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Abstract: This study aims to enhance and extend the mathematical model of a dynamic stochastic dual-strain SEIR
epidemic with a double-saturated incidence rate. The model is represented by a nonlinear system of differential equations
that describe the dynamics of susceptible, exposed, infected and recovered individuals, with the exposed and infected
compartments further divided into sub-classes for the first and second strains. We develop an innovative stochastic
epidemic model where drug-sensitive and drug-resistant infected groups interact through mutation. The primary objective
is to determine the existence and uniqueness of a positive global solution using a well-deservedly constructed Lyapunov
function, enabling a deeper analysis of the system’s complexities. This analytical framework reveals the interactions
between disease transmission, treatment dynamics, and stochastic influences. A significant contribution to this work is
defining the stochastic basic reproduction number R0 as a threshold for the progression of both strains. Under low noise
conditions and R∗

0 > 1, the model predicts the emergence of an ergodic stationary distribution, offering insights into long-
term disease trends. Conversely, in high-noise scenarios, R̂∗

0 < 1, the analysis explores the extinction and persistence
of drug-sensitive and drug-resistant infections. Our analytical results are further confirmed by simulations of epidemics
spreading across drug-sensitive and drug-sensitive populations. Based on our simulations and theoretical predictions, we
find that they are closely aligned.
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1. Introduction
The foundational work of Kermack and McKendrick in 1927 [1] laid the groundwork for a significant portion of

mathematical modeling within the field of epidemiology. Their pioneering efforts introduced a systematic approach to
understanding the spread of infectious diseases through mathematical frameworks. A key aspect of their contribution is
the Susceptible Infected Removed (SIR) model, an acronym for susceptible, infected, and recovered compartments. This
model has proven to be highly effective in analyzing a wide range of infectious diseases by categorizing the population into
those who are susceptible to infection, those who are currently infected, and those who have recovered and presumably
gained immunity. However, the SIR model has its limitations. It does not account for the incubation period, the time
between exposure to the pathogen and the onset of infectiousness. To address this gap, an additional compartment is
introduced, leading to the development of the SEIR model. The SEIR model stands for susceptible, exposed, infected,
and recovered. The ‘exposed’ compartment represents individuals who have been exposed to the pathogen but are not yet
infectious. This modification allows for a more accurate representation of disease dynamics, especially for diseases with
a significant incubation period. The SEIR model has become a critical tool in the study of infectious diseases. Numerous
scholarly articles have employed this model to investigate various epidemics and pandemics. For instance, the SEIR
framework has been instrumental in understanding the spread of COVID-19 [2, 3], providing insights into how the virus
propagates through populations and helping to inform public health interventions. Similarly, it has been used to study
other infectious diseases such as the HBV [4] and HIV [5], among others. By incorporating the exposed compartment,
researchers can better predict the course of an epidemic and evaluate the potential impact of different control strategies.

The process of mutation has been observed in numerous infections, including influenza, dengue fever, COVID-19,
HIV, and tuberculosis [6–10]. Thesemutations result in the emergence ofmultiple strains of a pathogen, which complicates
the landscape of infectious disease dynamics. The presence of multiple strains necessitates the development of more
sophisticated mathematical models. Models that incorporate two or more strains are particularly effective in examining
and understanding the evolution of these strains within a single disease outbreak. As an illustration, one research examined
the worldwide dynamics of the multi-strain SEIR epidemic model, focusing on its use in the COVID-19 pandemic [11].
This approach helps researchers to understand how different strains interact, spread, and impact public health measures.
By considering multiple strains, the model provides a more comprehensive understanding of the disease dynamics and
can better inform strategies for intervention and control. Furthermore, recent research has delved into the examination and
optimalmanagement of a dual andmulti-strain SEIR infectionmodel [12, 13]. These studies focus on developing strategies
to control the spread of diseases with multiple strains, taking into account factors such as transmission rates, mutation rates,
and the effectiveness of different intervention measures. This research highlights the importance of considering multiple
strains in epidemiological modeling to effectively manage and mitigate the impact of infectious diseases.

Drugs are in increasing demand in both livestock and human medicine to treat and prevent diseases, as well as
to maintain productivity in food animals [14, 15]. This widespread use has been linked to the development of drug
resistance, which refers to the reduced effectiveness of a treatment in curing diseases. Consequently, drug resistance poses
a significant threat to public health [16, 17]. Numerous studies have been conducted to understand and characterize the
emergence and spread of drug resistance in various systems [18–20]. For instance, Pecerska et al. [21] proposed a method
for quantifying the transmission fitness costs associated with multi-drug-resistant tuberculosis. Karmakar et al. [22]
estimated tuberculosis drug resistance amplification rates in high-burden settings, shedding light on how resistance spreads
in areas heavily affected by the disease. Friedman et al. [23] introduced a mathematical model that explores the evolution
of two bacterial strains drug-resistant and non-drug-resistant, within a population of patients and healthcare workers in a
hospital setting. This model provides insights into how drug resistance can proliferate in healthcare environments.

Additionally, Kitaro et al. [24] conducted a study using both modeling and bifurcation analysis to understand
tuberculosis with amulti-drug-resistant compartment, incorporating chemoprophylaxis treatment functions. This approach
helps identify critical points where interventions could be most effective. Abatih et al. [25] developed a modeling
framework that includes a susceptible class, a class infected with drug-sensitive bacteria, and a class infected with
drug-resistant bacteria among pigs, highlighting the importance of monitoring and managing drug resistance in livestock.
Moreover, Yang et al. [26] constructed a mathematical model that includes optimal strategies for age-specific vaccination
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and antiviral treatment against influenza dynamics. This model aims to identify the most effective ways to combat
influenza outbreaks while considering the role of drug resistance.

This paper presents a dual-strain stochastic SEIR model that incorporates both drug-sensitive and drug-resistant
populations. By introducing stochastic noise, we capture the random fluctuations that can affect the disease dynamics,
especially in the context of mutation-driven transitions between drug-sensitive and drug-resistant strains. The main
objectives of this study are to investigate the existence and uniqueness of an ergodic stationary distribution, determine the
thresholds for disease persistence or extinction, and examine the influence of stochasticity on the spread of drug resistance.
We also explore the interaction between the two strains and how their dynamics are influenced by both deterministic factors
(e.g., transmission rates and mutation) and stochastic noise.

This paper proceeds as follows: Section 2 introduces a dual strain SEIR epidemic model (1) and (3), detailing
both deterministic and stochastic components. Section 3 defines the notations, terms, and some preliminaries used in
subsequent analyses. In Section 4, we establish the existence and uniqueness of an ergodic stationary distribution for
drug-sensitive and drug-resistant infections by constructing a stochastic Lyapunov function that aligns with the solutions
to the system (3). Section 5 outlines conditions under which infections may become extinct. Theoretical findings are
supported by examples with numerical simulations provided in Section 6. Section 7 provides a concise discussion of the
main results and outlines directions for future research. Elaborated in this section.

2. Model
Environmental fluctuations play a vital role in natural ecosystems, encompassing factors such as temperature

variations, the immunological state of hosts, and incubation periods. Occasionally, even small fluctuations can suppress
population explosions in dynamic systems. SDEs provide a more realistic representation of these influencing factors
compared to deterministic systems [27], offering additional realism. Numerous scholars have incorporated stochastic
perturbations into their models, considering both biological and mathematical perspectives [28–31]. However, to date,
there has been limited exploration of the stochastic SIRI system with saturated incidence and relapse, particularly
concerning drug resistance mutation. Therefore, we propose a dual-strain SEIR model to account for transmissions
involving both drug-sensitive and drug-resistant strains, specifically addressing drug-resistance mutation as follows:

dS
dt

= Θ− β1SI1

1+h1I1
− β2SI2

1+h1I2
−ρS,

dE1

dt
=

β1SI1

1+h1I1
− (η +ρ)E1,

dE2

dt
=

β2SI2

1+h2I2
− (δ +ρ)E2,

dI1

dt
= ηE1 − (ξ +ρ)I1, (1)

dI2

dt
= δE2 − (γ +ρ)I2,

dR
dt

= ξI1 + γI2 −ρR.
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In accordance with the non-negative terms. In Tables 1 and 2, detailed environmental illustrations are shown for the
parameters.

Table 1. Model variables and description

Variables Description

S(t) Susceptible population

E1(t) Drug-sensitive individuals were exposed to strain-I

E2(t) Drug-resistance individuals were exposed to strain-II

I1(t) People infected with drug-sensitive strain-I

I2(t) People infected with drug-sensitive strain-II

R(t) Recovered population

Table 2. Model parameters and description

Parameters Description

Θ Recruitment rate of birth (or) immigration

β1 Transmission rate of drug-sensitive people

β2 Transmission rate of drug-resistance people

h1 Saturated factor that measures inhibitory effect in the strain-I

h2 Saturated factor that measures inhibitory effect in the strain-II

ρ Natural death rate

η Strain-I latency rate of drug-sensitive

δ Strain-II latency rate of drug- resistance

ξ Recovery rate infective individuals of Strain-I

γ Recovery rate infective individuals of Strain-II

Figure 1. The detailed flowchart of deterministic S, E1, E2, I1, I2, R epidemic model of system (1)
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In this model,
1

1+hI
measures the inhibition effect resulting from the behavioral changes of the people who are

affected by the disease when their numbers are crowded with other infected individuals, while S(t)I(t) measures the
infection forces. The flowchart illustrating the dynamics of the S, E1, E2, I1, I2, R epidemic model is presented in
Figure 1, depicting the transitions between the different compartments of susceptible, exposed, infectious, and recovered
individuals. An invariant set of positive values defines the region Ξ of model (1) is,

Ξ =

{
(S, E1, E2, I1, I2, R) ∈ R+

6 : 0 < S+E1 +E2 + I1 + I2 +R≤ Θ
ρ
,

S> 0, E1 > 0, E2 > 0, I1 > 0, I2 > 0, R> 0
}
.

Therefore, this is the basic reproduction number

R0 = max{R1, R2} . (2)

R1 =
Θβ1η

ρ(η +ρ)(ξ +ρ)
, R2 =

Θβ2δ
ρ(δ +ρ)(γ +ρ)

.

Here, R1 denotes the reproduction number associated with strain-1, while R2 denotes the reproduction number
associated with strain-2. These parameters quantify the potential for each strain to spread within the population. An
individual infected with the virus is expected to cause an average of two secondary transmissions from that individual in
a susceptible population. According to the threshold value R0, it displays the following behavior of the solution:

• According to model (1), if R0 < 1, there exists a unique disease-free equilibrium E0 =
(
S0, E0

1, E
0
2, I

0
1, I

0
2, R

0
)
=(

Θ
ρ
, 0, 0, 0, 0, 0

)
, which is globally asymptotically stable.

• When R0 > 1 in addition to E0, model (1), contains a global asymptotically stable positive endemic equilibrium
E∗ = (S∗, E∗

1, E
∗
2, I

∗
1, I

∗
2, R

∗). The specific proof is similar to references [32, 33].
In this paper, our aim is to delve into the dynamics of a stochastic SEIR epidemic model featuring both drug-resistant

and drug-sensitive strains. Our focus is on investigating and discussing the presence of a stationary distribution for the
model’s solutions. By exploring how these strains interact within the population dynamics, we aim to shed light on the
epidemiological implications of drug resistance and contribute new insights to the field of infectious disease modeling.

The population dynamics of an ecosystem are inherently influenced by fluctuations in the environment. These
fluctuations can significantly impact the behavior and interactions of species within the ecosystem. It has become evident
that stochastic models, which account for randomness and variability, offer a more realistic portrayal of these dynamics
compared to traditional deterministic models. In stochastic modeling, there are various approaches to incorporate these
effects. For instance, some studies introduce noise into the transmission parameters of the model, reflecting uncertainties
in how diseases or interactions spread among individuals. Others integrate stochasticity by considering noise that is
proportional to each state variable, capturing fluctuations in population sizes or other ecological variables over time [34–
37]. By adopting stochastic modeling techniques, researchers can better simulate and understand the complex dynamics of
ecosystems. These methods allow for the exploration of how random events and fluctuations in environmental conditions
influence population trends, species interactions, and ultimately, the stability of ecological systems. Thus, stochastic
models play a crucial role in bridging the gap between theoretical models and real-world observations in ecology and
epidemiology.
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Now, we assume the environmental fluctuations are white noise type, which are directly proportional to S, E1, E2, I1,

I2, and R and influenced on
dS
dt

,
dE1

dt
, dE2dt,

dI1

dt
,

dI2

dt
, and

dR
dt

in model (1). The stochastic SEIR model is given by:

dS=

[
Θ− β1SI1

1+h1I1
− β2SI2

1+h1I2
−ρS

]
dt +ρ1SdB1(t),

dE1 =

[
β1SI1

1+h1I1
− (η +ρ)E1

]
dt +ρ2E1dB2(t),

dE2 =

[
β2SI2

1+h2I2
− (δ +ρ)E2

]
dt +ρ3E2dB3(t),

dI1 = [ηE1 − (ξ +ρ)I1]dt +ρ4I1dB4(t), (3)

dI2 = [δE2 − (γ +ρ)I2]dt +ρ5I2dB5(t),

dR= [ξI1 + γI2 −ρR]dt +ρ6RdB6(t),

where Bi’s are standard one-dimensional independent Brownian motion, ρi > 0 are the intensity of the white noise, (i =
1, 2, 3, 4, 5, 6) that is specified on a complete probability area (Ω, F, P) with {Ft}t∈R4

+
filtration fulfilling the normal

requirements, F0 contains all P-null sets, whereas {Ft}t∈R4
+
value is increasing and continuous [38]. In all cases, the

coefficients are not negative, Θ > 0. This study examines the incidence rates of double saturation, along with rates of
drug resistance and drug sensitivity, in the context of disease mutation using the stochastic SEIRS epidemic model. It will
be necessary to investigate a model’s dynamical properties in order to determine whether it exhibits a stationary ergodic
distribution.

3. Preliminaries
The analysis of the epidemic model’s dynamical behavior hinges on assessing whether the solution remains globally

positive throughout. In summary, the study conclusively establishes both the existence and uniqueness of a globally
positive solution. To comprehensively explore the dynamical behavior of model (3), an initial thorough investigation into
its static properties is imperative. The first step is to consider stochastic differential equations in d-dimensions

dX= f (X(t), t)dt +g(X(t), t)dB(t) for t≥ t0,

with the initial value for X(0) = X0 ∈ Rd . The differential operator L associated with the equation above can be defined
as follows:

L=
∂
∂ t

+
d

∑
i=1

fi(X, t)
∂

∂Xi
+

1
2

d

∑
i, j=1

[
gT (X, t)g(X, t)

]
ij

∂ 2

∂Xi∂Xj
.

Volume 5 Issue 4|2024| 6135 Contemporary Mathematics



If L acts on a function V ∈ C2
(
Rd × [t0, ∞; R+]

)
, then

LV (X, t) =Vt(X, t)+VX(X, t) f (X, t)+
1
2
trace

[
gT (X, t)VXX(X, t)g(X, t)

]
,

where Vt =
∂V
∂ t

, VX =

(
∂V

∂X1
,

∂V
∂X2

, ...,
∂V

∂Xd

)
, VXX =

(
∂ 2V

∂Xi∂Xj

)
d×d

. Thus, by Itô’s formula [39], if X(t) ∈Rd , then

dV (X(t), t) = LV(X(t), t)dt+VX(X(t), t)g(X(t), t)dB(t).

To establish the conclusions presented in Sections 4 and 5, it is imperative to introduce the following theorem and
accompanying lemmas.

Lemma 1 [39] There is a bounded open domain θε ⊂R6
+ with regular boundary Ω satisfying conditions H1 and H2,

then y(t) has a unique ergodic stationary distribution k(·) in any positive value among.
H1: there exist a constantM and the following inequality is ∑6

i, j=1 ai j(x)ZiZ j ≥M||Z||2.
H2: some neighborhood θε and a non-negative C2-function follows LV≤−1 for any R6

+/θε .

=⇒ P

{
lim

T→+∞

1
T

∫ T

0
F(x(t))dt =

∫
Rd

F(x)k(dx)
}
= 1, ∀x ∈ Rd ,

where F(·) is an integrable function with respect to k.
Lemma 2 For any initial value (S(0), E1(0), E2(0), I1(0), I2(0), R(0))

T ∈R6
+, there has a unique positive solution

(S(t), E1(t), E2(t), I1(t), I2(t), R(t))
T of the model (3) on t ≥ 0 almost surely (a.s).

Remark 1 The proof of Lemma 2 follows a similar approach as in [40–42], and is consistent with the methodology
described in [43]. Therefore, the proof will not be provided here.

4. Ergodic stationary distribution
It is essential to analyze under what conditions a disease will persist and become prevalent within a population

when studying epidemic dynamical models. For example, deterministic models often rely on proving that their endemic
equilibrium acts as a global attractor or achieves global asymptotic stability. However, for system (3), the concept of an
endemic equilibrium does not apply. This section endeavors to establish the existence of an ergodic stationary distribution,
drawing on Has’minskii’s theory [39], which provides insights into the enduring presence of the disease.

The following stochastic differential equation describes X(t) as a homogeneous Markov process in R6
+:

dX(t) = f (X(t))dt +
k

∑
i=1

gi(X)dBi(t).

Therefore, the diffusion matrix can be described as follows:

A(x) = (a(i j)(x)), ai j(x) =
k

∑
i=1

gp
i (x)g

q
i (x).
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Theorem 1 If

R∗
0 = max{R∗

1, R
∗
2}> 1, (4)

R∗
1 =

Θβ1η(
ρ +

ρ2
1

2

)(
η +ρ +

ρ2
2

2

)(
ξ +ρ +

ρ2
4

2

) , R∗
2 =

Θβ2δ(
ρ +

ρ2
1

2

)(
δ +ρ +

ρ2
3

2

)(
γ +ρ +

ρ2
5

2

)

the model (3) has a unique ergodic stationary distribution k(·) in any positive value.
Proof. The investigation unfolds through two key steps. Initially, we rigorously verify the uniform elliptic condition

(H1) to ensure its validity. Subsequently, we methodically construct a non-negative Lyapunov function that satisfies
the condition (H2) as outlined in Lemma 1. These steps collectively form the foundation for advancing our theoretical
understanding in this study.

Step 1
The diffusion matrices of the model (3) is

A=



ρ2
1S

2 0 0 0 0 0
0 ρ2

2E
2
1 0 0 0

0 0 ρ2
3E

2
2 0 0 0

0 0 0 ρ2
4 I

2
1 0 0

0 0 0 0 ρ2
5 I

2
2 0

0 0 0 0 0 ρ2
6R

2



Choose,M= min(S,E1,E2, I1, I2,R)∈θ̄ε⊂R6
+

{
ρ2

1S
2 +ρ2

2E
2
1 +ρ2

3E
2
2 +ρ2

4 I
2
1 +ρ2

5 I
2
2 +ρ2

6R
2
}
.

6

∑
i, j=1

ai, j(S, E1, E2, I1, I2, R)ZiZ j = ρ2
1S

2Z2
1 +ρ2

2E
2
1Z

2
2 +ρ2

3E
2
2Z

2
3 +ρ2

4 I
2
1Z

2
4

+ρ2
5 I

2
2Z

2
5 +ρ2

6R
2Z2

6

≥M|Z|2, (5)

where, (S, E1, E2, I1, I2, R) ∈ θ̄ε and Z= (Z1, Z2, Z3, Z4, Z5, Z6) ∈ R6
+.

Since A is positive, Lemma 1 implies that condition H1 is satisfied.
Step 2
Constructing a C2-function V: R6

+ → R as follows,
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V(S, E1, E2, I1, I2, R) = M(S+E1 +E2 + I1 + I2 +R−α4 lnI1 −α5 lnI2

−α2 lnE1 −α3 lnE2 −α1 lnS)

+
1

ϑ +1
(S+E1 +E2 + I1 + I2 +R)ϑ+1 − lnS− lnE1

− lnE2 − lnI1 − lnI2 − lnR+(S+E1 +E2 + I1 + I2 +R)

=MV1 +V2 +V3 +V4 +V5 +V6 +V7 +V8 +V9,

where θ is a constant, 0 < θ <
2ρ

ρ2
1 ∨ρ2

2 ∨ρ2
3 ∨ρ2

4 ∨ρ2
5 ∨ρ2

6
,

V1 = S+E1 +E2 + I1 + I2 +R−α4 lnI1 −α5 lnI2 −α2 lnE1 −α3 lnE2 −α1 lnS,

V2 =
1

ϑ +1
(S+E1 +E2 + I1 + I2 +R)θ+1, V3 =− lnS, V4 =− lnE1, V5 =− lnE2,

V6 =− lnI1, V7 =− lnI2, V8 =− lnR, V9 = S+E1 +E2 + I1 + I2 +R,

α1 =
Θ

ρ +
ρ2

1
2

, α2 =
Θ

η +ρ +
ρ2

2
2

, α3 =
Θ

δ +ρ +
ρ2

3
2

,

α4 =
Θ

ξ +ρ +
ρ2

4
2

, α5 =
Θ

γ +ρ +
ρ2

5
2

.

Therefore, we considerM> 0 and make it large enough satisfies the condition,

−MΛ+P≤−2,

where, P is positive constant. There is an easy way to check that

liminf
i→∞(S,E1,E2, I1, I2,R)∈R6

+/θ̄n
Γ(S, E1, E2, I1, I2, R) = +∞.
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Where, θ̄n =

(
1
n
, n

)
×
(

1
n
, n

)
×
(

1
n
, n

)
×
(

1
n
, n

)
×
(

1
n
, n

)
, ×

(
1
n
, n

)
. Moreover, Γ(S, E1, E2, I1, I2, R) is a

continuous function. Hence Γ(S, E1, E2, I1, I2, R) must have a minimum point Γ(S0, E0
1, E

0
2, I

0
1, I

0
2, R

0) in the interior
of R6

+.
Then we define a non-negative C2-function, dV: R6

+ → R+ as follows,

dV= (S, E1, E2, I1, I2, R) = Γ(S, E1, E2, I1, I2, R)−Γ(S0, E0
1, E

0
2, I

0
1, I

0
2, R

0).

As a result of applying the Itô’s formula,

LV1 = −α1
Θ
S
−α1

β1I1

1+h1I1
−α1

β2I2

1+h2I2
−α1ρ +α1

ρ2
1

2

−α2
β1SI1

(1+h1I1)E1
−α2(η +ρ)+α2

ρ2
2

2
−α3

β2SI2

(1+h2I2)E2

−α3(δ +ρ)+α3
ρ2

3
2

−α4
ηE1

I1
−α4(ξ +ρ)+α4

ρ2
4

2

−α5
δE2

I2
−α5(γ +ρ)+α5

ρ2
5

2

=−α1
Θ
S
−α1

β1I1

1+h1I1
−α1

β2I2

1+h2I2
−α2

β1SI1

(1+h1I1)E1
−α3

β2SI2

(1+h2I2)E2

−α4
ηE1

I1
−α5

δE2

I2
+α1

(
ρ +

ρ2
1

2

)
+α2

(
η +ρ +

ρ2
2

2

)
+α4

(
ξ +ρ +

ρ2
4

2

)

+α3

(
δ +ρ +

ρ2
3

2

)
+α5

(
γ +ρ +

ρ2
5

2

)
. (6)

Using inequalities a+b ≥ 2
√

ab, a, b > 0.
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LV1 ≤−2
[

α1α2α4
Θβ1η

1+h1I1

] 1
2
−2

[
α1α3α5

Θβ2δ
1+h2I2

] 1
2
+α1

β1I1

1+h1I1

+α1
β2I2

1+h2I2
+α1

(
ρ +

ρ2
1

2

)
+α2

(
η +ρ +

ρ2
2

2

)

+α4

(
ξ +ρ +

ρ2
4

2

)
+α3

(
δ +ρ +

ρ2
3

2

)
+α5

(
γ +ρ +

ρ2
5

2

)

≤−4
[

α1α2α4
Θβ1η

1+h1I1
·α1α3α5

Θβ2δ
1+h2I2

]1/4

+α1
β1I1

1+h1I1

+α1
β2I2

1+h2I2
+α1

(
ρ +

ρ2
1

2

)
+α2

(
η +ρ +

ρ2
2

2

)

+α4

(
ξ +ρ +

ρ2
4

2

)
+α3

(
δ +ρ +

ρ2
3

2

)
+α5

(
γ +ρ +

ρ2
5

2

)

≤−4Θ
{

max[R∗
1, R

∗
2]

1/4 −1
}
+α1

β1I1

1+h1I1
+α1

β2I2

1+h2I2

=−Y+α1
β1I1

1+h1I1
+α1

β2I2

1+h2I2
, (7)

where, Y= 4Θ
{

max[R∗
1, R

∗
2]

1/4 −1
}
> 0.

Similarly,
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LV2 = (S+E1 +E2 + I1 + I2 +R)ϑ (Θ−ρS−ρE1 −ρE2 −ρI1 −ρI2 −ρR)

+
ϑ
2
(S+E1 +E2 + I1 + I2 +R)ϑ−1

× (ρ2
1S

2 +ρ2
2E

2
2 +ρ2

3E
2
2 +ρ2

4 I
2
1 +ρ2

5 I
2
2 +ρ2

6R
2)

≤ (S+E1 +E2 + I1 + I2 +R)ϑ [Θ−ρ(S+E1 +E2 + I1 + I2 +R)]

+
ϑ
2
(S+E1 +E2 + I1 + I2 +R)ϑ−1

× (ρ2
1S

2 +ρ2
2E

2
2 +ρ2

3E
2
2 +ρ2

4 I
2
1 +ρ2

5 I
2
2 +ρ2

6R
2)

≤ Θ(S+E1 +E2 + I1 + I2 +R)ϑ −
[

ρ − ϑ
2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)]

× (S+E1 +E2 + I1 + I2 +R)ϑ+1

≤ Θ− 1
2

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)]

×
(
Sϑ+1 +Eϑ+1

1 +Eϑ+1
2 + Iϑ+1

1 + Iϑ+1
2 +Rϑ+1

)

LV2 ≤ Θ+Λ, (8)

where,

Λ = sup
(S,E1,E2, I1, I2,R)∈R6

+

{
Θ(S+E1 +E2 + I1 + I2 +R)ϑ

−1
2

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)]

(
Sϑ+1 +Eϑ+1

1 +Eϑ+1
2 + Iϑ+1

1 + Iϑ+1
2 +Rϑ+1

)}
.

We can also get
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LV3 =−Θ
S
+

β1I1

1+h1I1
+

β2I2

1+h2I2
+ρ +

ρ2
1

2
(9)

LV4 =− β1SI1

(1+h1I1)E1
+η +ρ +

ρ2
2

2
(10)

LV5 =− β2SI2

(1+h2I2)E2
+δ +ρ +

ρ2
3

2
(11)

LV6 =−ηE1

I1
+ξ +ρ +

ρ2
4

2
(12)

LV7 =−δE2

I2
+ γ +ρ +

ρ2
5

2
(13)

LV8 =−ξI1

R
− γI2

R
+ρ +

ρ2
4

2
(14)

LV9 = Θ−ρ (S+E1 +E2 + I1 + I2 +R) (15)

We obtained

LV= −MΘ+M
α1β1I1

1+h1I1
+M

α1β2I2

1+h2I2

− 1
2

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)]

×
(
Sϑ+1 +Eϑ+1

1 +Eϑ+1
2 + Iϑ+1

1 + Iϑ+1
2 +Rϑ+1

)
− Θ

S
+

β1I1

1+h1I1

+
β2I2

1+h2I2
+6ρ − β1SI1

(1+h1I1)E1
+η − β2SI2

(1+h2I2)E2
+δ − ηE1

I1
+ξ

− δE2

I2
+ γ − ξI1

R
− γI2

R
−ρ (S+E1 +E2 + I1 + I2 +R)

+

(
ρ2

1 +ρ2
2 +ρ2

3 +ρ2
4 +ρ2

5 +ρ2
6

2

)
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=−MΘ+M
α1β1I1

1+h1I1
+M

α1β2I2

1+h2I2
+

β1I1

1+h1I1
+

β2I2

1+h2I2

− β1SI1

(1+h1I1)E1
− β2SI2

(1+h2I2)E2
− Θ

S
− ηE1

I1
− δE2

I2
− ξI1

R
− γI2

R

− 1
2

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)]

×
(
Sϑ+1 +Eϑ+1

1 +Eϑ+1
2 + Iϑ+1

1 + Iϑ+1
2 +Rϑ+1

)

−ρ (S+E1 +E2 + I1 + I2 +R)+Θ+η +δ + γ +6ρ

+

(
ρ2

1 +ρ2
2 +ρ2

3 +ρ2
4 +ρ2

5 +ρ2
6

2

)
. (16)

Define a bounded closed domain Πε :

Πε =

{
(S, E1, E2, I1, I2, R) ∈ R6

+: ε1 ≤ S≤ 1/ε1, ε2 ≤ E1 ≤ 1/ε2,

ε3 ≤ E2 ≤ 1/ε3, ε4 ≤ I1 ≤ 1/ε4, ε5 ≤ I2 ≤ 1/ε5, ε6 ≤ R≤ 1/ε6

}
,

where 0 < ε < 1 is sufficiently small constant. In the set Πc
ε , making ε small enough such that it satisfies the following

condition holds.

− Θ
ε1

+H ≤−1 (17)

−MΘ+
Mc1β1I1

h1
+J≤−1 (18)

−MΘ+
Mc2β2I2

h2
+Q≤−1 (19)

−2
(

β1ρ
ε2

)1/2

+J≤−1 (20)
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−2
(

β2ρ
ε3

)1/2

+Q≤−1 (21)

− ξ
ε6

− γ
ε6

+H ≤−1 (22)

− 1
4

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)] 1

εϑ+1
i

+H ≤−1 (23)

It is shown thatH, J andQ are positive constants. Here ε =(ε1, ..., ε6) is sufficiently small constant. For convenience,
R6
+/Πε is divided into 12 domains:

Π1 =
{
(S, E1, E2, I1, I2, R) ∈ R6

+: 0 < S< ε1

}

Π2 =
{
(S, E1, E2, I1, I2, R) ∈ R6

+: 0 < I1 < ε4

}

Π3 =
{
(S, E1, E2, I1, I2, R) ∈ R6

+: 0 < I2 < ε5, S≥ ε1

}

Π4 =
{
(S, E1, E2, I1, I2, R) ∈ R6

+: 0 < E1 < ε2

}

Π5 =
{
(S, E1, E2, I1, I2, R) ∈ R6

+: 0 < E2 < ε3, S≥ ε1

}

Π6 =
{
(S, E1, E2, I1, I2, R) ∈ R6

+: 0 < R< ε6, I1 ≥ ε4, I2 ≥ ε5

}

Π7 =

{
(S, E1, E2, I1, I2, R) ∈ R6

+: S>
1
ε1

}

Π8 =

{
(S, E1, E2, I1, I2, R) ∈ R6

+: E1 >
1
ε2

}

Π9 =

{
(S, E1, E2, I1, I2, R) ∈ R6

+: E2 >
1
ε3

}

Π10 =

{
(S, E1, E2, I1, I2, R) ∈ R6

+: I1 >
1
ε4

}

Contemporary Mathematics 6144 | C. Monica, et al.



Π11 =

{
(S, E1, E2, I1, I2, R) ∈ R6

+: I2 >
1
ε5

}

Π12 =

{
(S, E1, E2, I1, I2, R) ∈ R6

+: R>
1
ε6

}
.

Obviously, R6
+/Πε = Π1 ∪Π2 ∪Π3 ∪ ...∪Π12. Then, we only need to verify that LV(S, E1, E2, I1, I2, R)≤−1 in

the above 12 domains.
Case I: Consider that (S, E1, E2, I1, I2, R) ∈ Π1, by (17), we get

LV= − Θ
S
+

Mα1β1I1

h1
+

Mα2β2I2

h2
− 1

2

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)]

×
(
Sϑ+1 +Eϑ+1

1 +Eϑ+1
2 + Iϑ+1

1 + Iϑ+1
2 +Rϑ+1

)
+Θ+η +δ +ξ + γ +4ρ

+

(
ρ2

1 +ρ2
2 +ρ2

3 +ρ2
6

2

)

= − Θ
S
+H ≤−Θ

ε1
+H

≤−1

where,

H = sup
(S,E1,E2, I1, I2,R)∈R6

+

{
Mα1β1I1

h1
+

Mα2β2I2

h2

−1
2

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)]

×
(
Sϑ+1 +Eϑ+1

1 +Eϑ+1
2 + Iϑ+1

1 + Iϑ+1
2 +Rϑ+1

)
+Θ+η

+δ +ξ + γ +4ρ +

(
ρ2

1 +ρ2
2 +ρ2

3 +ρ2
6

2

)}

Case II: Consider that (S, E1, E2, I1, I2, R) ∈ Π2, by (18), we obtain
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LV= −MΘ+
Mα1β1I1

1+h1I1
− 1

2

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)]

×
(
Sϑ+1 +Eϑ+1

1 +Eϑ+1
2 + Iϑ+1

1 + Iϑ+1
2 +Rϑ+1

)
+Θ+η

+δ + γ +ξ +6ρ +

(
ρ2

1 +ρ2
2 +ρ2

3 +ρ2
6

2

)

= −MΘ+
Mα1β1I1

1+h1I1
+J

≤ −1

where,

J= sup
(S,E1,E2, I1, I2,R)∈R6

+

{
Mα1β1I1

h1
− 1

2

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)]

×
(
Sϑ+1 +Eϑ+1

1 +Eϑ+1
2 + Iϑ+1

1 + Iϑ+1
2 +Rϑ+1

)
+Θ+η

+δ +ξ + γ +4ρ +

(
ρ2

1 +ρ2
2 +ρ2

3 +ρ2
6

2

)}

Case III: Consider that (S, E1, E2, I1, I2, R) ∈ Π3, in view of (19), we achieve

LV= −MΘ+
Mα2β2I2

1+h2I2
− 1

2

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)]

×
(
Sϑ+1 +Eϑ+1

1 +Eϑ+1
2 + Iϑ+1

1 + Iϑ+1
2 +Rϑ+1

)
+Θ+η

+δ + γ +ξ +4ρ +

(
ρ2

1 +ρ2
2 +ρ2

3 +ρ2
6

2

)

= −MΘ+
Mα2β2I2

1+h2I2
+Q

≤ −1
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where,

Q= sup
(S,E1,E2, I1, I2,R)∈R6

+

{
Mα2β2I2

h2
− 1

2

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)]

×
(
Sϑ+1 +Eϑ+1

1 +Eϑ+1
2 + Iϑ+1

1 + Iϑ+1
2 +Rϑ+1

)
+Θ+η

+δ +ξ + γ +4ρ +

(
ρ2

1 +ρ2
2 +ρ2

3 +ρ2
6

2

)}

Case IV: Consider that (S, E1, E2, I1, I2, R) ∈ Π4, considering (20), we receive

LV= −2
(

β1ρSI1

E1

)1/2

+
Mα1β1I1

1+h1I1
− 1

2

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)]

×
(
Sϑ+1 +Eϑ+1

1 +Eϑ+1
2 + Iϑ+1

1 + Iϑ+1
2 +Rϑ+1

)
+Θ+η

+δ + γ +ξ +4ρ +

(
ρ2

1 +ρ2
2 +ρ2

3 +ρ2
6

2

)

= −2
(

β1ρSI1

E1

)1/2

+J

≤ −1

Case V: Consider that (S, E1, E2, I1, I2, R) ∈ Π5, in light of (21), we gather

LV= −2
(

β2ρSI2

E2

)1/2

+
Mα2β2I2

1+h2I2
− 1

2

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)]

×
(
Sϑ+1 +Eϑ+1

1 +Eϑ+1
2 + Iϑ+1

1 + Iϑ+1
2 +Rϑ+1

)
+Θ+η

+δ + γ +ξ +4ρ +

(
ρ2

1 +ρ2
2 +ρ2

3 +ρ2
6

2

)

= −2
(

β2ρSI2

E2

)1/2

+Q

≤ −1
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Case VI: Consider that (S, E1, E2, I1, I2, R) ∈ Π6, because of (22), we get

LV= − ξI1

R
− γI2

R
+

Mα1β1I1

1+h1I1
+

Mα2β2I2

1+h2I2

− 1
2

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)]

×
(
Sϑ+1 +Eϑ+1

1 +Eϑ+1
2 + Iϑ+1

1 + Iϑ+1
2 +Rϑ+1

)
+Θ+η

+δ +ξ + γ +4ρ +

(
ρ2

1 +ρ2
2 +ρ2

3 +ρ2
6

2

)

= − ξI1

R
− γI2

R
+H

≤ −1

Case VII: Consider that (S, E1, E2, I1, I2, R) ∈ Π7, we receive

LV= − 1
4

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)]

Sϑ+1

− 1
4

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)]

Sϑ+1

− 1
2

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)]

×
(
Eϑ+1

1 +Eϑ+1
2 + Iϑ+1

1 + Iϑ+1
2 +Rϑ+1

)
+

Mα1β1I1

1+h1I1
+

Mα2β2I2

1+h2I2

+Θ+η +δ +ξ + γ +4ρ +

(
ρ2

1 +ρ2
2 +ρ2

3 +ρ2
6

2

)

≤ − 1
4

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)]

Sϑ+1 +H

≤ − 1
4

[
ρ − ϑ

2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)] 1

εϑ+1
1

+H

Subsequently, providing under requirement (23) for i = 1. We get LV≤−1 on Π7.
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Similarly, it follows from the equation (23) for i = 2, . . . , 6, the same procedure can deduced for the compartments
E1, E2, I1, I2, R on LV≤−1 and for Πi, i = 8, . . . , 12.

Based on the mentioned 12 cases above, it can be concluded that

LV(S, E1, E2, I1, I2, R)≤−1.

This confirms that condition (H2) stated in Lemma 1 has been fulfilled, indicating the existence of a stationary
distribution for model (3) and establishing its ergodic nature. Thus, the proof is complete.

Remark 2 Theorem 1, reveals that system (3) has a unique ergodic stationary distribution k(·), if

R∗
0 = max

R∗
1 =

Θβ1η(
ρ +

ρ2
1

2

)(
η +ρ +

ρ2
2

2

)(
ξ +ρ +

ρ2
4

2

) ,

R∗
2 =

Θβ2δ(
ρ +

ρ2
1

2

)(
δ +ρ +

ρ2
3

2

)(
γ +ρ +

ρ2
5

2

)
> 1.

Note that the expression of R∗
0 coincide with the threshold of R0 of the deterministic system (1), if the white noise is

not taken into account. This shows that we generalize the results of deterministic system.

5. Extinction of the disease
This section focuses on examining the phenomenon of infection extinction, providing a distinct perspective on

managing disease spread. Biologically, disease extinction denotes the eventual disappearance of diseases. The stochastic
model (3) is instrumental in delineating the essential conditions required for disease extinction.

Lemma 3 Let (S(t), E1(t), E2(t), I1(t), I2(t), R(t)), be the solution of the model (3) with the any initial condition
(S(0), E1(0), E2(0), I1(0), I2(0), R(0)) ∈ R6

+. Then

lim
t→+∞

1
t
(S(t)+E1(t)+E2(t)+ I1(t)+ I2(t)+R(t)) = 0, a.s. (24)

Moreover, if ρ >
1
t

(
ρ2

1 +ρ2
2 +ρ2

3 +ρ2
4 +ρ2

5 +ρ2
6
)
, then
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lim
t→∞

∫ t

o

S(t)dB1(t)

t
= 0, lim

t→∞

∫ t

o

E1(t)dB2(t)

t
= 0, a.s.

lim
t→∞

∫ t

o

E2(t)dB3(t)

t
= 0, lim

t→∞

∫ t

o

I1(t)dB4(t)

t
= 0, a.s. (25)

lim
t→∞

∫ t

o

I2(t)dB5(t)

t
= 0, lim

t→∞

∫ t

o

R(t)dB6(t)

t
= 0, a.s.

The proof of Lemma 3 could be accomplished by using the same method used by Zhao and Jiang [30] for Lemmas
2.1 and 2.2. Therefore, it can be skipped from this section.

Define the double threshold value:

R̂∗
0 = max

(
R̂∗

1, R̂
∗
2

)
< 1, (26)

where,

R̂∗
1 =

Θβ1η

ρ
(

η +ρ +
ρ2

2
2

)(
ξ +ρ +

ρ2
4

2

)

= R1 −
Θβ1ηρ2

2 ρ2
4

2ρ(η +ρ)(ξ +ρ)
(

η +ρ +
ρ2

2
2

)(
ξ +ρ +

ρ2
4

2

) .

R̂∗
2 =

Θβ2δ

ρ
(

δ +ρ +
ρ2

3
2

)(
γ +ρ +

ρ2
5

2

)

= R2 −
Θβ2δρ2

3 ρ2
5

2ρ(δ +ρ)(γ +ρ)
(

δ +ρ +
ρ2

3
2

)(
γ +ρ +

ρ2
5

2

)
.

Here, R1 and R2 are corresponding to the basic reproduction number for deterministic model (1).
Theorem 2 Assume that ρ >

1
2
(
ρ2

1 ∨ρ2
2 ∨ρ2

3 ∨ρ2
4 ∨ρ2

5 ∨ρ2
6
)
.

Let (S(t), E1(t), E2(t), I1(t), I2(t), R(t)) the solution of the model (3) with any initial condition (S(0), E1(0), E2(0),
I1(0), I2(0), R(0)) ∈ R6

+. If R∗
1 < 1 and R∗

2 < 1. Then I1(t) and I2(t), will go extinct almost surely.

lim
t→∞

I1(t) = 0 a.s. lim
t→∞

I2(t) = 0 a.s.
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Meanwhile,

lim
t→∞

S(t) =
Θ
ρ
, lim

t→∞
E1(t) = 0, lim

t→∞
E2(t) = 0, lim

t→∞
R(t) = 0 a.s. (27)

Proof. (1) An equivalent C2-function to P1(t) is constructed by,

P1(t) = ρ2E1 +ρ4I1.

Using Itô’s formula to P1(t) gives,

d(lnP1) = L(lnP1)dt =
1
P1

{[
β1S(t)I1(t)
1+h1I1(t)

− (η +ρ)E1(t)
]

dt +ρ2E1(t)dB2(t)

[ηE1(t)− (ξ +ρ)I1(t)]dt +ρ4I1(t)dB4(t)
}

d(lnP1) =
1
P1

[(
β1S(t)− (η +ρ)− ρ2

2
2

)
+(ρ2E1(t)dB2(t))

(
η − (ξ +ρ)− ρ2

4
2

)
+ρ4I1(t)dB4(t)

]
.

Similarly, integrating from 0 to t and then dividing by t on both sides given by,

lnP1

t
=

1
tP1

∫ t

0

[(
β1S(t)− (η +ρ)− ρ2

2
2

)(
η − (ξ +ρ)− ρ2

4
2

)]
dt +

F(t)
t

≤
(

β1
Θ
ρ
− (η +ρ)− ρ2

2
2

)(
η − (ξ +ρ)− ρ2

4
2

)
+

F(t)
t

≤
(

η +ρ +
ρ2

2
2

)(
ξ +ρ +

ρ2
4

2

)
(R∗

1 −1)+
F(t)

t
.

Where F(t) =M1(t)+ lnI1(t)+ lnE1(t) withM1(t) =
∫ t

0 ρ2
4 I1(t)dB4(t)+

∫ t
0 ρ2

2E1(t)dB2(t). The local continuous
martingale. It can be observed that

limsup
t→+∞

<M1, M1 >t

t
≤ ρ2

2 +ρ2
4

(
Θ
2

)2

<+∞

Then based on the strong law of large numbers shown in Lemma 3. It implies
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lim
t→+∞

M1(t)
t

= 0.

Then one can obtained

lnP1(t)
t

≤ β1Θ
ρ

− (η +ρ)(ξ +ρ)− ρ2
2

2
− ρ2

4
2

+
F(t)

t

≤
(

η +ρ +
ρ2

2
2

)(
ξ +ρ +

ρ2
4

2

)
(R̂∗

1 −1)+
F(t)

t
.

Provided that R̂∗
1 < 1, taking the superior limit of both side leads to

limsup
t→+∞

lnP1(t)
t

≤
(

η +ρ +
ρ2

2
2

)(
ξ +ρ +

ρ2
4

2

)
(R̂∗

1 −1)< 0.

which implies,

lim
t→∞

P1(t) = 0 lim
t→∞

E1(t) = 0 & lim
t→∞

I1(t) = 0

(2) Another form of equivalent C2-function P2(t) is contracted by

P2(t) = E2ρ3 + I2ρ5.

Using Ito’s formula to P2(t) gives,

d(lnP2) = L(lnP2)dt =
1
P2

{[
β2S(t)I2(t)
1+h2I2(t)

− (δ +ρ)E2(t)
]

dt +ρ3E2(t)dB3(t)

[δE2(t)− (γ +ρ)I2(t)]dt +ρ5I2(t)dB5(t)
}

d(lnP2) =
1
P2

[(
β2S(t)− (δ +ρ)−

ρ2
3

2

)
+(ρ3E2(t)dB3(t))

(
δ − (γ +ρ)−

ρ2
5

2

)
+ρ5I2(t)dB5(t)

]
.

Similarly, integrating from 0 to t and then dividing by t on both sides given by,
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lnP2

t
=

1
tP2

∫ t

0

[(
β2S(t)− (δ +ρ)−

ρ2
3

2

)(
δ − (γ +ρ)−

ρ2
5

2

)]
dt +

G(t)
t

≤
(

β2
Θ
ρ
− (δ +ρ)−

ρ2
3

2

)(
δ − (γ +ρ)−

ρ2
5

2

)
+

G(t)
t

≤
(

δ +ρ +
ρ2

3
2

)(
γ +ρ +

ρ2
5

2

)
(R∗

2 −1)+
G(t)

t
.

Where G(t) =M2(t)+ lnE2(t)+ lnI2(t). HereM2(t) =
∫ t

0(ρ3E2 +ρ5I2)(t)dB3(t)dB5(t) is the local martingale.
Similarly,

lim
t→+∞

M2(t)
t

= 0.

Since,

limsup
t→+∞

<M2, M2 >t

t
< ρ2

3 ρ2
5

(
Θ
ρ

)2

<+∞.

Let ε → 0 and then take the superior limit of both side, it leads to

limsup
t→+∞

ln(P2(t))
t

≤
(

δ +ρ +
ρ2

3
2

)(
γ +ρ +

ρ2
5

2

)
(R̂∗

2 −1)< 0.

which implies that,

lim
t→+∞

P2(t) = 0, (ie), lim
t→+∞

E2(t) = 0 & lim
t→+∞

I2(t) = 0

Together the condition (1) & (2) it denotes,

lim
t→+∞

S(t) =
Θ
ρ

& lim
t→+∞

R(t) = 0. a.s.

Therefore the proof is completed.
Remark 3 Theorem 2 illustrate that if R̂∗

1 < 1, & R̂∗
2 < 1. The disease will go to extinct. Note that when R̂∗

0 < 1,
we notice that the larger the intensity of white noise are the easier the extinction of the disease. Thus we can control the
outbreak of the disease by adjusting the intensity of environment noises.
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6. Numerical simulations
Thorough investigations have been conducted into both the extinction and persistence dynamics of diseases. To

substantiate the effectiveness of the simulation regarding drug resistance and drug sensitivity, numerical simulations will
be performed using the Milstein scheme [44, 45]. Below is the discretization equation for model (3):

Sl+1 = Sl +

[
Θ−

β1S
lIl

1

1+h1I
l
1
−

β2S
lIl

2

1+h2I
l
2
−ρSl

]
∆t,

+ρ1S
l
√

∆tξ1, l +
ρ2

1
2
Sl(ξ 2

1, l −1)∆t,

El+1
1 = El

1 +

[
β1S

lIl
1

1+h1I
l
1
− (η +ρ)El

1

]
∆t,

+ρ2E
l
1

√
∆tξ2, l +

ρ2
2

2
El

1(ξ
2
2, l −1)∆t,

El+1
2 = El

2 +

[
β2S

lIl
2

1+h2I
l
2
− (δ +ρ)El

2

]
∆t,

+ρ3E
l
2

√
∆tξ3, l +

ρ2
3

2
El

2(ξ
2
3, l −1)∆t,

Il+1
1 = Il

1 +
[
ηEl

1 − (ξ +ρ)Il
1

]
∆t,

+ρ4I
l
1

√
∆tξ4, l +

ρ2
4

2
Il

1(ξ
2
4, l −1)∆t,

Il+1
2 = Il

2 +
[
δEl

2 − (ξ +ρ)Il
2

]
∆t,

+ρ5I
l
2

√
∆tξ5, l +

ρ2
5

2
Il

2(ξ
2
5, l −1)∆t,

Rl+1 = Rl +
[
ξ Il

1 + γIl
2ρRl

]
∆t,

+ρ6R
l
√

∆tξ6, l +
ρ2

6
2
Rl(ξ 2

6, l −1)∆t,

where the time increment ∆t > 0, and ξ 2
i is a the Gaussian random variable (i = 0, 1, 2, ..., n). In Table 3, we present the

parameter values that validate our theoretical finding by providing examples.
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Table 3. The parameters used in the simulation of model (3)

Parameters E1 E2 Source

Θ 4.00 3.00 presumed

β1 0.50 0.06 presumed

β2 0.60 0.09 presumed

h1 0.05 0.0.5 presumed

h2 0.07 0.07 presumed

η 0.60 0.70 presumed

δ 0.50 0.70 presumed

ξ 0.20 0.50 presumed

γ 0.5 0.5 presumed

ρ 0.30 0.30 presumed

S(0) 0.40 0.40 presumed

E1(0) 0.30 0.30 presumed

E2(0) 0.30 0.30 presumed

I1(0) 0.4 0.4 presumed

I2(0) 0.20 0.40 presumed

R(0) 0.50 0.50 presumed

∆t 0.01 0.01 presumed

Example 1 Assume that the parameters for environmental white noise are as follows:
ρi = 0.2, ∀ i= 1 to 6 [6]. Furthermore, Table 3 (E1) shows the parameter values in relation to the biological feasibility

results. Then

R∗
0 = max

R∗
1 =

Θβ1η(
ρ +

ρ2
1

2

)(
η +ρ +

ρ2
2

2

)(
ξ +ρ +

ρ2
4

2

) ,

R∗
2 =

Θβ2η(
ρ +

ρ2
1

2

)(
δ +ρ +

ρ2
3

2

)(
γ +ρ +

ρ2
5

2

)


= max{R∗
1 = 2.3803, R∗

2 = 1.8480}> 1,

If the parameter condition specified in Theorem 1 holds true, it signifies that the stochastic model (3) exhibits ergodic
characteristics and possesses a unique stationary distribution k(·). Figures 2 and 3 depict the solutions of model (3)
displaying both upward and downward trends within a narrow vicinity. Notably, Figure 2 visually confirms the existence
of a stationary distribution through the density functions presented on the right-hand side.
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Figure 2. This diagram consists of a time sequence of stochastic persistence and stationary distribution of diseases based on the model (3) for both
R∗

0 > 1 in (4) & R̂∗
0 > 1 in (26). On the right side of the column, the probability density function for S(t), E1(t), E2(t), I1(t), I2(t), and R(t) is shown

in the form of a histogram
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Figure 3. Comparison of solutions on S(t), E1(t), E2(t), I1(t), I2(t), and R(t): for each class of the Deterministic and Stochastic system with R∗
0

greater than 1 in (4)

Example 2 Assume that the parameters for environmental white noise are as follows:
ρi = 0.2, ∀ i= 1 to 6 [6]. Furthermore, Table 3 (E2) shows the parameter values in relation to the biological feasibility

results. Then

R̂∗
0 = max

R̂∗
1 = R1 −

Θβ1ηρ2
2 ρ2

4

2ρ(η +ρ)(ξ +ρ)
(

η +ρ +
ρ2

2
2

)(
ξ +ρ +

ρ2
4
2

)

R̂∗
2 = R2 −

Θβ2δρ2
3 ρ2

5

2ρ(δ +ρ)(γ +ρ)
(

δ +ρ +
ρ2

3
2

)(
γ +ρ +

ρ2
5
2

)
 .

R̂∗
0 = max

(
R̂∗

1 = 0.9226, R̂∗
2 = 0.9600

)
< 1.

According to Theorem 2, if all parameter conditions are satisfied, exposed and infected individuals will almost
certainly go extinct. This conclusion is supported by Figure 4. Numerical simulations with specific values such as ρi =

0.2, ∀ i = 1 to 6, depicted in Figures 4 and 5, indicate a high likelihood of infectious individuals becoming extinct under
large stochastic parameter values. Figures 4 and 5 below demonstrate that when white noise values are large, infectious
diseases tend to go extinct. This suggests that stochastic fluctuations can effectively suppress disease outbreaks, whereas
smaller noise values may result in persistent infectious diseases. Furthermore, Figures 2 and 3 illustrate that under suitable
conditions, the stochastic model (3) exhibits an ergodic stationary distribution. Thus, there is consistent alignment between
the theoretical findings of Theorems 1 and 2 and the outcomes observed in numerical simulations.
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Figure 4. This time sequence diagram illustrates how disease extinction occurs in model (3) for both R∗
0 < 1 in (4) & R̂∗

0 < 1 in (26). On the right side
of the column, the probability density function for S(t), E1(t), E2(t), I1(t), I2(t), and R(t) is shown in the form of a histogram
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Figure 5. Comparison of solutions on S(t), E1(t), E2(t), I1(t), I2(t), and R(t): for each class of the Deterministic and Stochastic system with R̂∗
0 less

than 1 in (26)

7. Conclusion
In this paper, we explored a dual-strain stochastic SEIR epidemic model using two general incidence functions,

structured as SEIR with six compartments: susceptible, two stages of exposed, two stages of infected, and removed
individuals. Our focus extended to investigating a stochastic drug-resistant model encompassing both drug-sensitive
and drug-resistant states. We derived the basic reproduction number R0 in (2) relative to the first and second strains
and incorporated post-treatment mutation from drug-sensitive to drug-resistant states of the deterministic model (1). By
establishing thresholds R∗

0 > 1 in (4) and R̂∗
0 < 1 in (26) for drug-sensitive and drug-resistant groups, we formulated

conditions for extinction and persistence through stochastic Lyapunov functions. Additionally, we determined the ergodic
stationary distribution k(·). Our analysis also led to the formulation of an ergodic stationary distribution, providing
insights into the equilibrium state of the disease over time. We found that increased mutation rates driven by higher
amplification rates facilitated the transition of drug-sensitive individuals to the drug-resistant state, eventually leading to an
equilibrium between the two strains. This suggests that drug resistance, under certain conditions, may become a dominant
feature of the epidemic. This study provides critical insights into the complex interactions between drug-sensitive and
drug-resistant strains within a stochastic context, emphasizing the importance of considering random fluctuations in the
dynamics of disease spread. Given the limited research on drug resistance in both human and animal populations, this
model offers a valuable framework for understanding how drug-resistant strains evolve and persist in real-world settings.
The insights generated from this work could inform public health strategies aimed at controlling the spread of multi-
strain diseases, especially in contexts where drug resistance poses significant challenges. Future studies should delve into
systems featuring delayed mutation post-treatment, exploring their dynamics and thresholds for disease persistence or
extinction. These considerations open avenues for further research into how different noise structures impact epidemic
outcomes.
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