retrieved for new
product arrivals Ta4, Ta5, Ta6 and Ta7 respectively.

Table 19. Summary similarity measure and retrieval

Ta Retrieved prior order R SEuc (T, R) Retrieved PCE for adaptation Number of alternatives Remark

Ta1 Pa3 0.956 PCE3 3
Ta2 Pa1 0.991 PCE1 4
Ta3 Pa2 0.981 PCE2 5
Ta4 Pa4/Ta1 0.988 PCE4 6 Retained PCE of Ta1
Ta5 Pa6/Ta3 0.996 PCE6 7 Retained PCE of Ta3
Ta6 Pa5/Ta2 0.992 PCE5 8 Retained PCE of Ta2
Ta7 Pa7/Ta4 0.997 PCE7 9 Retained PCE of Ta4

4.4 Case reuse and adaptation
Table 19 indicates that the values of SEuc(T, R)< 1.0, which indicates that the retrieved PCEs should be revised for

adapting to new problem situations. The adaptions were done depending on the differences in the values of cost-driving
attributes between target and retrieved order arrivals. Considering the first product, the similarity measure between the
new arrival Ta1 and the retrieved Pa3 was calculated as SEul(Ta1, Pa3) = 0.956 < 1.0. In this case, the adaptation of the
retrieved production cost estimate, PCE3 was mandatory. This was done by analyzing the difference in the values of cost-
driving attributes between the target and retrieved product orders. UnderWPC cost drivers, parameter variations are shown
in the dimensions of workpieces (length and diameter). These variations were addressed using parametric cost estimation
methods by estimating the cost of construction per unit volume change [3, 10, 33]. A small difference is indicated in

Volume 6 Issue 2|2025| 2081 Contemporary Mathematics



the precision of the cluster of FPQ cost drivers. This situation was intuitively articulated by experienced experts. Other
important variations were shown in the cluster of cost drivers under RMO. In this regard, there are variations i.e., the
addition or omission of boring and reaming operations between the target and retrieved product orders. The operations
are usually required to add some features to product order arrivals. These changes were articulated using feature-oriented
cost estimation methods [3, 10].

The same approach was applied to the remaining six product order arrivals to adapt the retrieved PCEs according to
their target requirements. The recommended case adaptation methods in this study are presented in Table 20. In general,
the combinations of three methods were proposed by the DSS researched and developed in this study. They are parametric,
feature-oriented, and expert-based intuitive methods.

Table 20. Recommended PCE adaptation methods

Target PCE adaptation/revision methods

Parametric Feature-oriented Expert-based intuitive

Ta1 Applicable Applicable Applicable
Ta2 Applicable Not applicable Applicable
Ta3 Applicable Applicable Applicable
Ta4 Applicable Not applicable Applicable
Ta5 Applicable Not applicable Not applicable
Ta6 Applicable Applicable Not applicable
Ta7 Applicable Not applicable Not applicable

4.5 Case retaining and indexing
The revised PCEs from the retrieved product orders were retained and indexed as learned cases for future retrieval.

Their PCEs were retrieved and adapted for similar problem situations. This action was applied for new product arrivals
Ta4, Ta5, Ta6, and Ta7 (see Table 18). The previous PCEs (PCE1, PCE3, PCE2 and PCE4) assigned to Ta1, Ta3, Ta2
and Ta4 were retrieved, revised and assigned to target arrivals Ta4, Ta5, Ta6, and Ta7 respectively.

5. Discussion
This part explains the importance of this study over previous related studies, the managerial implications, and the

limitations of this study.

5.1 Comparison with related studies
As stated in Section 2, specifically in Table 2, the problems of product cost estimation were addressed using different

approaches in previous studies. The previous studies used different ML, analytical (parametric and feature-oriented),
MCDM, intuitive or heuristics, and CAD/CAM methods to solve cost estimation problems. However, the integration of
N-CBR and N-BWM has not been applied to estimate the cost of new products in the existing literature. In comparison
to related studies, the proposed DSS in this study has many advantages over other similar previous studies. For example,
comparing it with similar studies like Kasie and Bright [3] and other CBR-oriented cost estimation approaches, this study
has many improvements for decision-making: (1) This paper introduced the concept of a group decision-making approach
while determining the optimal weights of cost drivers using N-BWM. (2) It incorporated neutrosophic cases specifically
SVTNN cost-driving case attributes rather than fuzzy cases. The SVTNN components are more flexible by incorporating
three membership functions further to a single membership for fuzzy function since a neutrosophic set is a generalization
of a fuzzy set as stated in Section 3. As compared with frameworks proposed using ANNs, the ANN-based frameworks
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require a huge amount of training and testing datasets to implement them as explained by other studies in different problem
domains [62, 65, 68, 78]. However, CBR frameworks can be implemented with a few prior cases and their performance
can be improved over time as many product orders are processed (see Table 19). This implies that the proposed system is
highly applicable when a few prior datasets are available in manufacturing systems due to unforeseen reasons.

5.2 Managerial implication

From a managerial implication perspective, production planning and control managers can use the proposed to
estimate the production cost of new product orders at the early phase of a product lifecycle. This reduces quality failure
costs in the production and service phases of a new product. Although the proposed DSS was illustrated for estimating the
cost of cylindrical products, it can be modified and applied for any complicated products by incorporating other important
cost-driving attributes of new products.

In a similar approach to the simulated example, experts can apply the proposed cost estimator at the early production
stage to the other complex manufacturing operations. For instance, they can utilize a milling operation center by
identifying the most important cost drivers of milling operations that can be used to manufacture the expected or planned
product orders. These identified cost drivers can be used to create neutrosophic cases as presented in Table 4. In addition,
they should be hierarchically evaluated and weighted by group experts for group decisions using N-BWM as shown in
Section 4.2. Depending on the nature of the machining process some cost drivers can be added to/removed from the
case construction process. For example, the geometric feature/shape of the workpiece is an important cost driver for
milling operations, which was not considered in the simulated numerical example (turning operations. This implies that
the effectiveness of the proposed systems is highly dependent on the knowledge and skills of system developers to acquire
experts’ judgments and experiences in a group decision-making process using N-CBR and N-BWM. This means the cost
estimators are flexible and adaptable depending on manufacturing situations.

5.3 Limitation
As the main limitation, the proposed system was not implemented in real industrial situations to test its validity.

It was tested only in a simulated machining environment. In addition, in the case of adaptation/revision, only three
cost estimation methods such as parametric, feature-oriented, and expert-based intuitive methods were recommended.
However, in real situations, only the three methods may not be adequate, and other complex approaches may be required.
This study implemented the proposed DSS in a simulated manufacturing environment to illustrate the system’s soundness.
To enhance the system’s soundness, the researchers will work to test the proposed system in actual manufacturing
environments.

6. Conclusions
This paper proposed a novel DSS in group-oriented decision-making by combining CBR and BWM in neutrosophic

environments. This integration was applied for the first time to address the problem of production cost estimation in this
study. The proposed approach can be considered an alternative solution to these problems in manufacturing processes.
Integrating N-CBR and N-BWM can be a new contribution to the current literature in group-oriented decision-making
and DSS development.

This study applied an N-CBRmethodology to construct product orders as cases by incorporating uncertain, imprecise,
and inconsistent knowledge with the help of truth, indeterminacy, and falsity membership functions respectively as
presented in Table 4. As shown in the simulated numerical analysis, describing some cost drivers using neutrosophic
linguistic terms was more meaningful than measuring them in numeric data. Such linguistic terms were converted into
equivalent SVTNNs to include uncertain, vague, and inconsistent experiences using three membership functions, which
are the common phenomena in natural human reasoning and decision-making situations.
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Further, an N-BWMwas applied to formalize the judgments from a group of experts to determine the optimal weights
of fourteen cost drivers under different clusters (see Tables 5-16). Combining the results from this N-BWM and N-cases
(Table 4), the similarity measure between target problems and alternative prior cases was found using Equations (13)-
(16). From this measure, a previous order with the best similarity was selected as a retrieved case or an initial solution
to the target problem (Tables 18 and 19). For adapting the retrieved cost estimates for the target problems, the proposed
DSS recommended three cost adaptation methods depending on the similarity and the difference between the target and
retrieved order arrivals (Table 20). This kind of DSS framework has not been applied in the current literature on DSS and
product cost estimation.

In the future, the limitation of the proposed DSS stated in Section 5.3 will be addressed by implementing the proposed
approach in real situations. Additional cost revision methods will be considered to revise the cost of more complex
products in actual manufacturing environments.
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