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Abstract: Parameters identification algorithms are formulated for the system of equations of Rőssler’s type. The problem
is solved for the cases of complete and incomplete information about functions of the system. If there is complete
information about the state variables, it is possible to apply the algorithms discussed to any system of linear or nonlinear
ordinary differential equations of arbitrary order in the Cauchy form that linearly depends on the unknown parameters (or
groups of unknown parameters). The problems of parameter identification in the case of incomplete information about
the state variables must be solved individually, depending on the possibility (or impossibility) of eliminating unknown
steady states from the system of equations. Most real-world problems in fields such as chemical kinetics, mathematical
ecology, predator-prey dynamics in game reserves, and the spread of infectious diseases belong to this class of problems,
in which the algorithms discussed demonstrate their applicability. In the present paper the case of one unknown function is
considered. Lemmas about possibilities on complete and incomplete parameter identification are formulated and proven.
The algorithms of the parameter identification are formulated in the process of the constructive proofs of the lemmas.
Numerical examples and graphs of solutions are considered which demonstrate efficiency and accuracy of the developed
algorithms. In the proposed paper, the integration approach is used instead of the differential approach because it allows
for the smoothing of discrete data, thereby reducing the estimation errors of the unknown parameters.
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1. Introduction
The Rőssler attractor [1] is one of the simplest dynamical systems which manifest chaotic behavior [2]. It is described

by nonlinear system of three ordinary differential equations. Solutions of this system behave similarly to the solutions
of the Lorenz attractor [3] but with one stable manifold. Originally the Rőssler system was considered as a prototype
system to the Lorenz model of turbulence which contains only one nonlinearity of the second order in one variable. This
system was proposed as model for hypothetical reaction in the field of chemical thermodynamics in which oscillations of
concentration demonstrate chaotic behavior [1, 4]. In [5–8] it was demonstrated that both Lorenz and Rőssler attractors
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can simulate mechanical or electromechanical self-oscillating systems with inertial excitation. Hence, in these systems it
is possible to expect both regular and chaotic effects analogous to the effects observing in the Rőssler and Lorenz systems
depending on their parameters. Another field of application of the Rőssler model is electronic signals modulation for
analysis of evolution of the optical absorptive effects exhibited by plasmonic nanoparticles [9]. Several authors refer
to importance of the parameter identification of chaotic dynamical systems especially with application to high precision
model synchronization. They developed special methods such as the observer/Kalman filter identification and bilinear
transform discretization [10].

All applications of the Rőssler attractor including chemical kinetics deal with substantial simplifications of the
original model. That is why it is interesting to consider models in which the Rőssler attractor exactly describe dynamics
of the mechanical system with inertial or aperiodic excitation [5–8]. In this paper we considered situations with linear
and nonlinear mechanical systems with linear and nonlinear feedbacks. These applications are important for the systems
with limited power supply. Dynamics of actuators becomes important at present time due to a broad development of
Microelectromechanical systems (MEMS)with low power actuators. In the present paper it is demonstrated that at specific
feedback the problem of parameter identification of theMEMS-system can be converted into the problem of the parameter
identification of the Rőssler system [11, 12].

Currently, many researchers pay much attention to solution of inverse problems of sparse identification of nonlinear
dynamical systems using methods of artificial intelligence [13–17]. These works mainly consider systems with complete
information about their state variables at discrete time instants. Some authors analyze dynamics of nonlinear and
chaotic systems from incomplete observations of their state variables [18]. Despite the robustness and accuracy the
abovementioned methods need substantial time for accurate parameter evaluation. In the present paper the authors
follow the methods, which were demonstrated in [19, 20] with application to the Lorenz system, and develop fast and
accurate methods of the parameter identification for the Rőssler system. The parameters are estimated from complete and
incomplete information about the state variables. Incomplete information means that only two from three state variables
are observed at particular time instants on a given time interval. Knowledge of the third state variable is limited mainly by
its initial and terminal values. It is proven that in this case it is possible to fully identify the Rőssler system, i.e., estimate
all unknown parameters and restore information about its unknown state variable between the initial and terminal time
instants. Moreover, considering the terminal values of the state variables as new initial conditions it is possible to make
prediction of the system behavior to a next finite time interval.

The abovementioned analogy between the Rőssler attractor and some electromechanical systems can help to identify
these systems in terms of Rőssler’s parameters which makes it possible the systematic topological characterization of
the electromechanical systems [21, 22]. In this present paper, we have considered the system with two known and one
unknown state variable of the Rőssler system in a deterministic case where random components are absent.

2. Parameters and conditions for their complete identification
In this paper we consider a system of equations of the Rőssler type:



dX (t)
dt

+K1Y (t)+K2Z (t) = 0,

dY (t)
dt

−K3X (t)−K4Y (t) = 0,

dZ (t)
dt

−K5 −K6X (t)Z (t)+K7Z (t) = 0,

(1)
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where K1, K2, . . . , K7 are constant unknown parameters and X , Y, Z are state variables which are fully or partially known
on t ∈ [0, T ] with (N +1) points and at ti =

T
N

i, (i = 0, 1, . . . , N). We present different cases in this section.
The main objective here is to identify as many parameters K1, K2, . . . , K7 as possible and find conditions of their

complete identification. The second problem is to identify unknown state variables between X , Y, Z. The third problem is
to predict behavior of system (1) with finite time interval t ∈

[
T, T̃

]
, where T̃ > T. In this paper four cases are considered:

in the first case we assume that complete information about state variables X , Y, Z is given with (N +1) points, i.e.,

that 3(N +1) values of Xi = X
(

ti =
T
N

i
)
, Yi = Y (ti) , Zi = Y (ti), (i = 0, 1, . . . , N), are known. In our second case we

assume that information about X (t) is unknown (or partially known at several time instances only), but information about
Yi =Y (ti), Zi =Y (ti) is available. In the third case it is assumed that information aboutY (t) is absent (or partially known)
and Xi = X (ti), Zi = Z (ti) are known.

Finally, the fourth case deals with information about Z (t) is assumed to be unknown (or partially known) and
information about Xi = X (ti), Yi = Y (ti) is available. The main results are formulated as lemmas and constructive ways
of evaluation of parameters are formulated afterwards.

2.1 Complete knowledge about state variables X, Y, Z

Here it is assumed that state variables X , Y, Z are known in N +1 >> 1 points, where ti =
T
N

i, (i = 0, 1, . . . , N). In
this case the following lemma holds true:

Lemma 1 At complete knowledge of state variables X , Y, Z in N + 1 >> 7 points at ti =
T
N

i, (i = 0, 1, . . . , N) all
parameters Kk, (k = 0, 1, . . . , 7), can be identified and behavior of system (1) can be predicted for finite time interval
t ∈

[
T, T̃

]
, where T̃ > T.

Proof. Weprove the lemma constructively demonstrating themethod of identification of parametersK j, ( j = 0, 1, . . . , 7).
Integrating equations of system (1) on t ∈ (0, T ]. One can obtain:

[∆X (t)]+K1 [J2 (t)]+K2 [J3 (t)] = 0,

[∆Y (t)]−K3 [J1 (t)]−K4 [J2 (t)] = 0,

[∆Z (t)]−K5 [t]−K6 [J4 (t)]+K7 [J3 (t)] = 0,

(2)

where

∆X (t) = X (t)−X (0) , ∆Y (t) = Y (t)−Y (0) , ∆Z (t) = Z (t)−Z (0) ,

J1 (t) =
t∫

0

X (τ)dτ, J2 (t) =
t∫

0

Y (τ)dτ, J3 (t) =
t∫

0

Z (τ)dτ, J4 (t) =
t∫

0

X (τ)Z (τ)dτ.

(3)

In the deterministic case, the integrals in Equation (3) and other integrals mentioned in this paper are calculated using
the standard Simpson’s rule. The errors of the numerical estimates are obtained using Simpson’s method are well-known
and are given in Tables 1 and 2 of Section 3.

Composing three goal functions:
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G1 = G1 (K1, K2) =
1
2

N

∑
j=1

{
K1

[
J2 j

]
+K2

[
J3 j

]
+∆X j

}2
,

G2 = G2 (K3, K4) =
1
2

N

∑
j=1

{
K3

[
J1 j

]
+K4

[
J2 j

]
−∆Yj

}2
,

G3 = G3 (K5, K6, K7) =
1
2

N

∑
j=1

{
K5 [t j]+K6

[
J4 j

]
+K7

[
−J3 j

]
−∆Z j

}2
,

(4)

where J1 j = J1 (t j), J2 j = J2 (t j), J3 j = J3 (t j), J4 j = J4 (t j), ∆X j = ∆X (t j), ∆Yj = ∆Y (t j), ∆Z j = ∆Z (t j), ( j = 1, 2, . . . , N).
Minimizing goal functions (4) so that

∂G1

∂K1
=

∂G1

∂K2
=

∂G2

∂K3
=

∂G2

∂K4
=

∂G3

∂K5
=

∂G3

∂K6
=

∂G3

∂K7
= 0 (5)

we obtain three systems of linear algebraic equations;


K1

N

∑
j=1

[
J2

2 j
]
+K2

N

∑
j=1

[
J2 jJ3 j

]
=−

N

∑
j=1

[
J2 j∆X j

]
,

K1

N

∑
j=1

[
J2 jJ3 j

]
+K2

N

∑
j=1

[
J2

3 j
]
=−

N

∑
j=1

[
J3 j∆X j

]
,

(6)


K3

N

∑
j=1

[
J2

1 j
]
+K4

N

∑
j=1

[
J1 jJ2 j

]
=

N

∑
j=1

[
J1 j∆Yj

]
,

K3

N

∑
j=1

[
J1 jJ2 j

]
+K4

N

∑
j=1

[
J2

2 j
]
=

N

∑
j=1

[
J2 j∆Yj

]
,

(7)



K5

N

∑
j=1

[
t2

j
]
+K6

N

∑
j=1

[
t jJ4 j

]
+K7

N

∑
j=1

[
−t jJ3 j

]
=

N

∑
j=1

[t j∆Z j] ,

K5

N

∑
j=1

[
t jJ4 j

]
+K6

N

∑
j=1

[
J2

4 j
]
+K7

N

∑
j=1

[
−J4 jJ3 j

]
=

N

∑
j=1

[
J4 j∆Z j

]
,

K5

N

∑
j=1

[
−t jJ3 j

]
+K6

N

∑
j=1

[
−J4 jJ3 j

]
+K7

N

∑
j=1

[
J2

3 j
]
=−

N

∑
j=1

[
J3 j∆Z j

]
,

(8)

The solution for the above equations may be written as follows:
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[K̄1, K̄2]
T
=
(
LT

1 L1
)−1 (

LT
1 R1

)
,

[K̄3, K̄4]
T
=
(
LT

2 L2
)−1 (

LT
2 R2

)
,

[K̄5, K̄6, K̄7]
T
=
(
LT

3 L3
)−1 (

LT
3 R3

)
,

(9)

where K̄k are estimations of parameters Kk, (k = 1, 2, . . . , 7), sign (. . .)T denotes matrix transposition, sign (. . .)−1 means
inversion of matrix, coma is used for separation of rows and/or columns, and

L1
(N×2)

=
[
J2 j, J3 j

]
, R1

(N×1)
= [−∆X j] ,

L2
(N×2)

=
[
J1 j, J2 j

]
, R2

(N×1)
= [∆Yj] ,

L3
(N×3)

=
[
t j, J4 j, −J3 j

]
, R3

(N×1)
= [∆Z j] .

(10)

Inversion of the corresponding matrices is possible if and only if the corresponding columns of matrices L1, L2, L3

are linearly independent. Notations under matrices L and R denote their dimensions, for example, (N ×2) means that
corresponding matrix has N rows and two columns.

After determination of estimations of parameters Kk = K̄k, (k = 1, 2, . . . , 7) system (1) can be solved with new initial
values X (t = T ) = XN , Y (t = T ) = YN , Z (t = T ) = ZN on finite time interval t ∈

[
T, T̃

]
, where T̃ > T. Existence of the

solution is guaranteed by the corresponding general theorems of ordinary differential equations [9]. Hence, it is possible to
realize continuation (prediction) of the solution on finite time interval. Of course, accuracy of parametersKk identification
and hence, prediction of the solution depends on accuracy of calculation of integrals J1 j, J2 j, J3 j and J4 j.

2.2 State variable X is unknown and state variables Y, Z are known

Let us consider one mechanical analogy for the case of known state variables Y and Z. It is possible to solve the
second equation of system (1) with respect to X , and, hence, obtaining

X (t) =
1

K3

[
dY (t)

d t
−K4Y (t)

]
(11)

and substituting this expression into the first equation of system (1) results in:
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d2Y (t)
dt2 +2δ

dY (t)
dt

+ω2Y (t) = bZ (t) ,

dZ (t)
dt

+ cZ (t) = f +g
[

dY (t)
dt

+2δY (t)
]

Z (t) ,

X (t) = h
[

dY (t)
d t

−K4Y (t)
]
,

(12)

where 2δ =−K4,ω2 =K1K3, b=−K2K3, c=K7, f =K5, g=
K6

K3
, h=

1
K3

. In this system the viscous damping factor δ is
negative if K4 > 0 and inertial parameter c is positive, if K7 > 0. First two equations of this dynamical system characterize
self-oscillatory system with linear oscillatory part and inertial nonlinear feedback [10–12]. The most remarkable fact is
that model (12) can behave as either regular or chaotic system depending on parameters δ , ω, b, c, f , g. Hence, estimation
of these parameters is of crucial importance for prediction of regimes of its behavior. The mentioned analogy between
system (1) and corresponding mechanical (electro-mechanical, mechatronic, etc.) system (12) can be considered from the
viewpoint of parameters identification of system (1) instead of the corresponding parameter identification of system (12).
Advantage of consideration of mechanical model (12) in terms of the Rőssler attractor is that it is possible to perform the
systematic topological characterization of the system [21].

It follows from the first and second Equations of (12) that without knowledge of X (t) it is possible to individually
estimate onlyK4, K5 andK7 parameters. Other parameters can be determined in groupsK1K3,K2K3 and

K6

K3
. It also follows

from the third equation of system (3) that additional information about particular values state variable X is necessary to
estimate parameter K3. After that it will be possible to individually estimate parameters K1, K2 and K6, thus estimating
all unknown parameters. The following Lemma is valid:

Lemma 2 If state variables Y and Z are known in N +1 >> 7 points at ti =
T
N

i, (i = 0, 1, . . . , N) and state variable

X is unknown parameters K4, K5, K7 and group of parameters K1K3, K2K3,
K6

K3
can be identified (it means that K1, K2, K3

and K6 cannot be identified individually).
Proof. Let us assume that state variables Y, Z are known in N +1 >> 7 points at ti =

T
N

i, (i = 0, 1, . . . , N) so that

Yi = Y
(

ti =
T
N

i
)
, Zi = Z (ti). We demonstrate constructive proof which illustrates algorithm of estimation of unknown

parameters and groups of the parameters. First, we solve second equation of system (1) with respect to X(t) using (11) and
substitute it in the first and third equations of system (1) to obtain the following system of the first and second equations
in (12) which is convenient to rewrite as follows:


a1

[
dY (t)

dt

]
+a2 [−Y (t)]+a3 [−Z (t)]− d2Y (t)

dt2 = 0,

a5 [1]+a6

[
Z (t)

dY (t)
dt

−a1Y (t)Z (t)
]
+a7 [−Z (t)]− dZ (t)

dt
= 0,

(13)

where

a1 = K4, a2 = K1K3, a3 = K2K3, a5 = K5, a6 =
K6

K3
, a7 = K7 (14)
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are new unknown parameters. New auxiliary parameter a4 will be introduced later. Hence, only parametersK4, K5, K7 and
groups of parameters K1K3, K2K3,

K6

K3
can be evaluated (and, of course, K1K6 = K1K3

K6

K3
, K2K6 = K2K3

K6

K3
,

K1

K2
=

K1K3

K2K3
,

which follow from (14). Let us show how to calculate them. Integration of the first equation of system (13) yields:

a1 [∆Y (t)]+a2 [−J2 (t)]+a3 [−J3 (t)]+a4 [1]−
dY (t)

dt
= 0 (15)

where

∆Y (t) = Y (t)−Y0, Y0 = Y (t = 0) , J2 (t) =
t∫

0

Y (τ)dτ,

J3 (t) =
t∫

0

Z (τ)dτ, a4 = Ẏ0 =
dY (t)

dt

∣∣∣∣
t=0

.

(16)

Keep in mind that we introduced new unknown parameter a4 = Ẏ0 in (15) to eliminate numerical differentiation of
array Yi = Y (ti) at t = 0. After subsequent integration of Equation (16) and second equation of system (13) we obtain the
following system:


a1 [J4 (t)]+a2 [J5 (t)]+a3 [J6 (t)]+a4 [t]−∆Y (t) = 0,

a5 [t]+a6 [J7 (t)−a1J8 (t)]+a7 [−J3 (t)]−∆Z (t) = 0,
(17)

where

J4 (t) =
t∫

0

∆Y (τ)dτ, J5 (t) =−
t∫

0

J2 (τ)dτ, J6 (t) =−
t∫

0

J3 (τ)dτ,

J7 (t) =
t∫

0

Z (τ)
dY (τ)

dτ
dτ, J8 (t) =

t∫
0

Y (τ)Z (τ)dτ, ∆Z (t) = Z (t)−Z0.

(18)

Providing thatYi =Y (ti), Zi = Z (ti) are known at ti =
T
N

i, (i = 0, 1, . . . , N)we calculate J2i = J2 (ti) , . . . , J8i = J8 (ti),
∆Yi = ∆Y (ti), ∆Zi = ∆Z (ti) and compose first objective function:

G1 = G1 (a1, a2, a3, a4) =
1
2

N

∑
j=1

{
a1

[
J4 j

]
+a2

[
J5 j

]
+a3

[
J6 j

]
+a4 [t j]−∆Yj

}2 (19)
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which is subjected to minimization. Solution of system of equations
∂G1

∂a1
=

∂G1

∂a2
=

∂G1

∂a3
=

∂G1

∂a4
= 0 is as follows:

[ā1, ā2, ā3, ā4]
T =

(
LT

1 L1
)−1 (

LT
1 R1

)
, (20)

where

L1
(N×4)

=
[
J4 j, J5 j, J6 j, t j

]
, R1

(N×1)
= [∆Yj] , ( j = 1, 2, . . . , N) (21)

Next, we compose the second objective function:

G2 = G2 (a5, a6, a7) =
1
2

N

∑
j=1

{
a5 [t j]+a6

[
J7 j − ā1J8 j

]
+a7

[
−J3 j

]
−∆Z j

}2 (22)

which is subjected to minimization. Solution of system of equations
∂G2

∂a5
=

∂G2

∂a6
=

∂G2

∂a7
= 0 is:

[ā5, ā6, ā7]
T =

(
LT

2 L2
)−1 (

LT
2 R2

)
(23)

where

L2
(N×3)

=
[
t j, J7 j − ā1J8 j, −J3 j

]
, R2

(N×1)
= [∆Z j] , ( j = 1, 2, . . . , N) (24)

Keep in mind that in (22) and (24) we use estimation of parameter ā1 obtained in (20).
Next lemma gives sufficient condition for individual evaluation of parameters K1, K2, K3, K6 and hence prediction

of further behavior of state variables X , Y, Z on finite time interval t ∈
[
T, T̃

]
, where T̃ > T.

Lemma 3 If in addition to conditions of Lemma 2 initial value of state variable X is known, i.e., X0 = X (t = 0) is
available, then all parameters of system (1) can be evaluated, unknown state variable X can be recovered, and behavior
of state variables X , Y, Z can be predicted on finite time interval t ∈

[
T, T̃

]
, where T̃ > T.

Proof. It follows from the third expression of system (12) at initial time instant (t = 0):

K3 =

dY (t)
d t

∣∣∣∣
t=0

−K4Y (0)

X (0)
=

a4 −a1Y (0)
X (0)

(25)

where a1, a4 are parameters estimated in (20). Hence, from the estimated groups of unknown parameters (14) it follows
that
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K1 =
a2

K3
, K2 =

a3

K3
, K4 = a1, K5 = a5, K6 = a6K3, K7 = a7 (26)

Hence, all unknown parameters of system (1) are estimated by formulas (25) and (26). Knowledge of initial values
X (0) , Y (0) , Z (0) enables to formulate initial condition for system (1) and restore the unknown state variable X for
t ∈ [0, T ].

Remark 1 Instead of solution of the above mentioned initial value problem, it is possible to solve the first equation
in system (1) and obtain solution:

X (t) = X (0)−
t∫

0

[
K1Y (τ)+K2Z (τ)

]
dτ (27)

Obtaining terminal value XN = X (T ) from (27) and considering it with terminal valuesYN , ZN of other state variables
we formulate new initial value problem for prediction of behavior of state variablesX ,Y, Z on finite time interval t ∈

[
T, T̃

]
,

where T̃ > T (see Lemma 1).
Remark 2 In Lemma 3 the initial value of state variable X is used, thus any value of the state variable X from the time

interval t ∈ [0, T ] can be used for solution of the problem. Moreover, if several known values from the interval we can
improve estimations of the unknown K-parameters and X state variable. Let us demonstrate alternative approach to the
problem in the case when both initial and terminal values of state variable X are available from Lemma 4: If in addition to
conditions of Lemma 2 both initial and terminal values of state variable X , X0 = X (0) and XN = X (T ), are known then all
parameters of system (1) can be evaluated, unknown state variable X can be recovered, and behavior of all state variables
X , Y, Z can be predicted on finite time interval t ∈

[
T, T̃

]
, where T̃ > T.

Proof. Integrating first equation of system (1) with respect to time we obtain:

X (t) = X0 −K1

t∫
0

Y (τ)dτ −K2

t∫
0

Z (τ)dτ (28)

Hence,

K1

T∫
0

Y (τ)dτ +K2

T∫
0

Z (τ)dτ = X0 −X (T ) = X0 −XN =−∆XN (29)

Moreover, K1K3 = ā2, K2K3 = ā3, and hence

ā3K1 − ā2K2 = 0 (30)

From (29), (30) it is possible to find parameters K1, K2 and hence, find K3, K6 from (14). Estimated parameters are
as follows:
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K̄1 =− ā2∆XN
T∫

0

[ā2Y (τ)+ ā3Z (τ)]dτ

, K̄2 =− ā3∆XN
T∫

0

[ā2Y (τ)+ ā3Z (τ)]dτ

,

K̄3 =−

T∫
0

[ā2Y (τ)+ ā3Z (τ)]dτ

∆XN
, K̄4 = ā2, K̄5 = ā4, K̄6 = ā5K̄3, K̄7 = ā6.

(31)

Using estimations of parameters K̄1, K̄2 and formula (28) unknown state variable X is estimated.

2.3 State variable Y is unknown and state variables X, Z are known

In this case one can imagine another mechanical analogy. Solving the first equation of system (1) with respect to Y ,
and, hence, obtaining

Y (t) =− 1
K1

[
dX (t)

d t
+K2Z (t)

]
(32)

and substituting this expression in the second equation of system (1) gives the following system:



d2X (t)
dt2 +2δ

dX (t)
dt

+ω2X (t) =−b
[

dZ (t)
dt

+2δZ (t)
]
,

dZ (t)
dt

+ cZ (t) = f +gX (t)Z (t) ,

Y (t) =−h
[

dX (t)
d t

+bZ (t)
]
,

(33)

where 2δ = −K4, ω2 = K1K3, b = K2, c = K7, f = K5, g = K6, h =
1

K1
. In this system the viscous “damping” factor

δ is negative if K4 > 0 and inertial parameter c is positive, if K7 > 0. First two equations of this dynamical system
characterize self-oscillatory system with linear oscillations and inertial non-linear excitation [10–12]. Comparison of the
left-hand sides of the first and second equations of systems (12) and (33) demonstrates their identity, but the right-hand
sides are different.

It follows from the first and second Equations of (33) that without knowledge of Y (t) it is possible to individually
estimate K2, K4, K5, K6 and K7 parameters. Other parameters can be determined in group K1K3. It also follows from
the third equation of system (33) that additional information about partial values state variable Y is necessary to estimate
parameter K1. After that it will be possible to estimate parameter K3, thus estimating all unknown parameters. Hence, the
following Lemma is valid:

Lemma 4 In the case of known state variables X , Z in N +1 >> 7 points at ti =
T
N

i, (i = 0, 1, . . . , N) and unknown
state variable Y parameters K2, K4, K5, K6, K7 and group of parameters K1K3 can be identified (it means that K1 and K3

cannot be identified individually).
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Proof. Let us calculate state variable Y from the first equation of system (1) (using formula (32)) and substitute
it in the second equation of system (1). Considering the obtained equation with the third equation of (1) we obtain the
following system:


a1 [1]+a2 [X (t)Z (t)]+a3 [−Z (t)]− dZ (t)

dt
= 0,

a4 [X (t)]+a6

[
dZ (t)

dt

]
+a7

[
−dX (t)

dt

]
+a8 [−Z (t)]+

d2X (t)
dt2 = 0,

(34)

where new unknown parameters a1, a2, . . . , a8 are introduced as follows:

a1 = K5, a2 = K6, a3 = K7, a4 = K1K3,

a6 = K2, a7 = K4, a8 = K2K4,

(35)

(parameter a5 will be introduced further). From (31) it follows that there is the constraint between parameters a6, a7 and
a8:

a6a7 −a8 = 0 (36)

After integration of first equation and double integration of the second equation of system (33) with respect to time
we obtain:


a1 [t]+a2 [J4 (t)]+a3 [−J3 (t)]−∆Z (t) = 0,

a4 [J5 (t)]+a5 [t]+a6 [J6 (t)]+a7 [J7 (t)]+a8 [J8 (t)]+∆X (t) = 0,
(37)

where

J1 (t) =
t∫

0

X (τ)dτ, J3 (t) =
t∫

0

Z (τ)dτ, J4 (t) =
t∫

0

X (τ)Z (τ)dτ, J5 (t) =
t∫

0

J1 (τ)dτ,

J6 (t) =
t∫

0

∆Z (τ)dτ, J7 (t) =−
t∫

0

∆X (τ)dτ, J8 (t) =−
t∫

0

J3 (τ)dτ,

∆X (t) = X (t)−X0, ∆Z (t) = Z (t)−Z0.

(38)

Next, we compose the first and second objective functions which will be subjected to minimization:
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G1 = G1 (a1, a2, a3) =
1
2

N

∑
j=1

{
a1 [t j]+a2

[
J4 j

]
+a3

[
−J3 j

]
−∆Z j

}2
,

G2 = G2 (a4, a5, a6, a7, a8) =
1
2

N

∑
j=1

{
a4

[
J5 j

]
+a5 [t j]+a6

[
J6 j

]
+a7

[
J7 j

]
+
[
a8

[
J8 j

]
+∆X j

]}2
.

(39)

In objective function G2 = G2 (a4, a5, a6, a7, a8) unknown parameter a5 =
dX (t)

dt

∣∣∣∣
t=0

is initial time derivative of

unknown state variable X . In objective function G1 = G1 (a1, a2, a3) parameters a1, a2, a3 are independent and hence its

minimization means solution of system of equations
∂G1

∂a1
=

∂G1

∂a2
=

∂G1

∂a3
= 0. Solution of this system is:

[ā1, ā2, ā3]
T =

(
LT

1 L1
)−1 (

LT
1 R1

)
, (40)

where

L1
(N×3)

=
[
t j, J4 j, −J3 j

]
, R1

(N×1)
= [∆Z j] (41)

Vice versa, parameters a6, a7, a8 in objective functionG2 = G2 (a4, a5, a6, a7, a8) are not independent but connected
by constraint (31). Let us select parameter a8 as independent one and calculate other parameters as functions of this
parameter: a4 = a4 (a8), a5 = a5 (a8), a6 = a6 (a8), a7 = a7 (a8) as follows:

[a4 (a8) , a5 (a8) , a6 (a8) , a7 (a8)]
T = a8

(
LT

2 L2
)−1 (

LT
2 R2

)
+
(
LT

2 L2
)−1 (

LT
2 R3

)
, (42)

where

L2
(N×4)

=
[
J5 j, t j, J6 j, J7 j

]
, R2

(N×1)
=
[
−J8 j

]
, R3

(N×1)
= [−∆X j] (43)

Parameter a8 is determined from solution of equation (see (35)):

Constr (a8) = a6 (a8) ·a7 (a8)−a8 = 0 (44)

If there are several solutions of nonlinear Equation (44) we select only that which guarantees global minimum of
objective function G2. Let us denote this solution as ā8, ā4 = ā4 (ā8), ā5 = ā5 (ā8), ā6 = ā6 (ā8), ā7 = ā7 (ā8). In this case
original parameters are:

K̄2 = ā6, K̄4 = ā7, K̄5 = ā1, K̄6 = ā2, K̄7 = ā3 (45)
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and
dX (t)

d t

∣∣∣∣
t=0

= a5. Parameters K1 and K3 are not evaluated at this stage and only their product is known: K1K3 = ā4.

Next Lemma gives us sufficient condition for determination of parameters K1 and K3 and hence, estimation of unknown
state variable Y .

Lemma 5 If in addition to conditions of Lemma 5 initial value of state variable Y at t = 0 (Y0 =Y (0)) is known then
all parameters of system (1) can be estimated, unknown state variable Y can be recovered at any t ∈ [0, T ], and behavior
of all state variables X , Y, Z can be predicted on finite time interval t ∈

[
T, T̃

]
, where T̃ > T.

Proof. From the second equation of system (1) at t = 0:

K1 =−

dX (t)
dt

∣∣∣∣
t=0

+K2Z (0)

Y (0)
=−a5 +a6Z (0)

Y (0)
(46)

if Y (0) ̸= 0, and hence,

K3 =
a4

K1
(47)

Solution of initial value problem with the second ODE of system (1) with initial condition Y (0) = Y0 is as follows:

Y
(
t, K3

)
= Y0eK̄4t +K3

t∫
0

X (τ)eK̄4(t−τ)dτ (48)

and estimation of unknown state variable Y is found for any t ∈ [0, T ].
Prediction of behavior of state variables X , Y, Z on finite time interval t ∈

[
T, T̃

]
, where T̃ > T , can be done as in

Lemma 1, i.e., by solving of initial value problem with system (1) and new initial values XN , Y
(
T, K3

)
, ZN .

Remark 3 Analogous to the Section 2.2, it is also possible to use several values of state variable Y on time interval
t ∈ [0, T ], and formulate the following lemma.

Lemma 6 If in addition to conditions of Lemma 4 the initial and terminal values of state variableY , namelyY0 =Y (0)
and YN =Y (T ), are known then all parameters of system (1) can be evaluated, unknown state variable Y can be estimated
on time interval t ∈ [0, T ], and behavior of state variables X ,Y, Z can be predicted on finite time interval t ∈

[
T, T̃

]
, where

T̃ > T.
Proof. Solution of initial value problem of second ODE of system (1) with initial condition Y (0) = Y0 is as follows:

Y (t, K3) = Y0eK̄4t +K3

t∫
0

X (τ)eK̄4(t−τ)dτ (49)

where K3 is considered as parameter. After substitution of the terminal value Y (T ) = YN in (49) we obtain equation with
respect to K3 solution of which is:
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K̄3 =
YN −Y0eK̄4T

T∫
0

X (τ)eK̄4(T−τ)dτ

(50)

Hence, from (35):

K̄1 =
ā4

K̄3
=

ā4

T∫
0

X (τ)eK̄4(T−τ)dτ

YN −Y0eK̄4t
(51)

if YN −Y0eK̄4t ̸= 0. Unknown state variable Y is estimated by expression (48).

2.4 Function Z(t) is unknown and functions X(t), Y(t) are known

It follows from the first equation of system (1) that:

Z (t) =− 1
K2

[
dX(t)

dt
+K1Y (t)

]
(52)

Substituting (52) in the third equation of system (1) and taking into consideration the second equation of (1):


d2X (t)

d t2 +K7
dX (t)

d t
=−K2K5 +K6X (t)

dX (t)
d t

−K1

[
dY (t)

d t
+K7Y (t)

]
+K1K6X (t)Y (t) ,

dY (t)
d t

−K4Y (t) = K3X (t) .

(53)

This system can be transformed to more convenient model after substitution of the second equation of (53) into the
first equation of this system:


d2X (t)

d t2 +2δ
dX (t)

d t
+ω2X (t) =−b+ c ·X (t)

dX (t)
d t

−d ·Y (t)+ f ·X (t)Y (t) ,

dY (t)
d t

−g ·Y (t) = h ·X (t) ,

(54)

where 2δ = K7, ω2 = K1K3, b = K2K5, c = K6, d = K1 (K4 +K7), f = K1K6, g = K4, h = K3. System (54) describes
mechanical, electro-mechanical or mechatronic nonlinear oscillatory or aperiodic system with linear inertial feedback.
The oscillatory (or aperiodic) part has positive damping factor δ (if K7 > 0) and the inertial part has negative inertial
parameter g (if K4 > 0).
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Lemma 7 In the case of known state variables X , Y in N +1 >> 7 points at ti =
T
N

i, (i = 0, 1, . . . , N) and unknown
state variable Z parameters K1, K3, K4, K6, K7 and group of parameters K2K5 can be identified (i.e., K2 and K5 cannot be
identified individually).

Proof. Let us rewrite system (52) as:



a1 [X (t)]+a2 [Y (t)]− dY (t)
d t

= 0,

a3 [−1]+a5

[
−dY (t)

d t

]
+a6

[
1
2

dX2 (t)
d t

]
+a7

[
−dX (t)

d t

]

+

{
a8 [X (t)Y (t)]+a9 [−Y (t)]− d2X (t)

d t2

}
= 0,

(55)

where parameters a1, a2, . . ., a9 are as follows:

a1 = K3, a2 = K4, a3 = K2K5, a5 = K1,

a6 = K6, a7 = K7, a8 = K1K6, a9 = K1K7.

(56)

After integration of both equations of system (55) with respect to time we obtain:



a1 [J1 (t)]+a2 [J2 (t)]−∆Y (t) = 0,

a3 [−t]+a4 [1]+a5 [−∆Y (t)]+a6
[
∆X2 (t)

]
+a7 [−∆X (t)]

+

{
a8 [J4 (t)]+a9 [−J2 (t)]−

dX (t)
d t

}
= 0,

(57)

where a4 = Ẋ0 =
dX (t)

d t

∣∣∣∣
t=0

is initial time derivative of state variable X , which is artificially introduced as new unknown

parameter so to eliminate numerical differentiation of X and

J1 (t) =
t∫

0

X (τ)dτ, J2 (t) =
t∫

0

Y (τ)dτ, J4 (t) =
t∫

0

X (τ)Y (τ)dτ,

∆X (t) = X (t)−X0, ∆Y (t) = Y (t)−Y0, ∆2X (t) =
1
2
(
X2 (t)−X2

0
)
.

(58)

Integrating the second equation of system (57) with respect to time again we obtain the following system:
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a1 [J1 (t)]+a2 [J2 (t)]−∆Y (t) = 0,

a3

[
− t2

2

]
+a4 [t]+a5 [J5 (t)]+a6 [J6 (t)]+a7 [J7 (t)]

+{a8 [J8 (t)]+a9 [J9 (t)]−∆X (t)}= 0,

(59)

where

J5 (t) =−
t∫

0

∆Y (τ)dτ, J6 (t) =
t∫

0

∆2X (τ)dτ, J7 (t) =−
t∫

0

∆X (τ)dτ,

J8 (t) =
t∫

0

J4 (τ)dτ, J9 (t) =−
t∫

0

J2 (τ)dτ.

(60)

There are two constraints between parameters (61):

a5a6 −a8 = 0, a5a7 −a9 = 0, (61)

and hence, set of parameters (56) cannot be considered as independent. It also follows from (56) that parameters K2 and
K5 cannot be individually determined in the case of knowledge of only state variables X and Y . The same is true for
parameters K1 and K7 and hence, it is necessary to have additional information about state variable Z (preferably in more
than two points) to individually estimate parameters K1, K2, K5 and K7.

Now let us introduce two objective functions which will be subjected to minimization:

G1 = G1 (a1, a2) =
1
2

N

∑
j=1

{
a1

[
J1 j

]
+a2

[
J2 j

]
−∆Yj

}2 (62)

and

G2 = G2 (a3, a4, a5, a6, a7; a8, a9) =
1
2

N

∑
j=1

{
a3

[
−

t2
j

2

]
+a4 [t j]+a5

[
J5 j

]

+a6
[
J6 j

]
+a7

[
J7 j

]
+
[
a8

[
J8 j

]
+a9

[
J9 j

]
−∆X j

]}2

.

(63)

Solution of the minimization problem for objective function (62) is:
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[ā1, ā2]
T =

(
LT

1 L1
)−1 (

LT
1 R1

)
(64)

where

L1
(N×2)

=
[
J1 j, J2 j

]
, R1
(N×1)

= [∆Yj] . (65)

In objective function (63) parameters a8, a9 are considered as auxiliary free parameters and other parameters are
considered as functions of them: a3 (a8, a9) , a4 (a8, a9) , a5 (a8, a9) , a6 (a8, a9) , a7 (a8, a9). In this case solution is:

[a3 (a8, a9) , a4 (a8, a9) , a5 (a8, a9) , a6 (a8, a9) , a7 (a8, a9)]
T

= a8
(
LT

2 L2
)−1 (

LT
2 R2

)
+a9

(
LT

2 L2
)−1 (

LT
2 R3

)
+
(
LT

2 L2
)−1 (

LT
2 R4

)
,

(66)

where

L2
(N×5)

=

[
−

t2
j

2
, t j, J5 j, J6 j, J7 j

]
, R2

(N×1)
=
[
J8 j

]
, R3

(N×1)
=
[
J9 j

]
, R4

(N×1)
= [−∆X j] (67)

Using solution (66) and taking into consideration constraints (61) we minimize objective function:

G3 = G3 (a8, a9) =
1
2

{
[a5 (a8, a9)a6 (a8, a9)−a8]

2 +[a5 (a8, a9)a7 (a8, a9)−a9]
2
}
. (68)

Denoting solution of minimization problem of objective function (54), corresponding to global minimum of (68) as
ā8, ā9, we obtain:

K̄1 = a5 (ā8, ā9) , K̄3 = a1 (ā8, ā9) , K̄4 = a2 (ā8, ā9) ,

K̄6 = a6 (ā8, ā9) , K̄7 = a7 (ā8, ā9) , K2K5 = a3 (ā8, ā9) .

(69)

The next lemma shows how to estimate parameters K̄2 and K̄5 and evaluate unknown state variable Z for t ∈ [0, T ].
Lemma 8 If in addition to conditions of Lemma 6 boundary values of state variable Z, Z0 = Z (t = 0) and ZN =

Z (t = T ), are known then all parameters of system (1) can be evaluated, unknown state variable Z can be recovered, and
behavior of state variables X , Y, Z can be predicted on finite time interval t ∈

[
T, T̃

]
, where T̃ > T.

Proof. Assuming that estimations of parameters K̄6 and K̄7 are known let us derive solution of third equation of
system (1) depending on unknown parameter K5 (using, for example, the method of integrating factor):
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Z (t, K5) = Z0 exp

K̄6

t∫
0

X (τ)dτ − K̄7t

+K5

t∫
0

exp

K̄6

t∫
τ

X (η)dη − K̄7 (t − τ)

dτ (70)

Solving equation Z (t = T, K5) = ZN , we obtain estimation of parameter K5 as follows:

K̄5 =

ZN −Z0 exp

K̄6

T∫
0

X (τ)dτ − K̄7T


T∫

0

exp

K̄6

T∫
τ

X (η)dη − K̄7 (T − τ)

dτ

(71)

Hence, estimation of unknown state variable Z on time interval t ∈ [0, T ] is:

Z̄ (t) = Z (t, K̄5) (72)

and parameter K2 is estimated as

K̄2 =
K2K5

K̄5
=

a3 (ā8, ā9)

K̄5
=

a3 (ā8, ā9)

T∫
0

exp

K̄6

T∫
τ

X (η)dη − K̄7 (T − τ)

dτ

ZN −Z0 exp

K̄6

T∫
0

X (τ)dτ − K̄7T

 (73)

providing that ZN −Z0 exp

K̄6

T∫
0

X (τ)dτ − K̄7T

 ̸= 0.

Prediction of behavior of state variables X , Y, Z on finite time interval t ∈
[
T, T̃

]
, where T̃ > T , can be done as in

Lemma 1.

3. Numerical examples
In this section we consider numerical simulation of two cases: situation when information about all functions is

available and situation with known X , Z and unknown Y state variables. First, we assume that parameters K1, K2, . . . , K7

as well as initial conditions are given and make direct calculation of state variables X , Y, Z on small initial time interval
t ∈ [0, T ]. Next, assuming some state variables are known, we solve inverse problem of parametric identification and
compare the estimated parameters with original ones.

Please note that all numerical results in this paper are obtained using Mathcad 15, which contains powerful routines
for manipulating numerical arrays and performing linear algebra operations. All the numerical manipulations used in this
paper are standard and explained in numerous numerical methods books such as in [23].

Now assume that parameters of the Rőssler systems (1), (2) are given as follows:
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K1 = 1, K2 = 1, K3 = 1, K4 = a = 0.2, K5 = b = 0.2, K6 = 1, K7 = c = 5.7. (74)

At these parameters the Rőssler system demonstrates its chaotic behavior at a “substantially long” time interval
[1, 2]. Assuming that initial conditions are X0 = X (0) = 0.1, Y0 = Y (0) = 0.1, Z0 = Z (0) = 0.035, we calculate solution
of system (1) by the adaptive Runge-Kutta method at time interval t ∈ [0, T = 20] in N +1 = 51 points (see Figures 1-3).

As we can see from Figures 1-3, state variables X , Y, Z demonstrate regular behavior with increasing amplitudes of
vibration and do not manifest their chaotic behavior. So, time interval↔2 [0≈= 20] cannot be considered as “substantially
long”.

Figure 1. Solution of the Rőssler’s system for state variable X on time interval 2 [0 = 20]

Figure 2. Solution of the Rőssler’s system for state variable Y on time interval 2 [0 = 20]
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Figure 3. Solution of the Rőssler’s system for state variable Z on time interval 2 [0 = 20]

In all the algorithms discrete set of data is subjected to cubic spline interpolation with subsequent adaptive numerical
integration with tolerance 10−7. As a result, the following parameters were obtained (see Table 1).

It follows from Table 1 that accuracy of estimation of the parameters is relatively high and, as it was observed, it is
growing with increasing of number of data points.

Table 1. Original and estimated parameters, their absolute and percentage errors in the case of complete knowledge of state variables X , Y, Z

Original parameter (K) Estimated parameter (K̄) Absolute error (|K − K̄|) Percentage error
(∣∣∣∣K − K̄

K

∣∣∣∣100%
)

K1 = 1 K̄1 ≈ 1.000022 2.2 ·10−5 2.2 ·10−3%

K2 = 1 K̄2 ≈ 0.999995 5 ·10−6 5 ·10−4%

K3 = 1 K̄3 ≈ 1.000032 3.2 ·10−5 3.2 ·10−3%

K4 = 0.2 K̄4 ≈ 0.200029 2.9 ·10−5 1.4 ·10−2%

K5 = 0.2 K̄5 ≈ 0.200107 1.07 ·10−4 5.0 ·10−2%

K6 = 1 K̄6 ≈ 1.001249 1.25 ·10−3 1.25 ·10−1%

K7 = 5.7 K̄7 ≈ 5.703228 3.23 ·10−3 5.7 ·10−2%

Next, we simulate situation with incomplete information about state variables X , Y, Z, namely we assume that
function Y (t) is unknown inside time interval t ∈ (0, T ) and only initial and terminal values, Y0 = Y (0) and YN = Y (T ),
are known (see Section 3). In this situation we employ algorithms in (34)-(45) and (49)-(51). We obtain two roots
of Equation (44), shown in Figure 4a as sharp negative spikes. Simultaneously graph of objective function (37),
G(a8) = G2 (a4 (a8) , a5 (a8) , a6 (a8) , a7 (a8) , a8), is shown in Figure 4b. In Figure 4a the first root, which corresponds
to a8, 1 ≈ 0.179355 is spurious, because it does not correspond to the global minimum of the objective function. The
second root, a8, 2 = ā8 ≈ 0.200013, is the proper root which simultaneously corresponds to constraint (36) and guarantees
global minimum of the objective function G2 (a8) in (39).
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Figure 4. Roots of constraint Equation (42); Minimum of function G(a8) (37)

The estimated parameters and their comparison with the original ones are given in Table 2.

Table 2. Original and estimated parameters, their absolute and percentage errors in the case of known state variables X , Z and unknown Y

Original parameter (K) Estimated parameter (K̄) Absolute error (|K − K̄|) Percentage error
(∣∣∣∣K − K̄

K

∣∣∣∣100%
)

K1 = 1 K̄1 ≈ 0.999856 1.44 ·10−4 1.4 ·10−2%

K2 = 1 K̄2 ≈ 0.999966 3.4 ·10−5 3.4 ·10−3%

K3 = 1 K̄3 ≈ 1.000179 1.8 ·10−4 1.8 ·10−2%

K4 = 0.2 K̄4 ≈ 0.200020 2.0 ·10−5 1.0 ·10−2%

K5 = 0.2 K̄5 ≈ 0.200107 1.07 ·10−4 5.0 ·10−2%

K6 = 1 K̄6 ≈ 1.001249 1.25 ·10−3 1.25 ·10−1%

K7 = 5.7 K̄7 ≈ 5.703228 3.23 ·10−3 5.7 ·10−2%

Evaluated unknown function Ȳ (t) = EY (t) in the interval t ∈ [0, T ] is shown as dashed graph in Figure 5 and
compared with the originally simulated function Y (t) (dotted graph shown in N +1 = 51 points, see Figure 2).
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Figure 5. Evaluated function Ȳ (t) = EY (t) (dashed graph) and originally simulated function Y (t) (dotted graph shown in N +1 = 51 points)

Absolute error of the evaluated function Ȳ (t): ∆EY (t) = |Y (t)−EY (t)| is shown in Figure 6.
Comparison of the predicted functions EX (t) , EY (t) , EZ (t) calculated with the estimated parameters, given in

Table 2, with state variables X , Y, Z calculated with the original parameters (58) on time interval t ∈
[
T = 20, T̃ = 200

]
is shown in Figures 7-9.

Figure 6. Absolute error of the evaluated function ∆EY (t) = |Y (t)−EY (t)|

It follows from Figures 7-9 that in the interval t ∈
[
T = 20, T̃ = 130

]
the state variables predictions properly describe

extremums and spike’s time instants and their magnitude. Further, in interval t ∈
[
T = 130, T̃ = 200

]
the time instants of

the extremums and spikes are predicted fairly accurately.
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Figure 7. Comparison of the predicted function EX (t) with state variable X , calculated with original parameters in (60) on time interval t ∈ [T = 20,
T̃ = 200]

Figure 8. Comparison of the predicted function EY (t) with state variable Y , calculated with original parameters (60) on time interval t ∈ [T = 20,
T̃ = 200]

Figure 9. Comparison of the predicted function EZ (t) with state variable Z, calculated with original parameters (60) on time interval t ∈ [T = 20,
T̃ = 200]
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Figure 10. (a) Rőssler’s attractor calculated with original parameters (60), (b) Rőssler’s attractor calculated with estimated parameters (Table 2)

Three dimensional graphs of the Rőssler attractors calculated with the original and estimated parameters are shown
in Figure 10(a, b). Similarity of these attractors follows from the graphs.

Hence, we conclude from Figure 10(a, b) that the evaluated parameters properly approximate the original Rőssler
attractor.

4. Conclusions
Algorithms for identification of the Rőssler attractor’s parameters were developed in the case of knowledge of either

complete information about state variables X , Y, Z or knowledge of only two functions. In the case of having complete
information about the state variables, it is possible to apply the algorithms discussed to any system of linear or nonlinear
ordinary differential equations of arbitrary order in the Cauchy form that linearly depends on the unknown parameters (or
groups of unknown parameters). The problems of parameter identification in the case of incomplete information about
the state variables must be solved individually, depending on the possibility (or impossibility) of eliminating unknown
steady states from the system of equations. Most real-world problems in fields such as chemical kinetics, mathematical
ecology, predator-prey dynamics in game reserves, and the spread of infectious diseases belong to this class of problems,
in which the algorithms discussed demonstrate their applicability. The lemmas about full identification of all unknown
parameters and unknown state variable were formulated and proven. The algorithms composed on the basis of the lemmas
gave possibility of complete reconstruction of the set of unknown parameters and unknown state variables. Moreover, the
algorithms helped to make prediction of the functional behavior of the attractor for a new finite time interval. Numerical
simulations demonstrated the efficiency of the numerical algorithms.

It can be seen from Tables 1 and 2 that the absolute and percentage errors in the parameter identification in the
case of incomplete information are larger than those in the case with complete information about the state variables, as
expected. However, in the deterministic case, the errors in parameter identification are still reasonable, demonstrating the
effectiveness of the proposed algorithms.

It worth noting that chaotic systems exhibit strong sensitivity to their initial conditions. The algorithms developed
require accurate measurements of both initial and final values of the state variables as intermediate values are not available.
It is recommended to use limited time intervals where the chaotic behavior has not been fully developed, typically with
two to four almost-periods of oscillations as in examples discussed in Section 3. In the absence of chaotic behavior, the
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proposed algorithms are insensitive to initial conditions, in accordance with the fundamental theorem on the continuous
dependence of ODE solutions with initial conditions. Thus, to implement the algorithm, it is essential to eliminate potential
sources of errors in their numerical implementations.

The focus of this paper was systems with two known and one unknown state variable of the Rőssler attractor system in
a deterministic case where random components are absent. In future research, we will analyse situations with one known
and two unknown deterministic state variables and demonstrate corresponding algorithms for parameter identification.
Additionally, we will investigate situations involving incomplete information about state variables that are perturbed by
random noise.
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Appendix
Conversion system (1) to the standard form can be obtained by the similarity transformation (t, X , Y, Z) →

(T, x, y, z):

t = T0T, X (t) = X0x(T ) , Y (t) = Y0y(T ) , Z (t) = Z0z(T ) (A.1)

In this case system (1) is transformed to the following one:



dx(T )
dT

+
K1T0Y0

X0
y(T )+

K2T0Z0

X0
z(T ) = 0,

dy(T )
dT

− K3T0X0

Y0
x(T )−K4T0y(T ) = 0,

dz(T )
dT

− K5T0

Z0
−K6T0X0x(T )z(T )+K7T0z(T ) = 0.

(A.2)

Assuming that

T0 =
1√

K1K3
, X0 =

√
K1K3

K6
, Y0 =

K3

K6
, Z0 =

K1K3

K2K6
(A.3)

We obtain the Rőssler system in the standard form [2]:



d x(T )
d T

+ y(T )+ z(T ) = 0,

d y(T )
d T

− x(T )−ay(T ) = 0,

d z(T )
d T

−b− x(T )z(T )+ cz(T ) = 0,

(A.4)

where

a =
K4√
K1K3

, b =
K2K5K6

(K1K3)
3/2

, c =
K7√
K1K3

(A.5)
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