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Abstract: Examining mathematical models is a crucial aspect of research in comprehending the dynamics and managing
the transmission of Human Immunodeficiency Virus (HIV). This study presents a Caputo fractional order HIV infection
model with optimal control. We demonstrate that this model exhibits solutions that are always nonnegative. Additionally,
we provide a comprehensive examination of the elasticity of both zero disease and viral-persistence equilibrium location.
We also delve into the numerical method proposed byAtanackovic and Stanckovic for solvingGeneralized InverseMethod
and provide numerical simulations to validate the findings.
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1. Introduction
A large number of cells that are essential to the body’s defense are destroyed by the Human Immunodeficiency Virus

(HIV), which is the cause of AIDS. These cells are referred to as CD4 cells or T cells [1–4]. When HIV infiltrates a T
cell, it transforms the cell into a production center for the virus, compelling it to generate countless copies of the virus.
These copies then go on to infect other T cells. The body finds it harder and harder to stay healthy as time goes on because
the immune system becomes weaker due to the decrease in T cells. HIV can enter the human body through a number
of different channels, including intercourse, blood transfusions, contaminated needles, and mother-to-child transmission.
This viral disease appears to be the main cause of AIDS, a disorder that compromises the immune system of humans
and causes opportunistic infections in the body that can be fatal [5]. The vast majority of research on infections with
HIV models has focused on integer-order ordinary (or delay) differential equations [6, 7]. In contrast, the literature has
explored diverse control problems and applied various control theories to HIV-immune systems, as exemplified by works
such as [8–11]. Many of these control problems involve control difficulties such as feedback control and optimal control
techniques utilizing mathematical models, which have been confined to integer-order ordinary derivative models or delay
derivative models, as demonstrated by [12, 13].
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Currently, interest in estimating evidence-based processes employing fractional derivative equations (FDEs) has
increased, resulting in intriguing findings, as highlighted by [14–16]. Ding and Ye, in their studies presented in [17],
introduced fractional-order derivatives into a T-cell HIV infection model and conducted a thorough analysis of equilibrium
stability. However, it is worth noting that epidemiological optimal control constraints incorporating fractional-order
derivatives in output and input variables are relatively uncommon in existing body of knowledge. Fractional calculus
is a well-established mathematical concept that extends the traditional operations of differentiation and integration from
whole numbers to non-integer values. According to [15], Leibniz in 1,695 initially introduced the idea of fractional
calculus.

A fractional-order differential equation serves as an alternative to primarily nonlinear ordinary differential equations
[18]. For an extended period, it received little attention due to its complexity and limited application background.
However, in recent decades, its use in modeling various phenomena across multiple fields of science and engineering and
has proven beneficial. Fractional-order differentiations have garnered significant interest for their precise representation
of different nonlinear phenomena [19–21]. In recent years, fractional differential equations have been employed in several
scientific disciplines and numerous theoretical and practical models [22–24]. These equations are particularly applicable
to various natural phenomena, where they demonstrate greater validity and adaptability. The fractional-order system offers
increased degrees of freedom, which helps minimize errors from neglected parameters. Consequently, more researchers
are exploring the qualitative characteristics and numerical solutions related to fractional-order virus infection models [25–
27]. Furthermore, it also provides a strong application of memory, which is a key hereditary trait in the immune response,
is being explored. Key concepts in cellular structures, like fractals, are often linked to fractional-order differential
equations. Recently, fractional calculus (FC) has gained popularity across various disciplines. Numerous mathematicians
and applied researchers have sought to model real-world processes utilizing fractional calculus. For instance, Hashish and
Ahmed introduced a fractional-order model involving two immune effectors attacking an antigen. In rheology, significant
achievements have been made using fractional derivatives that capture vital aspects of cell rheological behavior. Building
on these findings, this study employs fractional-order differential equations to represent the dynamics of HIV infections at
the cellular level. Furthermore, we examine the impact of antiretroviral drug therapy and dietary supplements in managing
the levels of infected cells and virus.

The paper is organized as follows. In section 2, a brief discussion of fractional-order calculus is presented. The
model with initial values is derived in section 3. The non-negative solution of the model is presented in section 4. In
section 5, we established the existence of the model equilibria and analyzed the local stability of the model. Sensitivity
analysis of the model parameters on the basic reproduction number is discussed in section 6. Optimal control strategies
and numerical methods are discussed in sections 7 and 8 respectively. Numerical solutions of the mathematical model are
given in section 9. Finally, discussion of results and conclusion are presented in section 10.

2. Fractional calculus
This section presents definitions of fractional-order differentiation pertaining to the concept of fractional derivatives.

The model is developed using the Caputo and Riemann-Liouville definitions [33]. The primary benefit of Caputo’s
definition is that the initial conditions for fractional differential equations using Caputo derivatives resemble those of
classical differential equations.

Definition 2.1 The Riemann-Liouville (R-L) fractional integral operator of order δ > 0 of a function k : R+ −→ R is
defined as

Iδ k(χ) =
1

Γ(δ )

∫ χ

0
(χ −ω)δ−1k(ω)dω. (1)

Here Γ(·) is the Euler Gamma function which is defined as
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Γ(m) =
∫ ∞

0
ωm−1e−ω dω. (2)

This function is a generalization of a factorial in the following form:

Γ(m) = (m−1)! (3)

Definition 2.2 ([33]) The Caputo (C) fractional derivative of order δ > 0, m−1, δ < m, m ∈ M is defined as

Dδ k(ω) = Im−δ Dmk(ω) =
1

Γ(m−δ )

∫ ω

0

k(m)(r)
(ω − r)δ+1−m dr, (4)

where the function k(ω) has absolutely continuous derivatives up to order (m−1). In particular, when 0 < δ < 1, one has

Dδ k(ω) =
1

Γ(1−δ )

∫ ω

0

k′(R)
(ω − r)δ dr. (5)

We make use of Caputo fractional derivative definition in this paper. The main advantage of Caputo’s definition is
that the initial condition for fractional differential equations with Caputo derivatives takes the same form as the classical
differential equations.

3. Mathematical model derivation
In this work, we develop a fractional-order mathematical model for HIV infection, based on the foundational HIV

model by Culshaw, Ruan, and Spiteri [34]. This model outlines the transmission dynamics of HIV at the cellular level
and consists of three populations: uninfected cells, u(ω); concentration of infected cells, c(ω) and concentration of virus
v(ω). Uninfected cells produced at a rate η , die at a rate ϕ and become infected at a rate ζ . The concentration of virus is
considered proportional to the level of infected cells. Infected cells die at a rate of θ . Viruses are produced at a rate of τ
and decay at a rate of σ . These assumptions result in the following integer-order system of differential equations:

du
dω

= η −ϕu−ζuv,

dc
dω

= ζuv−θc,

dv
dω

= τc−σv,

(6)

where u(0) = u0, c(0) = c0, v(0) = v0, are the initial conditions.
Considering the above model, introducing the fractional order, gives
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Dδu= ηδ −ϕ δu−ζ δuv,

Dδ c= ζ δuv−θ δ c,

Dδv= τδ c−σδv,

(7)

with initial conditions

u(0) = u0, c(0) = c0, v(0) = v0, (8)

and Dδ is the Caputo derivative.
Definition 3.1 ([28]) The discriminant D(k) of a polynomial

k(y) = yn +a1yn−1 +a2yn−2 + · · ·+an (9)

is defined by D(k) = (−1)n(n−1)/2Q(k, k′), where k′ is the derivative of k. If q(y) = yl +c1yl−1+c2yl−2+ · · ·+cn, Q(k, q)
is the determinant of the corresponding Sylvester (n+ l)⊗ (n+ l) matrix. The Sylvester matrix is formed by filling the
matrix beginning with the upper left corner with the coefficients of k(y) and then shifting down one row and one column
to the right side. The process is then repeated for the coefficients of q(y).

Lemma 1 ([33]) For the polynomial equation,

R(λ ) = λ n +d1λ n−1 +d2λ n−2 + · · ·+dn = 0, (10)

the conditions displayed below make all the roots of (10) satisfy (12):
··· For n = 1, the condition for (10) is d1 > 0.
··· For n = 2, the conditions for (10) are either Routh-Hurwitz conditions or d1 < 0, 4d2 > (d1)

2,

∣∣∣∣ tan−1
(√

4d2 − (d1)2

d1

)∣∣∣∣> δπ
2

;

··· For n = 3, if the discriminant of R(λ ), D(R) is positive, then Routh-Hurwitz conditions are the necessary and
sufficient conditions for (10), i.e.

d1 > 0, d3 > 0, d1d2 > d3 if D(R)> 0.

··· If D(R) < 0, d1 ≥ 0, d3 > 0, δ < 2/3 , then the condition (10) is satisfied. Also if D(R) < 0, d1 < 0, d2 < 0,
δ > 2/3, then all roots of R(λ ) = 0 satisfies |arg(λ )|< δπ/2.

··· If D(R)< 0, d1 > 0, d2 > 0, d1d2 = d3 then condition (10) is satisfied for all δ ∈ [0, 1).
··· For general n, dn > 0 is a necessary condition for condition (10) to be satisfied.
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4. Non-negative solution
Let R3

+ = Z ∈ R3 : Z ≥ 0 and Z(ω) = (u(ω)), c(ω), v(ω)))T .
We use the following theorem to proof the nonnegative solutions of the system.
Theorem 4.1 (Generalized mean value theorem [36]). Let the function k(y) ∈C[δ1, δ2] and Dδ k(y) ∈C(δ1, δ2] for

0 < δ ≤ 1 and δ1, δ2 ∈ R then we have

k(y) = k(δ1)+
1

Γ(δ )
Dδ k(ξ )(y−δ1)

δ ∀y ∈ (δ1, δ2],

where 0 < ξ ≤ y.
Remark 1 Suppose that k(y) ∈ C[g, h] and Dδ k(y) ∈ C[g, h], for 0 < δ ≤ 1. It is clear from Lemma 1 that if

Dδ k(y) ≥ 0, ∀y ∈ (g, h), then k(y) is nondecreasing for each y ∈ [g, h]. If Dδ k(y) ≤ 0, ∀y ∈ (g, h), then k(y) is non-
increasing for each y ∈ [g, h].

We now prove the main theorem.
Theorem 4.2 There is a unique solution for the initial value problem in (7) and (8) and the solution remains in R3

+.

Proof. From Theorem 3.1 and Remark 3.2 of [37], we obtain the solution on (0, ∞) solving the initial value problem
(7) with (8) which is not only existent but also unique. Next, we will show the nonnegative orthant R3

+ is a positively
invariant region. What is needed for this is to show that, on each hyperplane bounding the nonnegative orthant, the vector
field points into R3

+. From (7), we find

Dδu|u=0 ≥ ηδ , Dδ c|c=0 ≥ ζ δuv, Dδv|v=0 ≥ τδ c.

By Remark 1, the solution will remain in R3
+.

5. Equilibrium points and stability
In this section, we examine the stability of Caputo’s fractional order HIV infection model.
To ascertain the equilibria of model (7), we set

Dδu(ω) = 0, Dδ c(ω) = 0, and Dδv(ω) = 0.

The model (7) has two equilibrium points, the disease-free equilibrium.

H0 = [u=
ηδ

ϕ δ , c= 0, v= 0] and the viral-persistence equilibrium

H1 =

[
u∗ =

σδ θ δ

ζ δ τδ , c∗ =
ζ δ τδ ηδ −ϕ δ σδ θ δ

ζ δ θ δ τδ , v∗ =
ζ δ τδ ηδ −ϕ δ σδ θ δ

ζ δ σδ θ δ

]
.

The basic reproductive number R0 of system (7) is defined as

R0 =
ζ δ ηδ τδ

ϕ δ σδ θ δ . (11)
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The R0 describes the average number of newly generated infected cells from one infected cell at the beginning of
the infection process. The biological interpretation is that when R0 < 1, the infected cells and the viral dies off but when
R0 > 1, the infected cells and the viral exists.

The Jacobian matrix of the system (7) evaluated at the disease-free equilibrium H0 is as follows:

J(H0) =


−ϕ δ 0 −ζ δ ηδ

ϕ δ

0 −θ δ ζ δ ηδ

ϕ δ

0 τδ −σδ

 .

Theorem 5.1 The disease-free equilibrium of system (7) is asymptotically stable if R0 < 1.
Proof. The disease-free equilibrium point, H0, is asymptotically stable if the eigenvalues, Λi, i = 1, 2, 3, of J(H0)

satisfy the following conditions [28–35]:

|argΛi|> δ
π
2
. (12)

The eigenvalues of the Jacobian matrix above, using |ΛI − J(H0)|= 0 gives the characteristic equation

(Λ+ϕ δ )

(
ϕ δ Λ2 +Λ(D+E)+

1
ϕ δ DE −F

)
= 0, (13)

where

D = ϕ δ θ δ , E = ϕ δ σδ , F = τδ ηδ ζ δ .

The roots of the characteristic equation are

Λ1 =−ϕ δ ,

Λ2, 3 =
−(D+E)±

√
(D+E)2 −4ϕ δ ( 1

ϕδ DE −F)

2ϕ δ .

It is obvious that, D+E > 0 and if DE > ϕ δ F , then all the eigenvalues, Λi, i = 1, 2, 3 satisfies the condition given
by (12).

We now consider the endemic stability of the system.
The Jaccobian is

Volume 5 Issue 4|2024| 5833 Contemporary Mathematics



J(H1) =

−ζ δv∗−ϕ δ 0 −ζ δu∗

ζ δv∗ −θ δ ζ δu∗

0 τδ −σδ

 .

The characteristic polynomial of the linearizes system is

R(Λ) = Λ3 +C1Λ2 +C2Λ+C3 = 0

where

C1 =
1
8

(
4ζ δv∗+4ϕ δ +4σδ +4θ δ

)
,

C2 =
1
8

(
ζ δ (2σδv∗+2θ δv∗−2τδu∗)+σδ (2ϕ δ +2θ δ )+2ϕ δ θ δ

)
,

C3 =
1
8

(
ζ δ (σδ θ δv∗−ϕ δ τδu∗)+ϕ δ σδ θ δ

)
.

Let D(R) be the discriminant of the polynomial R, then based on the definition, we obtain the discriminant of R as

D(R) =−

∣∣∣∣∣∣∣∣∣∣∣

1 C1 C2 C3 0
0 1 C1 C2 C3

3 2 C1 C2 0 0
0 3 2 C1 C2 0
0 0 3 2 C1 C2

∣∣∣∣∣∣∣∣∣∣∣
= 18C1C2C3 +(C1C2)

3 −4C3
1C3 −4C3

2 −27C2
3 .

By using condition (3) in Lemma 1 and (12), we have the following theorem.
Theorem 5.2 Consider system (7). Under the condition of R0 > 1,
··· If the discriminant of R(λ ), D(R) is positive, that is, D(R) > 0, then the viral-persistent equilibrium H1 is locally

asymptotically stable for 0 < δ ≤ 1;
··· If D(R)< 0, then the viral-persistent equilibrium H1 is locally asymptotically stable for 0 < δ <

2
3
.

6. Sensitivity analysis for R0

This section explores how R0 responds to variations in parameters to identify which parameter changes most
significantly and could lead to effective disease control.

The normalized forward-sensitivity index of a variable G with respect to a parameter w (or the elasticity of G with
respect to w) is defined as
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FG
w =

w
G
· ∂G

∂w
.

This index indicates how sensitive G is to changes of parameter w. Precisely, a positive or negative index indicates
that an increase in the parameter value results in an increase or decrease of G [38]. We derive the sensitivity of R0 with
respect to ζ δ , ηδ , τδ , ϕ δ , σδ and θ δ as shown in Figure 1.

Figure 1. Sensitivity indices for R0 against model parameters

One sees that viral infection of healthy cells (ζ δ ), per capita rate of HIV virus production (τδ ) and rate of healthy
cells production (ηδ ) have sensitivity index of +1. This means that increasing or (decreasing) these parameters by 10%,
will lead to a corresponding 10% increase or (decreases) inR0. Conversely, the death rate of healthy cells (ϕ δ ), death rate
of infected cells (θ δ ) and decay rate of virus (σδ ) have sensitivity index of−1. This means that increasing or (decreasing)
these parameters by 10%, will lead to a corresponding 10% decreases or (increases) in R0. The above remarks suggest
that control strategies that effectively reduce the infection rate of healthy cells (ζ δ ) and per capita rate of HIV virus
production (τδ ) can control the disease. From a medical viewpoint, antiretroviral therapy and dietary supplement can
reduce the infection rate of healthy cells and viral production. In section 7, we discuss the effect of antiretroviral therapy
(w1) and dietary supplement (w2).

7. Optimal control strategies
In this section, we extend our model in equation (14) by introducing two time-dependent control measures, namely

w1(ω) (Antiretroviral drugs therapy ) and w2(ω) (Dietary supplements). It is assumed that the concentration of infected
cells is reduced by the factor (1 − w1(ω)) as HIV patients undergo antiretroviral drug therapy. Furthermore, the
concentration of virus is reduced by a factor of (1−w2(ω)) as HIV patients take in dietary supplements to boost their
immune cells. The model system (14) becomes

Dδu= ηδ −ϕ δu−ζ δuv(1−w1(ω)),

Dδ c= ζ δuv(1−w1(ω))−θ δ c,

(14)
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Dδv= τδ c(1−w2(ω))−σδv,

with the given objective function

J(w1, w2) =
∫ T

0
(q1c+q2v+q3w2

1 +q4w2
2)dω, (15)

where c is the concentration of infected cells and v is the concentration of virus. T is the final time and the coefficients
q1, q2, q3, q4 are positive weights. Our aim is to minimize the concentration of infected cell and virus while minimizing
the cost of control w1, w2. Thus, we search for an optimal control w∗

1, w∗
2, such that

J(w∗
1, w∗

2) = min
w1, w2

{J(w1, w2)|w1, w2 ∈ Ω} (16)

where the control set is Ω = {(w1, w2)|wi : [0, T ]−→ [0, ∞) Lebesgue measurable, i = 1, 2, }.
The terms q1c and q2v represent the cost of reducing the concentration of infected cells and virus respectively, while

q3w2
1 is the cost of antiretroviral drug therapy and also, q4w2

2 is the cost of dietary supplements. The necessary conditions
that an optimal control must satisfy come from the PontryaginsMinimumPrinciple [39]. This principle converts Equations
(14) and (15) into a problem of point-wise minimizing a Hamiltonian H with respect to (w1, w2) stated as follows:

H =q1c+q2v+q3w2
1 +q4w2

2

+λu
{

ηδ −ϕ δu−ζ δuv(1−w1(ω))

}

+λc
{

ζ δuv(1−w1(ω))−θ δ c
}

+λv
{

τδ c(1−w2(ω))−σδv
}
,

where λu, λc, and λv, adjoint variables or co-state variables [39]



− dλu
dω

=
∂H
∂u

= λu(−ϕ δ −ζ δv(1−w1))+λcζ δu(1−w1)

− dλc
dω

=
∂H
∂c

= q1 −λcθ δ +λvτδ (1−w2)

− dλv
dω

=
∂H
∂v

= q2 −λuζ δu(1−w1)+λcζ δu(1−w1)−λvσδ

(17)
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The transversality conditions are

λu(ω) = λc(ω) = λv(ω) = 0.

On the interior of the control set, where 0 < wi < 1, for i = 1, 2 we have

∂H
∂w1

= ζ δvuλu−ζ δvuλc+2q3w1 = 0,

∂H
∂w2

=−τδ cλv+2q4w2 = 0.

We obtain

w1 =−1
2

ζ δuv(λu−λc)
q3

,

w2 =
1
2

λvτδ c
q4

.

Theorem 7.1 The optimal control (w∗
1, w∗

2) that minimizes J(w1, w2) over U is given by

w∗
1 =max

{
0, min

(
1, −1

2
ζ δuv(λu−λc)

q3

)}
,

w∗
2 =max

{
0, min

(
1,

1
2

λvτδ c
q4

)}
,

where λu, λc, and λv are the adjoint variables satisfying (17) and the following transversality conditions: λu(ω)= λc(ω)=

λv(ω) = 0 and

w∗
1 =


0 if w1 ≤ 0

w1, if 0 < w1 < 1
1, if w1,≥ 1

w∗
2 =


0 if w2 ≤ 0

w2, if 0 < w2 < 1
1, if w2,≥ 1

8. Numerical method
Atanackovic and Stankovic [40] introduced a numerical method to solve the single linear FDE. Some few years later,

they developed a method again to solve the nonlinear FDE [40]. It was shown that the fractional derivative of a function
k(ω) with order δ satisfying 0 < δ < 1 may be expressed as
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Dδ k(ω) =
1

Γ(2−δ )
×
{

k(1)(ω)

ωδ−1

[
1+

∞

∑
p=1

Γ(p−1+δ )
Γ(δ −1)p!

]
−
[

δ −1
ωδ k(ω)+

∞

∑
p=2

Γ(p−1+δ)
Γ(δ −1)(p−1)!

×
(

k(ω)

ωδ +
Vp(k)(ω)

ω p−1+δ

)]
,

where

Vp(k)(ω) =−(p−1)
∫ ω

0
ν p−2k(ν)dν , p = 2, 3, . . . , (18)

with the following properties:

d
dω

Vp(k) =−(p−1)ω p−2k(ω), p = 2, 3, . . . , (19)

We approximate Dδ k(ω) by using P terms in the sums appearing in (18) as follows:

Dδ k(ω) =
1

Γ(2−δ )
×
{

k(1)(ω)

ωδ−1

[
1+

P

∑
p=1

Γ(p−1+δ )
Γ(δ −1)m!

]
−
[

δ −1
ωδ k(ω)+

P

∑
p=2

Γ(p−1+δ )
Γ(δ −1)(p−1)!

×
(

k(ω)

ωδ +
Vp(k)(ω)

ω p−1+δ

)]
.

We can rewrite the above equation as follows:

Dδ k(ω)≃ Ω(δ , ω,P)k(1)(ω)+Θ(δ , ω, P)k(ω)+
P

∑
p=2

A(δ , ω, P)
Vp(k)(ω)

ω p−1+δ , (20)

where

Ω(δ , ω, P) =
1+∑P

p=1
Γ(p−1+δ )
Γ(δ −1)p!

Γ(2−δ )ωδ−1 ,

R(δ , ω) =
1

ωδ Γ(2−δ )
,

A(δ , ω, p) =− Γ(p−1+δ )
Γ(2−δ )Γ(δ −1)(p−1)!

,
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Θ(δ , ω, P) = R(a, ω)+
P

∑
p=2

A(δ , ω, p)
ωδ . (21)

We set

Θ1(ω) = u(ω), Θp(ω) =Vp(u)(ω) (22)

ΘP+1(ω) = c(ω), ΘP+p(ω) =Vp(c)(ω)

Θ2P+1(ω) = v(ω), Θ2P+p(ω) =Vp(v)(ω)

for p = 2, 3, ...

From equation (7), we can rewrite in the following form:

Ω(δ , ω, P)Θ
′
1 +Φ(δ , ω, P)Θ1(ω)+

P

∑
p=2

A(δ , ω, p)
Θp(ω)

ω p−1+δ

=ηδ −ϕ δ Θ1(ω)−ζ δ Θ1(ω)Θ2P+1(ω),

Ω(δ , ω, P)Θ
′
P+1(ω)+Φ(δ , ω, P)ΘP+1(ω)+

P

∑
p=2

A(δ , ω, P)
ΘP+p(ω)

ω p−1+δ

=ζ δ Θ1(ω)Θ2P+1(ω)−θ δ ΘP+1(ω),

Ω(δ , ω, P)Θ
′
2P+1(ω)+Φ(δ , ω, P)Θ2P+1(ω)+

P

∑
p=2

A(δ , ω, P)
Θ2P+p(ω)

ω p−1+δ

=τδ ΘP+1(ω)−σδ Θ2P+1(ω),

(23)

where

Θp(ω) =−(p−1)
∫ ω

0
ε p−2u(ε)dε,

ΘP+p(ω) =−(p−1)
∫ ω

0
ε p−2c(ε)dε,
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Θ2P+p(ω) =−(p−1)
∫ ω

0
ε p−2v(ε)dε,

p = 2, 3, ..., P.

(24)

Now we can rewrite (20) and (23) as

Θ′
1 =

1
Ω(δ , ω, P)

[
ηδ −

(
ϕ δ +ζ δ Θ2P+1(ω)+Φ(δ , ω, P)

)
Θ1(ω)−

P

∑
p=2

A(δ , ω, P)
Θp(ω)

ω p−1+δ

]
,

Θ′
p(ω) =−(p−1)ω p−2Θ1(ω), p = 2, 3, . . . , P,

Θ′
P+1 =

1
Ω(δ , ω, P)

[
ζ δ Θ1(ω)Θ2P+1(ω)− (θ δ +Φ(δ , ω, P))ΘP+1(ω)

−
P

∑
p=2

A(δ , ω, P)
ΘP+p(ω)

ω p−1+δ

]
,

Θ′
P+p(ω) =−(p−1)ω p−2ΘP+1(ω), p = 2, 3, . . . , P,

Θ′
2P+1 =

1
Ω(δ , ω, P)

[
τδ ΘP+1(ω)− (σδ +Φ(δ , ω, P))Θ2P+1(ω)

−
P

∑
p=2

A(δ , ω, P)
Θ2P+p(ω)

ω p−1+δ

]
,

Θ′
2P+p(ω) =−(p−1)ω p−2Θ2P+1(ω), p = 2, 3, . . . , P,

(25)

with initial conditions

Θ1(ω) = u0, Θp(δ ) = 0, p = 2, 3, . . . , P,

ΘP+1(ω) = c0, ΘP+p(ω) = 0, p = 2, 3, . . . , P,

Θ2P+1(ω) = v0, Θ2P+p(ω) = 0, p = 2, 3, . . . , P.

(26)

The numerical solution of the system of ordinary differential equations (25) with the initial conditions (26) could be
solved by using the famous Runge-Kutta fourth order method.
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9. Numerical simulation and discussion
By implementing the Generalized Euler Method (GEM) [27], we simulate model (7) with the parameter values as

indicated in Table 1. Using the parameter values in Table 1, we have R0 = 10.0 and D(R) = −0.0006188 < 0 which

indicates that the viral-persistence equilibrium H1 is locally asymptotically stable for 0 < δ <
2
3
. It can be observed that,

compared with the case of order δ = 0.85, the trajectory of the model with order δ = 0.95 is closer to the trajectory of the
model with the integer-order 1. That is, the farther from δ to 1, the bigger of the trajectory difference between them as in
Figure 4. By comparing the numerical results with the existing work, it can be observed that the non-integer order method
of modeling is more efficient and reliable than the integer order modeling. The advantage of the non-integer order over
the integer order is that it keeps memory of the data.

Table 1. Parameter values

Parameter Discription Value [41]

ηδ Rate of healthy cells production 8 cells/day
ϕ δ Death rate of healthy cells 0.1 cells/day
ζ δ Infection rate of virus on healthy cells 0.0025
θ δ Death rate of infected cells 0.2 cells/day
τδ Per capita rate of HIV viral load production 0.1/day
σδ Decay rate of virus 0.01/day

Figure 2. The time evolution of the trajectory of system (7) for uninfected cells u(ω), concentration of infected cells c(ω), and the concentration of
virus v(ω), respectively, with respect to δ = 0.85, δ = 0.95, and δ = 1, in condition of D(R)> 0
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Figure 3 shows that the viral-persistence equilibrium H1 is asymptotically stable for 0 < δ <
2
3
and there exists the

limit circle for δ >
2
3
.

Figure 3. The three-dimensional diagrams show the approximate solutions of u(ω), c(ω) and v(ω) for δ = 0.6, δ = 0.7, δ = 0.8, and δ = 0.9 in
condition of D(R)< 0

9.1 The effects of optimal integrated controls on the concentration of infected cells and virus

Figure 4 (a) shows a substantial difference in concentration of infected cells with and without using controls. Without
using controls, the concentration of infected cells increases and reaches a higher peak, while in the controlled case, the
concentration of infected cells decreases rapidly and reaches a lower peak. This suggests that antiretroviral drug therapy
and dietary supplements minimize the infected cells in HIV patients. Similarly, Figure 4 (b) also indicates a reduction in
the concentration of virus in HIV patients due to antiretroviral drug therapy and dietary supplements compared with the
uncontrolled case.
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Figure 4. Simulations showing the effect of w1 (antiretroviral drug therapy) and w2 (dietary supplements ) on (a) concentration of infected cells, (b)
concentration of virus. The optimal control profile of w1 (antiretroviral drugs therapy) and w2 (dietary supplements) is simulated in (c)

10. Conclusion
Microbiological systems inherently possess fractal structures, closely associated with non-integer (fractional) order

differential equations. This paper builds on the integer-order HIV model proposed by Culshaw and Ruan [12], utilizing
fractional differential equations to examine HIV infection dynamics at the cellular level to produce results that are more
reflective of biological realities. Modeling the transmission dynamics of HIV disease mathematically helps to provide
suitable control strategies to defend against the disease. We chose the relevant fractional index according to available real
data to obtain a more reliable model that can be used to study the progression of different HIV patients. Our results reveal
that the fractional order model possesses non-negative solutions which are needed in any dynamical system. We studied
the stability behavior of the disease-free and viral-persistence equilibrium of the system (7). We found that the stability
of the disease-free equilibrium is locally asymptotically stable if the basic reproduction number of viruses is less than one
(R0 < 1). However, when the basic reproduction number of viruses is more than one (R0 > 1), the disease-free equilibrium
is unstable. In the condition of R0 > 1 when discriminant of the characteristic polynomial of the linearized system is
positive D(R)> 0, the virus persistent equilibrium is locally asymptotically stable for 0 < δ ≤ 1, while when D(R)< 0,

the viral-persistence equilibrium is stable only for 0 < δ <
2
3
. By using numerical simulation on our parameter values, we

found D(R)< 0 which means that virus persistence equilibrium is stable for 0 < δ <
2
3
. The simulation also indicates that

the farther from δ to 1, the bigger of their trajectory difference in the system. These results indicate that the fractional order
model is a generalization of the classical differential equation. Thus the integer-order model can be viewed as a special
case from the non-integer order model. The viral-persistence equilibrium (H1) has a limit circle for δ >

2
3
. We analyzed
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the sensitivity of the basic reproductive number (R0) to the parameter values. We found that increasing or (decreasing)
the rate of viral infection of healthy cells (ζ δ ) and per capita rate of HIV virus production (τδ ) lead to a corresponding
increase or (decreases) in R0. Which means that strategies that effectively reduce the infection rate of healthy cells
(ζ δ ) and per capita rate of HIV virus production (τδ ) can control the disease. We, therefore, examined the effect of
antiretroviral therapy (w1) and dietary supplement (w2) on the control of the disease. Using these control parameters, the
concentration of virus and infected cells decreases rapidly and reaches a lower peak compared to uncontrolled cases. In
this paper, we introduce the Caputo fractional order nonlinear incidence in modeling HIV infection at the cellular level
with optimal control. Through theoretical analysis and numerical simulations, it is illustrated that fractional-order HIV
model is a generalization of the classical integer order HIV model. The limitation of the fractional model is that it may not
have solutions that you can express in terms of elementary functions and it requires substantial mathematical machinery
to understand them at any depth. This work provides useful insight into the fractal dynamical behavior of HIV disease
and control strategies which can aid research effort in this field. The significance of the findings indicates how effective
and reliable in modeling HIV infectious disease at the cellular level can easily be controlled by the implementation of
the fractional order differential models. Also, the findings revealed that the application of fractional derivative aid in the
introduction of memory effects into the mathematical models, which is critical for efficiently predicting the behavior of
physical systems with memory effects. In the near future, we intend to apply real data-set to both model (6) and model
(7) in order to make comparison for the integer-order model and the fractional-order model.
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