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Abstract: In this paper, a new collocation method based on the Haar wavelet is developed for the numerical solution of 
the Fractional Volterra Model (FVM) for the population growth of a species in a closed system. In the proposed method 
the derivative involved in the nonlinear model is approximated using Haar wavelet and the approximate expressions for 
the unknown function are obtained by the process of integration, the fractional derivative will be considered in the Caputo 
sense. The technique of residual correction, which aims to reduce the error of the approximate solution by estimating this 
error, is discussed in some detail. To show the computational efficiency of the proposed method, the residual correction 
technique is illustrated with an example. The numerical results show that the method is simply applicable, accurate, 
efficient, and robust.
Keywords: population dynamics, Fractional Volterras population model, fractional derivative, Nonlinear integro-differential 
equations, Haar wavelet, collocation method

1. Introduction
Fractional calculus is a 300 years old mathematical discipline. The concept to differentiate a fractional order was 

denied by Remain and Liouville. There exist numerous definition for fractional derivatives of order β > 0 in the literature, 
for example, Remainn-Liouvlle fractional derivative (FD), Caputo FD, and so on. Remainn-Liouvlle FD of order α > 0 is 
not an integer as:
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when ∈n .There are some disadvantages of this model the real-world phenomenon having FDEs. Because of this reason 
Caputo proposed a modified differential operator Dβ of fractional order. The Caputo definition for the FD of order β > 0 is:
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where t > 0 and n is an integer. To tackle numerical problems in material science and engineering FDEs are numerous in 
modeling many phenomenon, however, there are most of the FDEs which do not have analytical solutions. The aim of this 
proposed research work is to find out an efficient and accurate numerical scheme by utilizing Haar wavelet collocation 
method (HWCM). HW depends on the functions which were presented by Alfred Haar in 1910. The HW functions are 
comprised of piecewise constant functions. HW belongs to the family of square functions (i.e. it might secure just the 
values 0, +1, -1). Such wavelets are numerically the most simple when compared with other wavelet families. HW is 
mathematically simple and integrated analytically arbitrary time, therefore it has been used in different approximation 
problems including integral and integro DEs. The Haar matrices contain many zeros, this influences the Haar transform 
faster than for other wavelet functions[1, 2]. HWCM utilizes basic box functions, subsequently the formulation of numerical 
technique in light of HW is direct and includes lesser difficult work. Because of better approximating properties of HWCM
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gives more precise solutions as compared to other techniques. This technique is extremely advantageous for solving 
boundary value problems since the boundary conditions are taken into account automatically. HWCM is especially 
appropriate for systems involving abruptly varying functions. The HWCM is highly feasible for damage detection. 
By reason of these above highlights, we can attest that when compared with the established techniques, the HWCM is 
significantly richer in theory, more convenient in numerical calculations and, most of all, it is considerably quicker in 
information preparing. The main advantages of this method are its simplicity and less computation costs: it is due to 
the sparsity of the transform matrices and to the small number of significant wavelet coefficients. In comparison with 
existing numerical schemes to solve the FIDE, the Haar wavelet method is an improvement over other methods in terms of 
accuracy. Raza and Khan[3] used the Haar wavelet series for the solution of neutral delay differential equations. Also, these 
authors utilized the Haar wavelet collocation method for the solution of higher-order two-point boundary value problems[4]. 
Islam et al.[5] found the numerical solution of second-order boundary-value problems by collocation method with the Haar 
wavelets.

In this paper, the FD will be discussed in the Caputo sense and is given by[6, 7]:
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if: 1n β n− < < , n is a positive integer, x > 0: Caputo FD operator is a linear operator
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where μ  and λ  are constants. 
Also we have [8, 9]:
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where β    denotes the ceiling function and { }0,1,2,3...=0 . For detail on Caputos derivative see [10, 11], delay DEs see [12, 
13] and fractional delay DEs see [14-16]

In this paper, we consider the FVM of growth species [17, 18]. The model is nonlinear FV integro DE
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with initial condition

( )0u = λ                                                                                                                               (7)

where β is the order of the FD and 0 < β < 1, therefore n = 1, R is a constant, a > 0 is the birth rate, b > 0 is the crowding 
coefficient, and c > 0 is the toxicity coefficient, u = u(t) is the population of identical individuals at time t [19, 20].

The paper is organized in the following structure. In Section 2, the definition of HW is given. The numerical method 
for the solution of the FV population growth model based on HWCM is developed in Section 3. The FD is described in the 
Caputo sense. In Section 5 numerical experiments are performed. At last, conclusions are drawn in Section 6.

2. Haar wavelet
The scaling and mother wavelet functions for the Haar family on [0; 1) are [21]:
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The other functions in wavelet family are obtained from the mother wavelet and given as:
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Here m = 2j where j = 0, 1, 2, . . ., J, the rank k is defined by k = 0, 1, 2, . . ., m-1. The connection between numbers k, 
i and m is i = k+m+1.
We present the following representation:
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This integral can be calculated using Eq. (10) which yields:
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3. Numerical method
In this section, the proposed method is developed to obtain an approximation solution of Eq. (6) using HWCM. We 

follow the Haar wavelet method adopted by Lepik in [1]. Consider ( )u t  is  square-integrable and hence it can be written as:
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integrating we have
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where u0 = u(0).
By applying the Caputo derivative definition to Eq (6), we have
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Since 0 < β < 1, therefore n = 1, and we have
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Now using Haar approximations we get
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The integrals are approximated using the following formula [5]
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so from above we have
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After simplification, we have
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putting the nodal points tj , j = 1, 2, 3, . . ., N, we obtain
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 = 1, 2, . . ., .j N                                                                                                                   (16)

This system is solved using Broyden’s method. The Jacobian is
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The solution of this system gives values of the unknown λi, i = 1, 2, 3, . . ., N. The approximate solution at nodal point 
is calculated by putting λi, i = 1, 2, 3, . . ., N in Eq. (14).

4. Error estimation and residual correction
In this section, we study the error estimation and residual correction of the FVM for the population growth model.
The residual function RN(t) as

( ) ( ) ( ) ( ) ( ) ( )
0

2
,

β
tN

N N N Nβ N

d u t
R t au t bu t cu t u x dx

dt
= − + + ∫

                                                (19)
                                                                                                                                                     

Let us define error function as
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subtracting Eq. (19) from Eq. (6), we have
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by using Eq. (21), Eq. (22) and Eq. (23), we have



Volume 1 Issue 2|2020| 107 Contemporary Mathematics

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )2

0
2 ,

β t

N N N N N N N Nβ

d e t ae t b e t e t u t ce t e x dx R t
dt

= − + − −∫
  

                                                                        (24)

after simplification, we have
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where eN (t) is unknown function. The initial condition for approximate solution uN (t) is
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so initial condition for system (25) is 

( )0 0.Ne =                                                                                                                          (27)

By applying the Caputo derivative de nition to Eq (25), we have
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by applying integration, we obtain
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where eN (t) is approximated by ( ),N Me t , in fact, ( ),N Me t  is Haar error estimation for eN (t).
Applying the HW approximations, we have
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The integrals are approximated using the following formula [22]
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plugging the nodal points tj , j = 1, 2, 3, . . . , M, we obtain the system of nonlinear equations
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This system is solved by Broyden’s method. Jacobian is
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The solution of this system gives values of unknown ζi, i = 1, 2, 3, . . ., M. The approximate solution at nodal points is 
calculated by putting ζi, i = 1, 2, 3, . . . M in Eq. (29). Substituting the value of eN, M(t) in Eq. (21), we obtain the required 
solution.

Table 1. Maximum absolute estimated error functions for Beta=1/3 in Test Problem 1
J N M eN, M (t) CPU time (in seconds)
0 2 4 8.91069×10-6 0.02475
1 4 8 5.76824×10-8 0.9087
2 8 16 8.51438×10-9 1.3421
3 16 32 6.16606 ×10-12 7.5321
4 32 64 1.90067×10-13 19.0956
5 64 128 3.20924×10-17 24.1589
6 128 256 4.21440×10-18 35.2157
7 256 512 3.25710×10-19 53.8651

5. Numerical applications
Here we give an example and solve it by the proposed methods discussed above. The notation ( ),N Me t  is used for 

maximum absolute estimated error functions at N nodal points. 
Test Problem 1. Consider a fractional Volterra model for population growth of a species in a closed system [23]
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if we take β = 1, then the analytical solution is given by [19]
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t
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u e
−
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+ −                                                                                          (35)

The method is applied to this test problem with parameters as u(0) = 0.1, a = 1, b = 1, c = 1. The estimated error 
functions for β = 1/3 and β = 1/2 of these approximate solutions are shown in Table 1 and Table 2. In order to obtain 
accuracy of order 10-19 for β = 1/3 and 10-18 for β = 1/2, we have to take at least N = 256 numbers of nodal points. From 
Fig. 1 we see that the accuracy of the technique improves by increasing the number of nodal points. For the solution of this 
nonlinear system, we applied the Broydens technique. The initial guess for this technique was taken zero and iterations 
were terminated when the convergent criterion 10-19 was satisfied.

Table 2. Maximum absolute estimated error functions for Beta=1/2 in Test Problem 1

J N=2J+1 M eN, M (t) CPU time (in seconds)
0 2 4 6.15069 ×10-6 0.01321
1 4 8 3.51619×10-8 0.8214
2 8 16 4.32865×10-9 1.2316
3 16 32 2.14803×10-12 6.0932
4 32 64 6.48502×10-14 17.1572
5 64 128 5.97205×10-16 25.4908
6 128 256 7.57531×10-17 37.0137
7 256 512 3.07869×10-18 53.1702
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Figure 1. Error functions for Test Problem 1

6. Conclusion
In this article, the HWCM has been implemented for the FVM for population growth model and we have applied the 

technique to one example. The results show that the technique is efficient and accurate for different choices of collocation 
points. The numerical results demonstrate that expanding the parameter N of the proposed technique enhances the 
exactness of the approximate solution. Furthermore, the residual error functions utilizing distinct numbers of nodal points 
are also calculated. From the numerical results, it has seen the method gives good results for considered problems.
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