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Abstract: Fullerenes are polyhedral molecules composed solely of carbon atoms, available in various sizes and shapes.
These structures can also be depicted as graphs, with the vertices symbolizing the atoms and the edges representing the
bonds between them. A fullerene graph is defined as a 3-connected, 3-regular planar graph that consists only of pentagonal
and hexagonal faces. This paper examines the perfect 2- and 3-coloring of fullerene graphs, with a particular focus on
irreducible fullerenes. The proposed approach begins by obtaining the adjacency matrix of the graphs and then comparing
its eigenvalues with those of the parameter matrices. If the eigenvalues of a parameter matrix are a subset of the graph’s
eigenvalues, we retain these matrices for further analysis to determine their suitability for perfect coloring.
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1. Introduction
Graphs play a significant role in various fields due to their ability to represent complex relationships between objects.

In computer science, they are used in algorithms, data structures, and network analysis. In biology, graphs help model
and analyze biological systems, such as protein interaction networks or neural connections. Graphs also find applications
in social sciences for studying social networks and in logistics for optimizing routes in transportation networks. Their
flexibility makes them essential tools for solving real-world problems across diverse disciplines [1–3].

A perfect coloring of graphs associated with irreducible fullerenes, which are unique carbon-based structures
composed entirely of carbon atoms arranged in a polyhedral form, refers to an advanced method of assigning colors to
the vertices of these graphs while satisfying strict mathematical conditions. In this context, the coloring process typically
involves ensuring that specific constraints are met, such as the number of edges, or connections, between vertices of
different colors remaining constant throughout the graph. This constant relationship between colored vertices is governed
by a predefined set of rules, often represented by a parameter matrix, which dictates how the graph’s vertices should
interact in terms of coloring. In the case of fullerenes, these perfect colorings go beyond simple aesthetic arrangements
and offer profound insights into the structural, geometric, and chemical properties of the fullerene molecules. Since
fullerenes exhibit highly symmetrical and regular patterns, applying perfect coloring can help uncover key characteristics,
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such as stability, symmetry, and even electronic properties of the molecule. For example, analyzing the way the graph is
colored can shed light on the molecule’s potential reactivity, strength, and the behavior of electrons within the structure.
Additionally, perfect colorings can assist in identifying the molecule’s suitability for practical applications, such as in
nanotechnology, where the precise arrangement of atoms plays a critical role in material performance. This approach
also links mathematical theory with real-world chemistry, providing a deeper understanding of molecular interactions and
potential uses in developing new materials or enhancing existing ones. Fullerenes can be depicted as graphs, with vertices
representing atoms and edges representing the bonds between them. We begin by introducing the concept of fullerene
graphs and then examine their perfect coloring. Euler’s formula dictates that a fullerene graph always contains twelve
pentagonal faces. Motzkin and Grunbaum [4] showed that fullerene graphs exist for any even number of vertices n ≥ 24
and also for n = 20. Although pentagonal faces are fewer than hexagonal ones, their arrangement is crucial in defining the
overall shape of a fullerene graph. All icosahedral fullerenes share a common feature: their distinct geometric structure.
The simplest graph representing an icosahedral fullerene is the dodecahedron,C20. Fullerenes are carbon allotropes where
carbon atoms are linked by single and double bonds, forming a closed or partially closed network with fused rings made
up of five to seven atoms. Fullerenes with a closed mesh topology are commonly identified by their empirical formula
Cn, where n represents the number of carbon atoms. In a fullerene graph, each carbon atom is treated as a vertex, and
each bond between atoms is represented as an edge. A sequence of operations, known as expansion and inversion, along
with their inverse, reduction, is sufficient to generate all fullerenes from smaller ones. Figure 1 shows the fundamental
graphs used to generate fullerenes include C20, C28, and C30. We will demonstrate that perfect 2- and 3-colorings exist
for each of these graphs. A graph is called a regular graph if all vertices have the same degree, and it is termed k-regular
if each vertex has a degree of k, where k is a positive integer.
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Figure 1. The irreducible fullerenes

Definition 1 A planar graph is a graph that can be represented in the plane such that its edges intersect only at their
vertices. In other words, it can be drawn in a way that no two edges overlap except at their endpoints.

Definition 2 A plane graph is a graph that has been drawn on the plane without any overlapping edges. The edges
in a plane graph can be depicted as either straight lines or curves.

Creating a planar drawing of a graph G involves representing G as a plane graph. In a plane graph, the regions
enclosed by edges are referred to as faces. The edges that define the boundary of a face are called the edges incident to
that face, and the size of the face corresponds to the number of edges incident to it. If a face is bounded by k edges, it
is termed a k-gon. The combinatorial structure of a planar graph can be characterized by the cyclic order of the edges
incident to each vertex. An embedding of a planar graph specifies this cyclic order in a plane drawing. In this context, a
planar graph is considered one for which such an embedding is provided.

Definition 3 A connected graph is a graph where there is a path between any two vertices. A connected graph G is
termed 3-connected if it remains connected even after the removal of any two vertices from G.
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Definition 4 A coloring of the vertex set V of a graph G= (V, E) using n colors is considered perfect if every color
is used, and for any pair of colors i and j, the number of neighbors of color j for any vertex v with color i is a constant
Ai j. The matrix A= (Ai j)i, j∈{1, ..., m} is referred to as the parameter matrix.

Example 1 Consider the graph Q3. In this case, if the vertices (0, 0, 0) and (1, 1, 1) are assigned the color white,
the vertices (1, 0, 1) and (0, 1, 0) are colored black, and the rest of the vertices are colored red, this results in a perfect
3-coloring. The corresponding matrix for this 3-coloring reflects the connections between vertices of different colors,
where the rows and columns correspond to the white, black, and red vertices. The matrix obtained is:

A=

0 1 2
1 0 2
1 1 1


This paper classifies all perfect 2-colorings and 3-colorings of graphs corresponding to irreducible fullerenes and

identifies their associated parameter matrices. We begin by presenting the theorems essential to our research methodology,
followed by the main findings from our study. Section 2 demonstrates that the graph C20 has a perfect 2-coloring with
parameter matrices A2 and A6. Additionally, we show that the graph C28 does not admit a perfect 2-coloring, while
the graph C30 has a perfect 2-coloring with the parameter matrix A6. Section 3 establishes that none of the graphs
corresponding to irreducible fullerenes possess a perfect 3-coloring. Section 4 lists application of the graphs corresponding
to irreducible fullerenes. Finally, Section 5 highlights the key points and offers concluding remarks.

2. Perfect 2-coloring of the graphs corresponding to irreducible fullerenes
This section first presents the theorems related to perfect 2-coloring. These theorems are then used to determine the

possible parameter matrices for all perfect 2-colorings of the graphs under consideration. For further reading on perfect
2-coloring, interested readers are referred to [5–11].

Definition 5 For any graphG and any integerm, a mappingT :V(G)→{1, . . . , m} is considered a perfectm-coloring
with the matrix A= (Ai j)i, j∈{1, ..., m} if it is surjective and, for each vertex of color i, the precise number of its neighbors
of color j is specified by Ai j. The matrix A is known as the parameter matrix of a perfect coloring. When m = 2, the two
colors are designated asW and B, representing white and black, respectively.

The following are important theorems and lemmas regarding perfect 2-coloring; for more detailed information, one
can refer to [6].

Theorem 1 Let G be a k-regular graph, and let T be a perfect m-coloring of G with the parameter matrix A =

(Ai j)i, j∈{1, ..., m}. Then, the sum of the elements in each row of matrix A is equal to k.
Theorem 2 If T is a perfect m-coloring of the graph G, then any eigenvalue of the parameter matrix A is also an

eigenvalue of the adjacency matrix of G.
Theorem 3 Let A be a perfect 2-coloring of a connected graph G with the corresponding parameter matrix(

A11 A12

A21 A22

)
. Then, A12 and A21 are nonzero.

Theorem 4 If W represents the set of white vertices in a perfect 2-coloring of a graph G with the parameter matrix
A = (Ai j)i, j=1, 2, then |W|= |V(G)| A21

A12 +A21
.

Theorem 5 Suppose the parameter matrix of a perfect 2-coloring of a k-regular graph is

(
a b
c d

)
. The eigenvalues

of this parameter matrix are k and a−c, with a−c ̸= k. According to Theorem 2, we conclude that a−c is an eigenvalue
of a k-regular connected graph that is distinct from k.
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Lemma 1 If a graph G has a perfect 2-coloring with the parameter matrix

(
a b
c d

)
, then it also has a perfect 2-

coloring with the parameter matrix

(
d c
b a

)
.

Given the conditions, the possible parameter matrices for a perfect 2-coloring of cubic graphs can be one of the
following:

A1 =

[
0 3
1 2

]
, A2 =

[
0 3
2 1

]
, A3 =

[
0 3
3 0

]
, A4 =

[
1 2
1 2

]
, A5 =

[
1 2
2 1

]
, A6 =

[
2 1
1 2

]
.

Theorem 6 The graph C20 admits a perfect 2-coloring with parameter matrices A2 and A6.
Proof. According to Theorem 2, the graph C20 can only achieve a perfect 2-coloring with matrices A2, A4, and

A6, as the eigenvalues of other matrices, such as A1 and A3, do not match the eigenvalues of the adjacency matrix of
C20. However, as stated in Theorem 4, matrix A4 cannot serve as a parameter matrix for a perfect 2-coloring because the
resulting number of white vertices is not an integer. Consequently, the graph C20 can have perfect 2-colorings only with
matrices A2 and A6, as outlined below:

T1(A1) = T1(A3) = T1(b1) = T1(b3) = T1(b6) = T1(b8) = T1(d3) = T1(d5) =W

T1(A2) = T1(A4) = T1(A5) = T1(b2) = T1(b4) = T1(b5) = T1(b7) = T1(b9)

= T1(b10) = T1(d1) = T1(d2) = T1(d4) = B

T2(A1) = T2(A2) = T2(A3) = T2(b4) = T2(b5) = T2(b9)

= T2(b10) = T2(d3) = T2(d4) = T2(d5) =W

T2(A4) = T2(A5) = T2(b1) = T2(b2) = T2(b3) = T2(b6) = T2(b7)

= T2(b8) = T2(d1) = T2(d2) = B

It is clear that T1 is a perfect 2-coloring with the matrix A2, and T2 is a perfect 2-coloring with the matrix A6.
Theorem 7 The graph C28 does not admit any perfect 2-coloring.
Proof. According to Theorem 4, and given that the only integer eigenvalue of the adjacency matrix of C28 is 3, none

of the parameter matrices are suitable for a perfect 2-coloring of C28. Consequently, the graph C28 does not possess any
perfect 2-coloring.

Theorem 8 The graph C30 admits a perfect 2-coloring with the parameter matrix A6.
Proof. According to Theorem 2, the graph C30 can only achieve a perfect 2-coloring using the matrix A6, as the

eigenvalues of other matrices, like A1 and A2, are not contained within the set of eigenvalues of the adjacency matrix of
C30. The mapping T is defined as follows:
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T (A1) = T (A2) = T (A3) = T (A4) = T (A5) = T (b1) = T (b2) = T (b3) = T (b4) = T (b5)

= T (b6) = T (b7) = T (b8) = T (b9) = T (b10) =W

T (A6) = T (A7) = T (A8) = T (A9) = T (A10) = T (A11) = T (A12) = T (A13) = T (A14)

= T (A15) = T (C1) = T (C2) = T (C3) = T (C4) = T (C5) = B

This clearly shows that T is a perfect 2-coloring with matrix A6.

3. Perfect 3-coloring of graphs corresponding to irreducible fullerenes
This section examines the limited parameter matrices that can be used for perfect 3-coloring in 3-regular graphs.

We then show that none of the graphs associated with irreducible fullerenes possess a perfect 3-coloring. For further
information on perfect 3-coloring, you can consult sources [12–14]. Based on the findings in [8], the only viable parameter
matrices for 3-regular graphs are as follows:

A1 =

0 0 3
0 0 3
1 1 1

 , A2 =

0 0 3
0 0 3
1 2 0

 , A3 =

0 0 3
0 1 2
1 1 1

 , A4 =

0 0 3
0 1 2
1 2 0

 ,

A5 =

0 0 3
0 2 1
1 1 1

 , A6 =

0 0 3
0 2 1
1 2 0

 , A7 =

0 0 3
1 1 2
2 1 0

 , A8 =

0 1 2
1 1 1
2 1 0

 ,

A9 =

0 1 2
1 2 0
2 1 0

 , A10 =

0 1 2
1 2 0
2 0 1

 , A11 =

0 3 0
1 0 2
0 1 2

 , A12 =

1 0 2
1 2 0
1 1 1

 ,

A13 =

1 0 2
1 2 0
1 1 1

 , A14 =

1 0 2
1 2 0
1 1 1

 , A15 =

1 0 2
1 2 0
1 1 1

 , A16 =

1 1 1
1 1 1
1 1 1

 ,

A17 =

1 2 0
1 0 2
0 1 2

 , A18 =

1 2 0
1 0 2
0 1 2

 .

In this article, we typically denote a parameter matrix as
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A =

a b c
d e f
g h i

 ,

and utilize the following theorems to support our analysis. The matrix A is considered as a general representation, where
the elements a, b, c, d, e, f , g, h, and i are parameters that may vary depending on the context. By applying these
theorems, we can explore various properties and behaviors of the matrix, which play a crucial role in deriving key results
and conclusions within our study. The structure of the matrix allows for flexibility in its application across different
scenarios, enhancing the depth and scope of our analysis.

Theorem 9 Let T be a perfect 3-coloring with the matrix

a b c
d e f
g h i

 in a connected graph G. Then, none of the

following conditions can occur:
(1) c = b = 0,
(2) f = d = 0,
(3) h = g = 0,
(4) d = 0 ↔ b = 0, g = 0 ↔ c = 0, f = 0 ↔ g = 0.
Proof. It is evident that having 1, 2, and 3 is not possible because the graph is connected. Additionally, b = 0, c = 0,

and f = 0 hold true if d = 0, g = 0, and h = 0 respectively.

Theorem 10 ([12]) Let T represent a perfect 3-coloring of a graph G with the matrix A=

a b c
d e f
g h i

.
1. If b, c, f ̸= 0, then

|W|= |V(G)|
b
d
+1+

c
g

, |B|= |V(G)|
d
b
+1+

f
h

, |R|= |V(G)|
h
f
+1+

g
c

,

2. If b = 0, then

|W|= |V(G)|
c
g
+1+

ch
f g

, |B|= |V(G)|
f
h
+1+

f g
ch

, |R|= |V(G)|
h
f
+1+

g
c

,

3. If c = 0, then

|W|= |V(G)|
b
d
+1+

b f
dh

, |B|= |V(G)|
d
b
+1+

f
h

, |R|= |V(G)|
h
f
+1+

dh
b f

,

4. If f = 0, then
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|W|= |V(G)|
b
d
+1+

c
g

, |B|= |V(G)|
d
b
+1+

cd
bg

, |R|= |V(G)|
g
c
+1+

bg
cd

.

Theorem 11 Let

A=

a b c
d e f
g h i


be the parameter matrix of a cubic graph. The eigenvalues of A are given by:

λA1, 2 =
tr(A)− k

2
±

√(
tr(A)− k

2

)2

− det(A)
k

, λA3 = k.

Proof. Given the condition g+h+ i = d+e+ f = a+b+c = k, it is clear that k is one of the eigenvalues. Therefore,
the determinant of matrix A can be expressed as det(A) = kλA1λA2 . Using the relationship λA2 = tr(A)−λA1 −k, we can
write:

det(A) = kλA1(tr(A)−λA1 − k) =−kλ 2
A1

+ k(tr(A)− k)λA1 .

By solving the quadratic equation λ 2 +(k− tr(A))λ +
det(A)

k
= 0, we obtain:

λA1, 2 =
tr(A)− k

2
±

√(
tr(A)− k

2

)2

− det(A)
k

,

as derived above.
Theorem 12 None of the graphs corresponding to irreducible fullerenes possess a perfect 3-coloring.
Proof. According to Theorem 4, the only possible parameter matrices are those listed in the following table.

Table 1. Parameter matrices

graphs A1 A3 A4 A5 A6 A8 A10 A11 A12 A15 A16 A18

C20
√ √ √ √ √ √ √ √ √ √ √ √

C28 ×
√ √ √ √

×
√

×
√ √

×
√

C30 ×
√ √ √ √

×
√

×
√ √

×
√

Based on Theorem 4, we demonstrate that none of the parameter matrices presented in Table 1 are suitable as
parameter matrices for a perfect 3-coloring. This is primarily because, in most instances, the number of vertices assigned
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to colorW is not an integer. Additionally, for the graphC28 with the parameter matrixA4, although the number of vertices
assigned to color B is an integer, this also prevents it from being a valid parameter matrix for a perfect 3-coloring.

4. Application of the graphs corresponding to irreducible fullerenes
The graphs corresponding to irreducible fullerenes are mathematical models representing carbon molecules that have

a spherical structure and no adjacent pentagons. These graphs possess significant properties and have various applications
in fields like chemistry, physics, and computer science. For example:

• Irreducible fullerene graphs can be used to study the stability, symmetry, and electronic properties of fullerene
molecules.

• These graphs are crucial for the design of new materials and nanodevices, especially those involving carbon
nanotubes.

• Irreducible fullerene graphs serve as a foundation for investigating the combinatorial and algorithmic aspects of
planar graphs, such as enumeration, generation, coloring, and Hamiltonian cycles.

Several tools are available for generating fullerene structures. Buckygen, created by Brinkmann, McKay, and
Goedgebeur, is a highly efficient program for generating all non-isomorphic fullerenes. It generates triangulations where
all vertices have a degree of 5 or 6, or their dual representations as fullerene graphs. Buckygen is also capable of generating
isolated pentagon rule (IPR) fullerenes. SaGe utilizes the Buckygen generator to create fullerene graphs. The algorithms
used in Buckygen are discussed in references [9, 15]. Other programs designed for generating specific types of graphs
include Plantri and Fullgen, both of whichwere also developed using Brinkmann andMcKay, and are based on the research
presented in papers [16–18]. GaGe [19] is an open-source software developed in C and Java, capable of generating a
diverse array of graph types. It enables users to view selected graphs in different formats or save them in various file
types. The House of Graphs offers collections of fullerene graphs, including those without a spiral starting at a pentagon
and those without any spiral, all generated using Buckygen and Fullgen.

5. Concluding remarks
Fullerenes are polyhedral molecules made entirely of carbon atoms, available in various sizes and shapes. These

structures were also represented as graphs, where the vertices corresponded to atoms and the edges indicated the bonds
between them. A fullerene graph was defined as a 3-connected, 3-regular planar graph consisting solely of pentagonal
and hexagonal faces. The low solubility of fullerenes in fluids limited their use as medicinal substances; however, their
hydrophobicity, three-dimensional structure, and electronic properties made them still relevant for medical applications.
For instance, the spherical shape of fullerenemolecules allowed them to form and position within hydrophobic solutions of
enzymes or cells, giving rise to interesting medicinal properties. Some characteristics and optical properties of fullerenes
are discussed in [20]. This paper studied the perfect 2- and 3-coloring of fullerene graphs, focusing on irreducible
fullerenes. The method involved first obtaining the adjacency matrix of the graphs, followed by comparing its eigenvalues
with those of parameter matrices. If the eigenvalues of the parameter matrix were a subset of the graph’s eigenvalues, they
were retained for further examination in subsequent steps to determine their suitability for perfect coloring.

Acknowledgement
The authors would like to express their sincere gratitude to the anonymous referees for their detailed comments and

efforts to improve the original manuscript.

Volume 5 Issue 4|2024| 6375 Contemporary Mathematics



Conflict of interest
The authors declare no competing financial interest.

References
[1] Bello M, Muhainiah MA, Ibrahim IS. Graph coloring using commuting order product prime graph. Journal of

Mathematical and Computational Science. 2021; 23(2): 155-169.
[2] Ahsan M, Zohaib Z, Sohail Z, Arif R, Sarwar SM, Umar M. Computing the edge metric dimension of convex

polytopes related graphs. Journal of Mathematical and Computational Science. 2021; 22(2): 174-188.
[3] Sehgal A, Manjeet, Singh D. Co-prime order graphs of finite Abelian groups and dihedral groups. Journal of

Mathematical and Computational Science. 2021; 23(2): 196-202.
[4] Grunbaum B, Motzkin TS. The number of hexagons and the simplicity of geodesics on certain polyhedra. Canadian

Journal of Mathematics. 1963; 15: 744-751.
[5] Alaeiyan M, Mehrabani A. Perfect 2-colorings of the cubic graphs of order less than or equal to 10. AKCE

International Journal of Graphs and Combinatorics. 2018. Available from: https://doi.org/10.1016/j.akcej.2018.
11.004.

[6] Alaeiyan M, Karami H. Perfect 2-colorings of the generalized Petersen graph. Proceedings of the Mathematics
Sciences. 2016; 126: 289-294.

[7] Avgustinovich SV, Mogilnykh IY. Perfect 2-colorings of Johnson graphs J(6, 3) and J(7, 3). Lecture Notes in
Computer Science. 2008; 5228: 11-19.

[8] Damasco JR, Frettloh D. Perfect colorings of regular graphs. arXiv:180403552. 2018. Available from: https:
//doi.org/10.48550/arXiv.1804.03552.

[9] Goedgebeur J, McKay BD. Recursive generation of IPR fullerenes. Journal of Mathematical Chemistry. 2015; 53:
1702-1724.

[10] Keyhani M, Alaeiyan M. Perfect 2-coloring of the six regular graphs up to order 10. Internathional Journal of
Nonlinear Analysis and Applications. 2025; 16(3): 19-25.

[11] Alaeiyan M, Kamran Jamil M, Alaeiyan MH. Perfect 2-coloring ofCn×Cm. Journal of Algebra and Related Topics.
2023; 11(1): 55-63.

[12] Alaeiyan M, Mehrabani A. Perfect 3-colorings of the cubic graphs of order 10. Electronic Journal of Graph Theory
and Applications. 2017; 5(2): 194-206.

[13] Alaeiyan M, Mehrabani A. Perfect 3-colorings of the platonic graph. Iranian Journal of Science and Technology,
Transactions A: Science. 2019; 43: 1863-1871.

[14] Alaeiyan M, Mehrabani A. Perfect 3-colorings of cubic graphs of order 8. Armenian Journal of Mathematics. 2018;
10(2): 1-9.

[15] Brinkmann G, Goedgebeur J, McKay BD. The generation of fullerenes. Journal of Chemical Information and
Modeling. 2012; 52: 2910-2918.

[16] Brinkmann G, McKay BD. Fast generation of planar graphs. MATCH Communications in Mathematical and
Computational Chemistry. 2007; 58: 323-357.

[17] Brinkmann G, McKay BD. Construction of planar triangulations with minimum degree 5. Discrete Mathematics.
2005; 301: 147-163.

[18] Brinkmann G, Greenberg S, Greenhill C, McKay BD, Thomas R, Wollan P. Generation of simple quadrangulations
of the sphere. Discrete Mathematics. 2005; 305: 33-54.

[19] BrinkmannG, Delgado Friedrichs O, Lisken S, Peeters A, Van Cleemput N. CaGe-a virtual environment for studying
some special classes of plane Graphs-an update. MATCH Communications in Mathematical and Computational
Chemistry. 2010; 63: 533-552.

[20] Silantev AV. Energy spectrum and optical properties of FullereneC28 within the Hubbard model. Physics of Metals
and Metallography. 2020; 121: 501-507.

Contemporary Mathematics 6376 | Mehdi Alaeiyan, et al.

https://doi.org/10.1016/j.akcej.2018.11.004
https://doi.org/10.1016/j.akcej.2018.11.004
https://doi.org/10.48550/arXiv.1804.03552
https://doi.org/10.48550/arXiv.1804.03552

	Introduction
	Perfect 2-coloring of the graphs corresponding to irreducible fullerenes 
	Perfect 3-coloring of graphs corresponding to irreducible fullerenes
	Application of the graphs corresponding to irreducible fullerenes 
	Concluding remarks

