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Abstract: In the history of probability and statistics, general normal probability has played an important role. I utilize
a different exponential function to create a new continuous probability density function akin to the Laplace Gauss
distribution function. Finding an alternate probability distribution is required so that the probability can be determined
without referring to the table data. I noticed that the findings are pretty comparable to the normal probability distribution
values. I checked the new results against a few standard cases. The advantage of this exponential function is that we can
calculate the probability of a z value with more than two decimals, whereas with a normal distribution, we can only use z
values with two decimals.
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1. Introduction
The theory of probability distribution is crucial in the fields of statistics and probability. Relevant probability

distributions inmodernmathematics include the exponential, gamma, Cauchy, and normal (Laplace-Gaussian) distributions.
Finally, there is the χ2 distribution. The general normal probability distribution [1], [2, Chapter 26, equation 26.2.12],
[3–20] is the most practical distribution.

1.1 General normal distribution
One important and frequently used probability distribution in statistics is the normal distribution, also referred to as

the Gaussian distribution. It describes the distribution of values in a random variable. The majority of data points in a
dataset with a normal distribution are clustered around the mean, or average, value, and the likelihood of finding values
further from the mean decreases uniformly on both sides.

Key Features of the Normal Distribution
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1. The normal distribution has a symmetric, bell-shaped curve that centers on the mean. This curve is known as the
probability density function (PDF).

2. In a normal distribution, the mean, median, and mode of data all align at the center.
3. Symmetry: The normal distribution is symmetric around the mean. This signifies that the distribution’s left and

right sides are symmetrical.
4. Asymptotic: The tails of the normal distribution curve approach but do not touch the horizontal axis. This means

that there is always some chance, however tiny, of seeing values that deviate from the mean.
5. Defined by two parameters:
(i) The mean (µ) represents the center of the distribution. It decides where the curve’s peak is.
(ii) The standard deviation (σ ) is a measure of the distribution’s spread. A lower standard deviation indicates that

the data points are closer to the mean, resulting in a steeper curve, whereas a higher standard deviation spreads the data
points out, flattening the curve.

Application of Normal Distribution:
The Central Limit Theorem (CLT), which asserts that regardless of the starting distribution of the variables, the sum

(or average) of a large number of independent, identically distributed random variables tends to be normal, places special
emphasis on the normal distribution. Even in cases when the data did not originally follow a normal distribution, this
theorem validates the use of the normal distribution in many statistical procedures.

Probability Density Function (PDF)
Standard normal density function

n(x; µ, σ) =
1

σ
√

2π
exp

(
−1
2

(
x−µ

σ

)2
)

where:
• x is the random variable.
• µ is the mean.
• σ is the standard deviation.
• exp denotes the exponential function.
Cumulative Distributive Function:
Standard normal density function

/0(z) =
1√
2π

e
−1
2 z2

,

where z =
x−µ

σ
.

The standard normal cumulative distribution function (c.d.f) Φ(z) gives the area to the left of z under the standard
normal curve

Phi(z) = ∫ z
−∞ /0(y)dy

total area
1√
2π

∫∞
−∞ e

−1
2 (z)2

dz = 1.
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Figure 1. Normal distribution curve

Figure 1 shows the probability of being within one standard deviation of the mean.

Φ(−1, 1)≈ 68.3%

The likelihood is within two standard deviations of the mean.

Φ(−2, 2)≈ 95.4%

Probability is within three standard deviations of the mean.

Φ(−3, 3)≈ 99.7%

By the symmetry of the normal curve

Φ(−z) = 1−Φ(z)(−∞ < z < ∞)

1√
2π

∫0
−∞ e

−1
2 (z)2

dz = 0.5

also we know that.
The probability of the interval (a, b) in the standard normal distribution is
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Φ(a, b) = Φ(b)−Φ(a)

By the difference rule of probabilities from Figure 1

Φ(−z, z) = Φ(z)−Φ(−z) = Φ(z)− (1−Φ(z)) = 2Φ(z)−1

Theorem 1 The mean and variance of n(x, µ, σ) are µ and σ2.
Proof. To evaluate the mean, we first calculate

E (X −µ) =
1

σ
√

2π
∫∞
−∞ (x−µ)e

−1
2 (

x−µ
σ )

2

dx

Let t =
x−µ

σ
⇒ dt =

dx
σ

E (X −µ) =
σ√
2π

∫∞
−∞ te

−1
2 (t)2

dt

The function f (t) = te
−1
2 (t)2

is an odd one.
So ∫∞

−∞ te
−1
2 (t)2

dt = 0
Therefore E (X −µ) = 0

E (X) = µ

The normal distribution’s variance is

E
[
(X −µ)2

]
=

1
σ
√

2π
∫∞
−∞ (x−µ)2e

−1
2 (
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σ )

2
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x−µ

σ

⇒dt =
dx
σ

E (X −µ) =
σ√
2π

∫∞
−∞ t2e

−1
2 (t)2

dt

Here g(t) = t2e
−1
2 (t)2

is an even function
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E
[
(X −µ)2

]
= 2
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By using integration by parts we get

E
[
(X −µ)2

]
= σ2

√
π
2
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−te
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0
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0 e
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E
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√
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√
π
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E
[
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2. Improved probability function
We can choose Probability density function as

n(x, µ, σ) = ψ (x) =
√

3e
√

3( x−µ
σ )

σ
(

1+ e
√

3( x−µ
σ )
)2

Where µ is the mean and σ is the Standard deviation

ψ (z) =
√

3e
√

3z(
1+ e

√
3z
)2

Cumulative Distribution function

Ψ(z) = ∫ z
−∞ ψ (y)dy

Total area ∫∞
−∞

√
3e

√
3z(

1+ e
√

3z
)2 dz = 1

Improved form of cumulative distributive function

Ψ(z) =
√

3∫ z
−∞

e
√

3y(
1+ e

√
3y
)2 dy
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Figure 2. Improved form of probability distribution curve

Figure 2 shows the probability of being within one standard deviation of the mean.

Ψ(z) (−1, 1) = 69.93%

Probability is within two standard deviations of the mean.

Ψ(z) (−2, 2) = 90 %

Probability is within three standard deviations of the mean.

Ψ(z) (−3, 3) = 98.89%

Note :

1. P(−∞ < Z < ∞) = 1

2. P(Z < z) =
e
√

3z(
1+ e

√
3z
)
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3. P(Z > z) = 1− e
√

3z(
1+ e

√
3z
) =

1(
1+ e

√
3z
)

4. P(z1 < Z < z2) =
e
√

3z2(
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√
3z2

) − e
√

3z1(
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√
3z1
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)

Theorem 2 The mean and variance of c(x; µ, σ) are µ and σ2.
Proof. To find the mean, we first calculate

E (X −µ) =
√

3
σ

∫∞
−∞

(x−µ)e
√

3( x−µ
σ )(

1+ e
√

3( x−µ
σ )
)2 dt

Let t =
x−µ

σ
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dx
σ

E (X −µ) =
σ2

√
3

σ
∫∞
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3t(
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√
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)2 dt

u(t) =
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√
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)2

u(−t) =
−te−

√
3t(

1+ e−
√

3t
)2 =

−te−
√
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e−2
√

3t
(
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√
3t
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−te
√

3t(
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√
3t
)2 =−u(t)

u(t) is an odd function

∫∞
−∞

te
√

3t(
1+ e

√
3t
)2 dt = 0

Therefore E (X −µ) = 0.
The variance of the normal distribution is given by

E
[
(X −µ)2

]
=

√
3

σ
∫∞
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(x−µ)2e
√
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σ )(
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√
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)2 dx

Let t =
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σ
⇒ dt =

dx
σ
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v(t) is an even function
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By using integration by parts we get
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√
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E
[
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]
= σ2 π2

9
= 1.09662 σ2 ≈ σ2

Variance = σ2.
Problem 1 The GRE score is created by N(48,194). The required score for admission to the specified college is 205.
(a) What is the percentage of students admitted? If 25,000 students took the GRE?
(b) How many of them received a score higher than 200?
Sol:
(a) Given N

(
µ, σ2

)
= N(48, 194) mean µ = 194 and standard deviation σ = 48 Probability of the student’s GRE

score 205:
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z1 =
x1 −µ

σ
=

205−194
48

= 0.2291

P(Z > z1) =
1(

1+ e
√

3z1

) = 0.402

Therefore, percentage of students are eligible to join = 40.2%.
From Normal distribution method

P(Z > z1) = P(Z > 0.23) = 1−0.5910 = 0.4090

Therefore, percentage of students are eligible to join = 40.9%.
(b) GProbability of students having more than 200:

z2 =
x2 −µ

σ
=

200−194
48

= 0.125

P(Z > z2) =
1(

1+ e
√

3z2

) ≈ 0.45

Number of expected gifted students

np = 25,000×0.45 = 11,250

From Normal distribution method P(Z > 0.23) = 1−0.5478 ≈ 0.45

np = 25,000×0.45 = 11,250

Problem 2 The annual average number of accidents in Bombay is 5,200, with an 845 standard deviation. The number
of accidents is distributed normally. What is the probability that there will be?

(a) fewer than 6,000 accidents annually.
(b) accidents between 3,700 and 5,000 annually.
Sol: Given mean µ = 5,200 and standard deviation σ = 845

z1 =
x1 −µ

σ
=

6,000−5,200
845

= 0.9467

P(Z < z1) =
e
√

3z1(
1+ e

√
3z1

) = 0.8374
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From Normal distribution method P(Z < z1) = 0.8289.
(c)

z1 =
x1 −µ

σ
=

3,700−5,200
845

=−1.7751

z2 =
x2 −µ

σ
=

5,000−5,200
845

=−0.2367

P(z1 < Z < z2) =
1(

1+ e
√

3z1

) − 1(
1+ e

√
3z2

) = 0.3547

From Normal distribution method P(z1 < Z < z2) = P(−1.77 < Z <−0.24)

P(z1 < Z < z2) = 0.4052−0.0384 = 0.3664

Problem 3 The preliminary Civil Services Examination (CSE) results in India are distributed normally as of 2023.
The standard deviation is 132 and the average score is 625. How likely is it that an individual score will be?

(a) below 700.
(b) Scores from 600 to 750.
Sol: (a) mean µ = 625 and standard deviation σ = 132 Probability of the score below 700:

z1 =
x1 −µ

σ
=

700−625
132

= 0.5682

P(Z < z1) =
e
√

3z1(
1+ e

√
3z1

) = 0.7279

From Normal distribution method

P(Z < z1) = P(Z < 0.57) = 0.7279

(a) Scores between 600 to 750:

z1 =
x1 −µ

σ
=

600−625
132

=−0.1894
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z2 =
x2 −µ

σ
=

750−625
132

= 0.9469

P(z1 < Z < z2) =
1(

1+ e
√

3z1

) − 1(
1+ e

√
3z2

) = 0.4188

From Normal distribution method P(z1 < Z < z2) = P(−0.19 < Z < 0.95).

P(z1 < Z < z2) = 0.8289−0.4247 = 0.4042

A hot beverage machine is configured to distribute an average of 250 milliliters each cup. Given a standard deviation
of 18 milliliters for drink volume.

(a) how many cups can hold more than 276 milliliters?
(b) What value yields the least 35% of drinks?
Sol:
Mean µ = 250 and standard deviation σ = 18.
(a) How many of the cups will hold more than 276 milliliters?

z1 =
x1 −µ

σ
=

276−250
18

= 1.4444

P(Z > z1) =
1(

1+ ez1
√

3
) = 0.0757

From normal distribution table P(Z > 1.44) = 0.0749.
(b) At what value do we find the least 35% of drinks?
Given P(Z < z1) = 0.35 ⇒ P(Z > z1) = 0.65.

⇒ 1(
1+ e

√
3z1

) = 0.65

⇒ 1+ e
√

3z1 =
100
65

⇒ z1 =

ln
(

7
13

)
√

3
=−0.3574

z1 =
x1 −µ

σ
=−0.3574 ⇒ x1 −250

18
=−0.3574
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x1 = 250−0.3574×18 = 243.56 mL

From normal distribution table P(Z < z1) = 0.35.

x1 −µ
σ

=−0.38 ⇒ x1 −250
18

=−0.38

−0.38×18 = x1 −250

x1 = 250−0.38×18 = 243.16 mL

3. Conclusions
In this essay, I demonstrated that the new probability function follows all of the rules of the general theory of normal

distribution. We can easily calculate probability without a table. The definition of probability is chance, hence any
differences between the new and original functions should be ignored. Actually, the table values are estimated values of
the integral, as the original integral is an improper integral. I strongly feel that this new method has novelty and will be
more useful in the future.
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