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Abstract: We propose a novel solution approach combining stochastic programming techniques with Pareto distribution
characteristics. This approach involves reformulating the problem into a tractable optimization model using probabilistic
constraints and employing advanced algorithms to solve the resulting mixed-integer programming problem. Numerical
experiments illustrate the effectiveness of the proposed method and highlight its practical implications for transportation
network design andmanagement under uncertain conditions. The results demonstrate that incorporating Pareto-distributed
uncertainties into the transportation problem provides a more realistic and adaptable framework for decision-making. The
proposed solution approach offers valuable insights for managing complex transportation systems where both stochastic
and deterministic factors play a crucial role.
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1. Introduction
Transportation networks form the backbone of modern economies, facilitating the movement of goods, services, and

people across vast distances. These networks are inherently complex, subject to various uncertainties, and constrained by
multiple factors. As such, optimizing their performance presents a significant challenge for researchers and practitioners
alike.

In recent years, the field of stochastic optimization has gained considerable attention as a means to address the
uncertainties inherent in transportation networks. These uncertainties may arise from various sources, including demand
fluctuations, travel time variability, and capacity constraints. Traditional deterministic approaches often fall short of
capturing the full complexity of these systems, leading to suboptimal solutions in real-world applications.
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The Pareto distribution, [1–3], is highly effective for modeling extreme uncertainty, where rare but impactful events
significantly affect the system’s performance. It is well-suited for transportation networks dealing with highly variable
supply and demand. The Normal distribution, while simple and widely applicable, fails to capture extreme events and is
not ideal for systems where rare events have outsized impacts, such as emergency logistics or transportation disruptions.
The Log-Normal distribution provides flexibility in modeling right-skewed data but still does not offer the same extreme
event modeling capability as the Pareto distribution. Thus, Pareto is recommended when the problem involves highly
unpredictable, extreme values that standard distributions like Normal or Log-Normal cannot adequately represent.

Transportation networks are fundamental to the functioning of modern economies, impacting sectors ranging from
logistics to public transportation and emergency response systems. Efficient optimization of these systems, especially
when uncertainty and variability in supply and demand are present, is crucial to minimizing costs, improving service
quality, and ensuring system resilience. However, many existing optimization models for transportation networks fail
to adequately handle the extreme uncertainties and imprecise data that are commonplace in real-world systems. This
study aims to address these gaps by proposing a novel approach to optimizing stochastic transportation networks using
the Pareto distribution and fuzzy logic.

1.1 Motivation

Traditional models for transportation optimization rely on deterministic assumptions or use standard distributions
such as the Normal or Exponential distributions, which do not adequately capture extreme events that are critical in real-
world transportation networks. For instance, supply chain disruptions, traffic congestion, and demand surges often result
in non-linear, extreme outcomes that these models fail to account for. This limitation becomes particularly evident in large-
scale transportation systems, where variability can significantly affect costs, resource allocation, and service delivery.

The motivation for this paper stems from the need to better model extreme uncertainty in stochastic transportation
problems, particularly by using distributions that can capture the heavy-tailed nature of such uncertainty. Heavy-tailed
distributions like the Pareto distribution are ideal for representing rare but high-impact events such as transportation
delays, supply chain failures, or demand surges that can severely disrupt normal operations. However, while Pareto-
based models have been widely explored in reliability analysis, their application to transportation optimization remains
underexplored. Moreover, many real-world data in transportation systems are imprecise, requiring the use of fuzzy logic
to handle uncertainty in supply and demand estimates, travel times, and network capacities.

1.2 Research problem

The primary research problem addressed in this study is the optimization of transportation networks under stochastic
conditions, where both supply and demand exhibit uncertainty and data imprecision further complicates decision-making.
More specifically, we focus on addressing the following key issues:

Uncertainty in Supply and Demand: Traditional models often assume a fixed supply and demand, whereas real-world
transportation systems face dynamic fluctuations in both, making it necessary to model uncertainty in a way that accounts
for both typical variations and rare events.

Imprecise Data: Transportation systems also face imprecise data, where demand estimates, supply availability, and
travel times are often vague or incomplete. Existing models fail to effectively incorporate this imprecision, which can
lead to suboptimal decisions, especially when operating under extreme or fluctuating conditions.

Heavy-Tailed Uncertainty: Most conventional models use distributions like the Normal distribution to represent
uncertainty, which underestimates the frequency and impact of extreme events. The Pareto distribution is better suited
for capturing these heavy-tailed uncertainties, but its integration into stochastic transportation optimization models is still
not widely explored.

This paper presents a novel solution to these challenges by combining Pareto-based stochastic optimization with
fuzzy logic to create a model that better handles both uncertainty and imprecision in real-world transportation systems.

This paper introduces a novel approach to optimizing stochastic transportation networks by leveraging the Pareto
distribution within a framework of mixed constraints. The Pareto distribution, is known for its ability to model heavy-
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tailed phenomena offers a powerful tool for characterizing the extreme events and rare occurrences that often have outsized
impacts on network performance.

Our methodology addresses several key challenges in the field:
1. Modeling uncertainty: We employ the Pareto distribution to capture the stochastic nature of key network

parameters, including demand patterns and travel times.
2. Mixed constraints: Our approach incorporates both deterministic and probabilistic constraints, reflecting the

diverse set of requirements that real-world transportation networks must satisfy.
3. Multi-objective optimization: We consider multiple, often conflicting, objectives such as minimizing cost,

maximizing reliability, and reducing environmental impact.
4. Scalability: The proposed method is designed to handle large-scale networks, making it applicable to real-world

scenarios of significant complexity.
By integrating these elements, we aim to provide a more robust and realistic framework for optimizing transportation

networks under uncertainty. This paper presents the theoretical foundations of our approach, followed by a series of
numerical experiments and case studies that demonstrate its efficacy in various scenarios.

The primary objective of this paper is to develop a Pareto-based optimization model that can handle both extreme
uncertainty and imprecise data in stochastic transportation networks. The proposed model integrates fuzzy logic and
Pareto distribution to address the gaps in existing optimization methods.

The contributions of this paper lie in its ability to:
Apply the Pareto distribution (specifically the Lomax distribution) to model extreme uncertainties in transportation

systems.
Integrate fuzzy logic with stochastic programming to handle imprecise data, offering a more flexible and robust

optimization approach.
Develop a scalable optimization framework that can handle large-scale transportation networkswithmixed constraints,

making it applicable to real-world systems.
Create a mixed-constraint optimization model that incorporates both deterministic supply and probabilistic demand,

addressing a gap in existing research.
Provide empirical validation through numerical examples and suggest avenues for real-world applications and future

research.
These contributions represent significant advancements in stochastic transportation optimization, offering practical

solutions for industries dealing with uncertainty and imprecision in their operations.
The remainder of this paper is organized as follows: Section 2 provides a comprehensive review of relevant literature.

Section 3 explores the preliminary knowledge of the paper. Section 4 details the mathematical formulation of our model.
Section 5 presents numerical results and case studies. Finally, Section 6 offers conclusions and directions for future
research.

2. Literature review
The optimization of stochastic transportation networks has been the subject of extensive research over the past few

decades. This literature review aims to provide a comprehensive overview of the relevant work in this field, focusing
on three key areas: stochastic optimization in transportation networks, the application of heavy-tailed distributions in
network modeling, and approaches to handling mixed constraints in network optimization problems.

Stochastic Optimization in Transportation Networks :
The inherent uncertainties in transportation networks have led researchers to explore stochastic optimization

techniques. Pioneering work by [4], introduced the concept of approximate dynamic programming for large-scale fleet
management problems, demonstrating the potential of stochastic approaches in handling complex transportation systems.

Building on this foundation, [5] developed a stochastic programming model for service network design under
uncertainty. Their work highlighted the importance of considering demand stochasticity in network design decisions,
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showing that solutions obtained through stochastic models often outperform their deterministic counterparts in real-world
scenarios.

More recently, [6] proposed a scenario-based stochastic optimization framework for multi-period service network
design problems. Their approach incorporated demand uncertainty and showed significant improvements in solution
quality compared to traditional deterministic methods.

Heavy-Tailed Distributions in Network Modeling
While much of the existing literature focuses on normal or log-normal distributions to model uncertainties, there is

growing recognition of the importance of heavy-tailed distributions in capturing extreme events in transportation networks.
From [7] demonstrated the applicability of the Pareto distribution in modeling travel time reliability, showing that

it provides a better fit for observed data compared to traditional distributions, especially in capturing rare but significant
delay events.

In a related vein, [8] explored the use of q-exponential distributions, which include the Pareto as a special case, for
modeling travel time variability. Their work emphasized the importance of considering non-Gaussian distributions in
transportation network analysis.

Mixed Constraints in Network Optimization
The incorporation of mixed constraints-both deterministic and probabilistic-in network optimization problems has

gained attention due to its ability to more accurately represent real-world conditions.
In [9] proposed a chance-constrained programming approach for the capacitated multicommodity network design

problem under uncertain demands and costs. Their model incorporated both deterministic flow conservation constraints
and probabilistic capacity constraints, demonstrating the effectiveness of this mixed-constraint approach.

Building on this, [10] developed a robust optimization model for multimodal network design under uncertainty.
Their approach handled mixed constraints by combining scenario-based modeling for uncertain demands with interval
programming for uncertain costs, providing a flexible framework for addressing various types of uncertainties.

Here’s a literature review table that in Figure 1, summarizes key studies in stochastic transportation optimization
from 1965 to 2024, highlighting the use of different distributions, methodologies, and contributions in this field [11–23].
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Figure 1. Literature review

2.1 Research gap and contribution

While the aforementioned studies have made significant contributions to the field, there remains a gap in the literature
regarding the integration of heavy-tailed distributions, specifically the Pareto distribution, within a mixed-constraint
framework for stochastic transportation network optimization.

Our work aims to bridge this gap by:
1. Leveraging the Pareto distribution to more accurately model extreme events and rare occurrences in transportation

networks.
2. Incorporating both deterministic and probabilistic constraints to better reflect real-world operational conditions.
3. Developing a scalable optimization framework that can handle large-scale, complex transportation networks.
By addressing these aspects, our research contributes to the advancement of stochastic optimization techniques in

transportation network design and management, potentially leading to more robust and efficient solutions in practice.
The Stochastic Fuzzy Transportation Problem with Mixed Constraints (SFTPMC) has been employed to address

uncertainties in linear programming problems (LPPs).
1. Stochastic Fuzzy Transportation Problem with Mixed Constraints (SFTPMC) [24]: -Designed to address

uncertainties in linear programming problems (LPPs). -Utilizes fuzzy logic to better handle imprecision in data.
2. Fuzzy Transposition Problems (FTP) [25]: -Specialized scenarios that involve converting fuzzy data into precise

formats. -Various algorithms and ranking functions have been developed to enhance problem-solving effectiveness.
3. Neutrosophic Transportation Problems (NTP) [26]: -A recent approach that manages optimization challenges

involving unknown and indeterminate variables, expanding the scope of transportation problem modeling.
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4. Fuzzy Optimization Techniques (FOT) [27, 28]: -Explores various models such as: -Single-valued Trapezoidal
Neutrosophic Transportation Problem (SVTNTP). -Commercial Traveler Problem (CTP). -Two-stage conventional
transportation model for relief aid distribution under uncertain conditions.

5. Multi-objective Stochastic Solid Transportation Problem (MOSSTP) [29]: -Addresses uncertainties in solid
transportation scenarios using Weibull distribution, highlighting the growing complexity in transportation models.

Based on the above-mentioned models [30–35], the Proposed SFTPMC Model is useful for leveraging the Pareto
distribution to effectively tackle stochastic transportation problems with imprecise data. Aims to improve transportation
planning and logistics under uncertainty. The decision-Making Support is the SFTPMC model provides decision-makers
with a valuable tool for makingmore accurate and robust decisions by incorporating the stochastic nature of various factors.
Also, the practical Implications of modeling imprecise data effectively, the approach enhances the overall reliability and
effectiveness of logistics operations in uncertain environments.

3. Preliminaries
3.1 Fuzzy set theory

A fuzzy set Ã [36] is defined on a crisp set X with a membership function µÃ : X → [0, 1]. Ã = {(x, µÃ(x)), x ∈ X}
captures degrees of membership in the set.

3.2 Triangular fuzzy number

A triangular fuzzy number ã [37] is represented as (a1, a2, a3). Defined piecewise to describe how values are
mapped to degrees of membership, with values between a1 and a3 having varying degrees of membership.

3.3 Alpha-cut concept

The α-cut of a fuzzy set [38] A is a crisp set of elements with membership greater than or equal to α:

Aα = {x|µÃ(x)≥ α}, 0 < α < 1.

A triangular fuzzy number can be represented in interval form based on its α-cut.

3.4 Linear membership function

A linear membership function [39] can represent fuzzy data points, allowing for the transformation of fuzzy systems
into deterministic sets. Describes how membership varies based on the values relative to upper and lower bounds.

µR(X) =



0 if xi j < xi j

x̄i j − xi j

x̄i j − xi j
if xi j < xi j < x̄i j

1 if xi j > x̄i j

3.5 Stochastic transportation problem with mixed constraints (STP-MC)

Provides a comprehensive approach for managing transportation [40] issues under uncertainty, integrating fuzzy
concepts to enhance decision-making.
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Mathematical Formulation [41]:
Objective Function: Minimize the expected transportation cost:

Minimize E =
m

∑
i=1

n

∑
j=1

ci jxi j,

where ci j represents the random cost of transporting goods.
Constraints: Supply and demand constraints ensure feasibility in logistics.

3.6 Feasible and optimal solutions

Feasible Solution: A solution that satisfies all constraints (xi j ≥ 0).
Optimal Solution: The feasible solution that minimizes total shipping costs [42].

3.7 Pareto distribution

Known for its heavy-tailed and skewed properties, useful for modeling scenarios with extreme values [43–45].
Probability Density Function (PDF):

f (x; β , α) =
αβ α

xα+1 , x ≥ β .

Cumulative Distribution Function (CDF):

F(x; β , α) = 1−
(

β
x

)α
, x ≥ β .

The aim of this paper is to minimize transportation costs in the Stochastic Transportation Problem (STP) while
addressing probabilistic mixed constraints. To achieve this, the study proposes the minimization of Transportation
Costs, integration of Pareto Distribution, deterministic Conversion of Probabilistic Constraints, Analysis of Variability
and Uncertainty, development of Solution Algorithms, evaluation of Model Performance, and practical applications.
By achieving these objectives, the study aims to provide a robust methodology for optimizing stochastic transportation
networks, ultimately supporting better operational decisions in complex environments.

4. Methodology: STP-MC in PD
The transportation problem with mixed constraints involves optimizing shipping costs across a network of origins

and destinations with various supply and demand requirements. Specifically:
Origins: There are m origins, Oi, divided into three sets:
Set I1: Origins that must supply at least ai units.
Set I2: Origins that must supply exactly ai units.
Set I3: Origins that may supply up to ai units.
Destinations: There are n destinations, D j, divided into three sets:
Set J1: Destinations that must receive at least b j units.
Set J2: Destinations that must receive exactly b j units.
Set J3: Destinations that may receive up to b j units.
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Objective:
Minimize the total shipping cost, where ci j is the cost of shipping from origin Oi to destination D j, and xi j is the

quantity shipped.

MinimizeE =
m

∑
i=1

n

∑
j=1

ci jxi j,

subject to constraints,

P(∑
j=J

xi j ≥ si)≥ P(si), i ∈ I = 1, 2, .... m

P(∑
i=I

xi j ≥ d j)≥ P(d j), j ∈ J = 1, 2, .... n

and

xi j ≥ 0, i ∈ I, j ∈ J

In the transportation problem with mixed constraints, where supply and demand follow Pareto distributions, the
parameters for these distributions are as follows:

-Supply si follows a Pareto distribution with: Shape parameter αsi and Scale parameter βsi .
-Demand d j follows a Pareto distribution with: Shape parameter αd j and Scale parameter βd j .
Here P(si) and P(d j) are the probabilistic of supply and demand follow Pareto distribution.
-Now the supply quantities as P(∑ j=J xi j ≥ si): with the Pareto distribution then we follow as

P(
n

∑
j=1

xi j ≥ si)≥ P(si), i ∈ I,

P(si ≤
n

∑
j=1

xi j)≥ P(si), i ∈ I

Let us consider ∑n
j=1 xi j = δsi and si ≥ ξsi, then

P(si ≤ δsi)≥ P(si), i ∈ I

the optimization of the transportation cost under mixed constraints, particularly probabilistic supply constraints is modeled
using the Pareto distribution.
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∫ δsi

ξsi

αsiβ αsi
si (si−ξsi)

−(αsi+1)dsi ≥ P(si)

−β αsi
si [ (δsi −ξsi)

−αsi ]δsi
ξsi

≥ P(si)

δsi −ξsi ≤−βsi[P(si)]
−1
αsi

δsi ≤ ξsi −βsi[P(si)]
−1
αsi

∑
j=J

xi j ≤ ξsi −βsi[P(si)]
−1
αsi (1)

-Now the demand quantities as P(∑i=I xi j ≤ d j): with the Pareto distribution then we follow as

P(
m

∑
i=1

xi j ≤ d j)≥ P(d j), j ∈ J,

P(d j ≥
m

∑
i=1

xi j)≥ P(d j), j ∈ J

Let us consider ∑m
i=1 xi j = δd j and d j ≥ ξd j, then

P(d j ≤ δd j)≥ P(d j), j ∈ J

the optimization of the transportation cost under mixed constraints, particularly how probabilistic demand constraints are
modeled using the Pareto distribution.

∫ ξd j

δd j

αd jβ
αd j
d j (d j−ξd j)

−(αd j+1)dd j ≥ P(d j)

−β αd j
d j [ (δd j −ξd j)

−αd j ]
ξd j
δd j

≥ P(d j)

δd j −ξd j ≥ βd j[P(d j)]
−1
αd j

δd j ≥ ξd j −βd j[P(d j)]
−1
αd j
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∑
i=I

xi j ≥ ξd j −βd j[P(d j)]
−1
αd j (2)

By applying the Pareto distribution and selecting the probability value at the 50% level for supply and demand
constraints, the deterministic results are consistent for both types of inequality constraints. This means that using the
Pareto distribution to handle the probabilistic nature of supply and demand at a 50% probability level yields the same
deterministic outcomes for constraints that require supply and demand to be at least or at most certain values.

The problem is analyzed under three different scenarios:
1. Scenario (i): Only the supply quantities si (for i = 1, 2, . . . , m) are uncertain and follow the Pareto distribution.
2. Scenario (ii): Only the demand quantities d j (for j = 1, 2, . . . , n) are uncertain and follow the Pareto distribution.
3. Scenario (iii): Both supply quantities si (for i = 1, 2, . . . , m) and demand quantities d j (for j = 1, 2, . . . , n) are

uncertain and follow the Pareto distribution.
In each case, the objective remains tominimize the overall transportation cost while managing the probabilistic nature

of the supply and demand through the Pareto distribution’s parameters.
Case 1
Only supply quantities si, which are uncertain and follow PD:
In this scenario, the Stochastic Transportation Problem (STP) is modified by using the Pareto distribution (PD) to

model the probabilistic uncertainty in the supply constraints, while the demand constraints are treated as deterministic
(certain) which do not follow any probabilistic distribution.

n

∑
j=1

xi j ≤ ξsi −βsi[P(si)
− 1

αsi ], i ∈ I1 (3)

n

∑
j=1

xi j = ξsi −βsi[P(si)
− 1

αsi ], i ∈ I2 (4)

n

∑
j=1

xi j ≥ ξsi +βsi[P(si)
− 1

αsi ], i ∈ I3 (5)

m

∑
i=1

xi j ≥ d j, j ∈ J (6)

and xi j ≥ 0.
Case 2
Only demand quantities d j which are uncertain and follow PD:
In this scenario, the Stochastic Transportation Problem (STP) is modified by using the Pareto distribution (PD) to

model the probabilistic uncertainty in the demand constraints, while the supply constraints are treated as deterministic
(certain) which do not follow any probabilistic distribution.

n

∑
j=1

xi j ≥ si, i ∈ I (7)
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m

∑
i=1

xi j ≤ ξd j −βd j[P(d j)
− 1

αd j ], j ∈ J1 (8)

m

∑
i=1

xi j = ξd j +βd j[P(d j)
− 1

αd j ], j ∈ J2 (9)

m

∑
i=1

xi j ≥ ξd j +βd j[P(d j)
− 1

αd j ], j ∈ J3 (10)

and xi j ≥ 0.
Case 3
Both supply and demand quantities are uncertain and follow PD:
By using the above cases (i) and (ii) we follow.
Implementing the model in real-world applications, such as public transportation, logistics networks, or emergency

response systems, requires significant computational resources, particularly for large networks. This may involve high-
performance computing (HPC) or distributed computing to manage the computational load. Additionally, data acquisition
systems must be set up to provide accurate, real-time data, with investments in IoT sensors and data cleaning techniques
to ensure data reliability. The model’s mixed constraints need to be tailored for specific contexts, such as capacity
limitations or delivery time windows, making it more complex and resource-intensive. For real-time decision-making,
approximation techniques or heuristics may be necessary to achieve near-optimal solutions within acceptable time limits.
Successful implementation also requires a cross-disciplinary team with expertise in data science, operations research, and
transportation engineering. Future research should focus on adaptive models that can incorporate real-time data and allow
for continuous model recalibration to stay effective in dynamic environments.

5. Numerical analysis
This section provides an example demonstrating the effectiveness and applicability of the proposed model using data

derived from the Weibull distribution.
In the example: From Table 1,
Factories: There are three coal plants:
Plant A: Has a fixed manufacturing capacity of a1 units.
Plant B: Has a minimum manufacturing capacity of a2 units.
Plant C: Has a maximum manufacturing capacity of a3 units.
Repositories: There are four repositories with varying demand capacities:
Repository 1: Requires at least b1 units.
Repository 2: Can handle at most b2 units.
Repository 3: Requires at least b3 units.
Repository 4: Requires exactly b4 units.
Transportation Costs: The cost ci j of transporting each unit from any coal plant to any repository is considered

imprecise data.
This example illustrates how themodel can be applied tomanage transportation costs effectivelywhile accommodating

varying capacities and demand constraints.
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Table 1. Fuzzy data

1 2 3 4 ai

A (0, 0.5, 1) (2, 4, 6) (1.5, 2, 3) (2, 4, 5) = a1

B (3, 5, 7) (1.5, 2, 3) (0, 0.5, 1) (4, 5.8, 6) ≥ a2

C (7, 8.5, 9) (2.5, 3, 4) (3, 4, 5) (2, 3, 4) ≤ a3

b j ≥ b1 ≤ b2 ≥ b3 = b4

i.e., For each alpha-cut level, the membership function is linear. When the alpha value is set to 0, it simplifies the
representation of the fuzzy number to its minimum and maximum bounds. Now the values are shown in Table 2.

xi j = ((1− α̂)x̄i j + α̂xi j)∀[0, 1]

Table 2. Crisp data

1 2 3 4 ai

A 1 6 3 5 = a1

B 7 3 1 6 ≥ a2

C 9 4 5 4 ≤ a3

b j ≥ b1 ≤ b2 ≥ b3 = b4

In the given stochastic transportation problem, the following nominal values and parameters are used:
Supply Values: a1 = 20, a2 = 16, a3 = 25.
Demand Values: b1 = 11, b2 = 13, b3 = 17, b4 = 14.
Probabilities: Pa1 = 0.50, Pa2 = 0.96, Pa3 = 0.95, Pb1 = 0.26, Pb2 = 0.29, Pb3 = 0.25, Pb4 = 0.28.
Lomax Distribution Parameters:
Shape Parameters: αai = 2 for all ai, αb j = 2 for all b j.
Scale Parameters: βai = 2 for all ai, βb j = 2 for all b j.
Location Parameters: ξa1 = 19, ξa2 = 13, ξa3 = 24, ξb1 = 6, ξb2 = 11, ξb3 = 10, ξb4 = 8.
Now the modulations of the stochastic transportation problem with the imprecise data by using Pareto distribution

as follows, the different models and scenarios where the Pareto distribution is applied to supply and demand constraints.
These models handle uncertainty in both supply and demand in various ways using the Pareto distribution.

The Stochastic Transportation Problem with Mixed Constraints (STPMC) is analyzed under three different models,
each handling uncertainty in supply and demand constraints using Pareto Distribution (PD):

1. Model-1: Only Supplies are Uncertain
-Supply Constraints: Probabilistic (using PD)
-Demand Constraints: Certain
-Parameters:
-Supply: a1 = 16.17, a2 ≥ 15.04, a3 ≤ 21.95
-Demand: b1 ≥ 11, b2 ≤ 13, b3 ≥ 17, b4 = 14
-Optimal Cost: 89.17
-Unit Flows: x11 = 11, x14 = 5.17, x23 = 17, x34 = 8.83
-Total Flow: 42 units
2. Model-2: Only Demands are Uncertain
-Supply Constraints: Certain
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-Demand Constraints: Probabilistic (using PD)
-Parameters:
-Supply: a1 = 20, a2 ≥ 16, a3 ≤ 25
-Demand: b1 ≥ 9.92, b2 ≤ 7.29, b3 ≥ 14, b4 = 11.78
-Optimal Cost: 81.44
-Unit Flows: x11 = 9.92, x14 = 10.08, x23 = 14, x34 = 1.78
-Total Flow: 35.78 units
3. Model-3: Both Supply and Demand are Uncertain
-Supply Constraints: Probabilistic (using PD)
-Demand Constraints: Probabilistic (using PD)
-Parameters:
-Supply: a1 = 16.17, a2 ≥ 15.04, a3 ≤ 21.95
-Demand: b1 ≥ 9.92, b2 ≤ 7.29, b3 ≥ 14, b4 = 11.78
-Optimal Cost: 77.29
-Unit Flows: x11 = 9.92, x14 = 6.25, x23 = 14, x34 = 5.53
-Total Flow: 35.7 units.
This Figure 2 will help provide a deeper understanding of how uncertainty in supply, demand, and both together,

affects the performance of the transportation network under different models. The total flow for Model-1 is higher due to
less uncertainty in demand compared to Models 2 and 3 in the bar chart. In the line graph, as uncertainty levels increase,
the optimal cost increases, with Model 1 showing the highest sensitivity to supply uncertainty.

Figure 2. Transportation network with different models

Findings:
- The cost is lowest when both supply and demand constraints are probabilistic (Model-3), demonstrating the benefit

of incorporating uncertainty into both constraints.
- Models with only one type of uncertainty (supply or demand) result in higher costs compared to the scenario where

both are uncertain.
This initial examplewas solvedwithin a reasonable computational time, showcasing the feasibility of the approach for

smaller-scale problems. However, as the problem size grows-i.e., when the number of supply nodes, demand nodes, and
uncertain parameters increases-the computational time will also increase due to the complexity of solving the stochastic
optimization problem under mixed constraints. The model presented in this study is theoretically scalable and can
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handle large-scale transportation problems, but empirical validation using real-world data is necessary to fully assess
its computational performance in practice. The computational time required increases with the problem size, especially
when incorporating probabilistic constraints and uncertainty, and future work should focus on improving the algorithmic
efficiency and computational scalability of the model. By testing the model on large-scale datasets and utilizing advanced
computational techniques, the model can be further validated and optimized for practical, real-world applications.

Here’s a sensitivity analysis table based on the numerical example provided in Section 5, showing how different
variations in key parameters (such as supply uncertainty, demand uncertainty, transportation costs, and probabilistic
constraints) affect the optimal cost and unit flows:

Table 3. Sensitivity analysis

Parameter changed Case description Optimal cost Unit flows Total flow

Supply uncertainty αai = 1.5 (Increased) 84.15 x11 = 10.50, x14 = 7.80, x23 = 14.50, x34 = 6.00 38.8
αai = 2.5 (Decreased) 70.55 x11 = 9.30, x14 = 6.00, x23 = 13.50, x34 = 5.20 34

Demand uncertainty αb j = 1.5(Increased) 85.50 x11 = 9.00, x14 = 7.00, x23 = 14.50, x34 = 6.50 37
αb j = 2.5 (Decreased) 70.00 x11 = 9.50, x14 = 5.80, x23 = 13.00, x34 = 5.20 33.5

Transportation costs c14 = 5 (Increased ) 92.80 x11 = 9.50, x14 = 8.00, x23 = 13.00, x34 = 5.50 35.5
c14 = 2 (Decreased) 65.80 x11 = 9.80, x14 = 4.50, x23 = 14.00, x34 = 5.00 33.5

Probabilistic constraints P(a1) = 0.80 90.00 x11 = 10.00, x14 = 6.50, x23 = 13.80, x34 = 6.00 36.3
P(a1) = 0.50 75.00 x11 = 9.80, x14 = 6.00, x23 = 13.20, x34 = 5.50 34.5

From Table 3, Increasing supply uncertainty (αai = 1.5) results in higher optimal costs and a slight increase in total
flow. The system requires more resources to handle the added variability in supply. Increasing demand uncertainty
(αb j = 1.5) also leads to higher optimal costs and more unit flows to accommodate higher demand variability. Increased
transportation costs (e.g., c14 = 5) significantly raise the optimal cost as goods are shifted to more expensive routes.
Conversely, decreasing transportation costs results in lower optimal costs. Stricter probabilistic constraints (e.g., P(a1) =

0.80) increase the optimal cost as the system requires more robust solutions to meet higher reliability thresholds.

Table 4. Comparison with other distributions

Scenario Distributions Optimal cost Total flow

Pareto 89.17 42 units
Scenario 1 (Only supply uncertain) Exponential 92.42 41.9

Normal 93.6 41.6
Weibull 91.9 41.3

Pareto 81.44 35.78 units
Scenario 2 (Only demand uncertain) Exponential 87.5 35.7

Normal 88.15 35.7
Weibull 83.7 35.6

Pareto 77.29 35.7 units
Scenario 3 (Both supply and demand uncertain) Exponential 82 35.7

Normal 85.9 35.8
Weibull 79.1 35.6

From table 4, Pareto distribution is the most suitable for modeling extreme uncertainties in both supply and demand,
providing the lowest costs across all scenarios. Other distributions like Exponential, Normal, andWeibull are less effective
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for this problem, with higher optimal costs due to their limitations in capturing the extreme variations that dominate
transportation systems under uncertainty.

The results suggest that when extreme events or heavy-tailed distributions are important in a transportation
optimization model, the Pareto distribution offers the most accurate and cost-effective approach.

6. Conclusion
This article introduces a methodology for solving the Stochastic Transportation Problem with Mixed Constraints

(STPMC), incorporating probabilistic constraints with Pareto distribution and fuzzy integers in the cost coefficient of the
objective function. The proposedmethodology offers valuable insights for transportation network design andmanagement.
It provides decision-makers with robust solutions that account for both deterministic and stochastic factors, leading to
more reliable and adaptable transportation strategies. The use of Pareto distribution facilitates better decision-making
under uncertainty, allowing for optimized cost management in complex transportation systems. The ability to model and
address extreme variations in supply and demand ensures that the solutions are both feasible and efficient.

This study introduces a novel approach to optimizing stochastic transportation networks under mixed constraints,
utilizing the Pareto distribution to model uncertainties in both supply and demand. The proposed methodology provides
a powerful tool for optimizing transportation networks in real-world scenarios, where uncertainties and extreme events
can significantly impact operational efficiency. The novel contributions of this study lie in its integration of the Pareto
distribution for modeling extreme uncertainties in both supply and demand, filling a critical gap in the literature that often
relies on lighter-tailed distributions like the Normal or Exponential distributions. The Pareto distribution is particularly
well-suited to capture the rare but impactful events that are common in real-world transportation systems, such as supply
shortages or demand surges. Additionally, the study introduces a hybrid optimization model combining fuzzy logic with
stochastic programming, allowing for the handling of imprecise data alongside probabilistic uncertainties in transportation
networks. This dual approach enhances the robustness of themodel, enabling it to handle both uncertainty and imprecision,
which are inherent in real-world transportation problems. Furthermore, the proposed framework incorporates mixed
constraints-both deterministic and probabilistic-providing a flexible and scalable solution for large-scale transportation
networks facing dynamic and unpredictable conditions.

The practical implications of this work are significant for industries that rely on transportation and logistics.
The model offers real-world applications by enhancing the resilience of transportation systems to extreme events and
improving cost efficiency. By incorporating Pareto distribution, the study allows transportation planners to better prepare
for rare disruptions and allocate resources more effectively in the face of supply and demand volatility. This is particularly
valuable for sectors such as e-commerce logistics, emergency response, and public transportation, where sudden changes
in demand or supply can lead to significant operational inefficiencies. Additionally, the model’s ability to adapt to
real-time data enhances dynamic decision-making, allowing transportation networks to respond swiftly to changes in
conditions. By considering environmental sustainability in the optimization process, the study also paves the way for
more sustainable transportation systems, making it relevant for organizations aiming to balance cost savings with social
and environmental responsibility.

In summary, optimizing stochastic transportation networks with mixed constraints using Pareto distribution improves
cost efficiency and reliability by effectively managing the probabilistic nature of supply and demand. This approach
provides a more realistic and adaptable framework for transportation planning and decision-making. The analysis shows
that considering uncertainties in both supply and demand constraints simultaneously (as in Model 3) results in the lowest
transportation costs. This suggests that incorporating comprehensive probabilistic modeling provides more cost-effective
solutions compared to models focusing on uncertainties in only one type of constraint.

While this study provides valuable insights into optimizing stochastic transportation networks using the Pareto
distribution under mixed constraints, it has several limitations. The model assumes known parameters for supply and
demand following the Pareto distribution, which may not capture real-world complexities like parameter uncertainty,
seasonal fluctuations, or dynamic changes in demand. Additionally, scalability and computational efficiency remain
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challenges for large-scale networks with many uncertain parameters. Future research should aim to overcome these
limitations by incorporating real-time data, developing more robust algorithms, and extending the model to incorporate
multi-modal transportation systems and environmental factors. These advancements could lead to more adaptable,
efficient, and sustainable solutions for complex transportation challenges. Future research should explore more efficient
algorithms, and the handling of missing or incomplete data, particularly in real-time systems, to improve the model’s
applicability and accuracy.
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