
Contemporary Mathematics
http://ojs.wiserpub.com/index.php/CM/

Research Article

Ovals of Constant Width in Polar Coordinates

Adel Al-rabtah

Department of Mathematics and Statistics, College of Science, Mutah University, Al-karak, Jordan
E-mail: rabtah@mutah.edu.jo

Received: 31 August 2024; Revised: 23 October 2024; Accepted: 4 November 2024

Abstract: We explore ovals of constant width in polar coordinates in this paper. Conversion of a parametric function
defined on a rectangular domain of angles, to a polar representation defined on a domain of polar angles is introduced,
and the relationship between the rectangular angles and the polar angles is discussed. The length of the parametric curve
in polar coordinates between opposite points and from one vertex point to the next can be determined using the oval’s
vertices. A new verification of Barbier’s theorem in polar coordinates is presented. We show that the extreme values of the
radial coordinate of the discussed polar oval are obtained at both its vertices and opposite points. Ovals and specific circles
with the origin at the center are compared, and we demonstrate that every given oval is analytically and geometrically
enclosed between those two specific circles. Intersection points between a polar oval and any circle related to it, centered
at the origin, are formulated. Simulation and numerical examples are presented to support the analytical and theoretical
results.
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1. Introduction
The concept of constant width (CW) represents a tool for building new geometrical shapes in the Euclidean plane

that are generalizations of the usual circle. While the work on ovals of CW is concentrated on building analytic
parametrizations in Cartesian coordinates, it is reasonable to have a mathematical partner (polar coordinates) that aims
to build new parametrizations and new geometrical formulas, of course by using the radial coordinate and the angular
coordinate of a point in a plane. In this case, the object under consideration is the polar oval.

Polar ovals, or ovals in polar coordinates, provide a wealth of opportunities for research in physics and mathematics
because they capture intricate relationships between atmospheric dynamics and the planet’s magnetic field. Regardless
of the direction in which they are measured, polar ovals of CW are intriguing geometric structures in which the oval
maintains a constant distance across all of their parallel lines. Their unique characteristic sets them apart from regular
ellipses and other oval shapes, which typically lack this kind of consistency.

The concept of CW is closely related to mathematical structures such as Reuleaux polygons, which are shapes of
constant width other than the circle. In the context of planetary atmospheres. These polar ovals could theoretically
originate from uniform distributions of forces or fields, such as consistent magnetic field strength around the poles or
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uniform gradients of atmospheric pressure. This uniformity may have implications for the stability and symmetry of
atmospheric phenomena, potentially influencing the distribution of auroral emissions and how charged particles behave
in these regions.

Closed and convex curves are fundamental concepts in the study of geometry and optimization. A closed curve
is a continuous loop that encloses a particular area of the plane and goes back to its beginning point without crossing
itself. Convex curves, on the other hand, are those where, the segment of a straight line joining any two points within
the enclosed region lies entirely within the curve. Convexity is a crucial quality in many applications, including finding
the shortest pathways, optimizing functions, and analyzing geometric structures, because it guarantees that the curve has
no inward indentations. In both theoretical and applied mathematics, the relationship between closure and convexity is
essential to comprehending the characteristics and behavior of shapes.

A curve of CW is regarded as a closed curve in R2 that, when it rotated in a square, has continuous point contact
with each of the four sides. Any curve with a constant width is convex, meaning that no line may cross its boundary more
than twice. A polar curve is a curve written in terms of a radial coordinate and an angular coordinate, where the radial
coordinate is the measured distance or the length of the line segment connecting the origin and any point on the curve,
and the angular coordinate (the polar angle) is the angle the line makes with the positive x-axis (the polar axis). An oval
is regarded as a smooth convex curve in R2. For each point on the oval there exists a unique corresponding point on the
oval at which the tangent is parallel to the tangent at the original point, and in this sense, we say that the two points are
opposite to each other. The width of the oval is the shortest path between the tangent line at one point on the oval and
the tangent at the corresponding opposite point. An oval, in polar coordinates, is regarded as a curve of CW when the
measured perpendicular distance between the tangent lines at any two opposite points of the oval is constant [1]. While the
maximum of the curvature represents the vertices on the oval, we also conclude the same results using polar coordinates
with new proofs.

In differential geometry (DG), the support function is an important tool, and plays a crucial role in describing the
geometry of a curve by encoding how it interacts with external directions. The distance, measured in the direction of
the normal vector, between the origin and the tangent line at a certain location on a smooth convex curve is represented
by the support function. Our work depends highly on the support function in polar coordinates to produce new proofs
of many results deduced in rectangular coordinates. The use of the support function was done by Al-Banawi in [2] with
measuring the perpendicular length of the segment drawn from the origin to a point on the tangent of a convex curve, such
a measurement helped in producing a formula for an oval in R2.

Al-Banawi and Al-Btoush [3] made an analytic study for the support function of an oval of CW aiming to study
optimization and area regarding ovals of constant width in R2. Since the support function is periodic and has continuous
derivatives, they managed to count vertices and gave a formula for the region enclosed within a convex curve. In [4],
Resnikoff concluded different results by working on the average width of an oval with different degrees.

Al-Banawi and Jaradat [5] showed that properties of ovals of constant width can be derived by solving ordinary
differential equations (ODEs) that are linear with constant coefficients. While Al-Banawi in [2] managed to work with
linearly ODEs of the first order, the work in [5] was mostly on second linear ODEs.

The work here ensures that continuous ovals of CW have infinitely continuous approximations as proved by Tanno
in [6]. While Tanno showed that the form of an oval is a continuous parametrization of a differential curve in R2, Wegner
in [7] gave an analytic approximation for such parametrization of convex curves in R2, and in particular, for those of
constant width. Tanno demonstrated in [6] that a C∞-oval with the same CW exists for any positive neighborhood of a
continuous oval with CW. Wegner in [7] demonstrated that by employing the support function to simplify Tanno’s proof,
such a C∞-oval is real analytic.

In [8], Fu and Zhou analyzed a smooth oval of constant width by implementing the time delay system’s characteristic
equation. They showed that a circle is the only smooth convex curve in R2 that can work as an oval of CW whose
parametric form in rectangular coordinates is still differentiable finitely many times. Fu and Zhou built their simulation
findings according to the derivative orders influence on smooth noncircular ovals of CW.
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Fillmore presented a parametric formula for a curve with three vertices of CW in [9]. Al-rabtah and Al-Banawi [10]
extended this formulation and analysis to an odd natural number of vertices that is greater than three, taking into
consideration that the shadow concept [11] was included to Fillmore’s formulation.

The results in [10] were derived analytically in Cartesian coordinates, and in this work we reproduce these results in
addition to several totally new results, but in a polar coordinates system.

In [12], Mozgawa examined a curve’s curvature formula in polar coordinates, and showed that the only possibility
for that curve is to be a portion of a circle. Through the use of a curve representation by an appropriate support function,
Leichtweiss [13] examined the global DG of a closed polar convex curve in the hyperbolic and spherical plane geometry.
In order to describe the black hole shadow, Farah et al. [14] explored simple polar approximations such as an ellipse and
a limacon. Resnikoff [4] determined the area enclosed by an oval using polar representation.

Our work is structured as follows: In Section 2, we reformulate the representation of a general form of an oval into
a polar coordinates representation, we discuss the relationship between the rectangular angles and the polar angles, we
locate the vertices and their corresponding opposite points on an oval of CW, and measure the curve length of the polar
oval curve between any two opposite points, and from any vertex point to the next one. A new form for the verification of
Barbier’s Theorem is presented in polar coordinates. We also show that the extremum values are attained at the vertices
and their opposite points of the polar oval. In Section 3, we compare polar ovals with two particular circles related to these
ovals, and deduce that all considered types of polar ovals are enclosed between the two specified circles. Furthermore,
we determine the intersection points between a polar oval and a circle related to it centered at the origin. In Section 4, our
obtained theoretical results are endorsed by numerical examples accompanied by figures, and we clarify the relationship
between the polar angles and the rectangular angles corresponding to the parametric curve. We compare ovals with CW
to a specific origin-centered circle corresponding to the investigated oval, and find the differences in polar coordinates.
Additionally, comparisons with two concentric circles at the origin associated with the polar curve show that all types of
discussed polar ovals are enclosed between these particular circles. Section 5 is the conclusion.

2. Ovals of constant width in polar coordinates
We start with C as a smooth closed convex parametric curve in the rectangular plane. We can assume that the

coordinate system origin denoted by O lies in the interior of C . Then consider the ray from the origin that makes an angle
t (rectangular angle) with the positive x-axis, where t ∈ [0, 2π]. We draw a tangent on the curve perpendicular to the ray
with angle t to obtain P(x, y) = P(x(t), y(t)) as the point of tangent contact with the given curve. The point P(x, y) gives
a parametrization for the curve C .

Figure 1. Oval and the support function
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Assume that D represents the point of intersection between the ray and the tangent line as in Figure 1. The two points
P(x(t), y(t)) and P(x(t +π), y(t +π)) are opposite points. If α measures the distance from the origin O to the point D,
then α = α(t), and D has the coordinates (α(t)cos t, α(t)sin t). The function α(t) is called the support function.

The equation of the tangent line is

y(t)−α(t)sin t
x(t)−α(t)cos t

=−cot t ,

here, x(t) and y(t) are differentiable functions of the real variable t ∈ [0, 2].
Hence,

α(t) = x(t)cos t + y(t)sin t, (1)

and so

α ′(t) =−x(t)sin t + y(t)cos t + x′(t)cos t + y′(t)sin t.

Since (x′(t), y′(t)) represents the tangent along the curve (x(t), y(t)), and (cos t, sin t) is a unit normal, we have

(x′(t), y′(t)) · (cos t, sin t) = 0,

where (·) is the usual Euclidean or (vector) dot product. Hence,

x′(t)cos t + y′(t)sin t = 0.

Thus,

α ′(t) =−x(t)sin t + y(t)cos t. (2)

Solving the two equations (1) and (2) for x(t) and y(t) gives

x(t) = α(t)cos t −α ′(t)sin t, and

y(t) = α(t)sin t +α ′(t)cos t.

Hence, the parametric curve C is defined by:

P(t) =
(
α(t)cos t −α ′(t)sin t, α(t)sin t +α ′(t)cos t

)
. (3)
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In [10], Al-rabtah and Al-Banawi addressed the parametric curve

P(t) =(x(t), y(t))

=(acos t + cos t cosnt +nsin t sinnt,

asin t + sin t cosnt −ncos t sinnt),

(4)

where t ∈ [0, 2π], the coefficient a is a positive real number, and the parameter n is an odd positive integer.
By substituting x(t) and y(t) from Formula (4) into Formula (1), α(t) becomes

α(t) = a+ cosnt. (5)

In this study, we consider the parametric curve given by the Formula (3), with α(t) defined by the Formula (5). In
order to present our analysis in polar coordinates, we consider the representation of the convex curve as (r, θ) where
the radial coordinate r represents the distance from the origin (the pole) to any point on the polar curve, and the angular
coordinate θ stands for the polar angle from the polar axis to the line segment that connecting the pole and that point on
the polar curve.

In Theorem 1 from [10], Al-rabtah and Al-Banawi proved that the image of the parametric function (4) represents
an oval with CW of 2a, where a− (n2 − 1)cosnt > 0, and therefore, the values of the odd natural number n, when a is
determined, can be chosen with n <

√
a+1.

Theorem 1 Suppose the parametric function P is defined by (3) with α(t) defined by (5). Then, the oval that
represents the image of P is of constant width 2a, with P(t) and P(t +π) being opposite points on the oval.

Proof. Since P(t) = (α(t)cos t −α ′(t)sin t, α(t)sin t +α ′(t)cos t), then

P(t +π) =(−α(t +π)cos t +α ′(t +π)sin t,

−α(t +π)sin t −α ′(t +π)cos t).

The distance between P(t) and P(t +π) is

d(P(t), P(t +π)) =
{(

(α(t)+α(t +π))cos t − (α ′(t)+α ′(t +π))sin t
)2

+

(
(α(t)+α(t +π))sin t +(α ′(t)+α ′(t +π))cos t

)2}1/2

.

Since α(t) = a+ cosnt, and n is an odd natural number, then

α(t +π) = a+ cos(nt +nπ) = a− cos(nt),
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and therefore,

α(t)+α(t +π) = 2a.

By a derivation, we get

α ′(t)+α ′(t +π) = 0.

Thus,

d(P(t), P(t +π)) =
√
(2acos t)2 +(2asin t)2 = 2a.

Theorem 2 Consider the oval P(t) = (x(t), y(t)), parameterized by (3), in polar coordinates (r, θ). Then, the radial
coordinate r that represents the distance from a point on the polar curve to the pole, at the rectangular angle t, is

r(t) =
√

α(t)2 +(α ′(t))2, (6)

where α(t) = a+ cosnt, as stated in Formula (5).
Proof. The distance from the point on the polar curve to the pole, using Pythagorean theorem, is formulated by

r(t) =
√

x2(t)+ y2(t)

=

√
(α(t)cos t −α ′(t)sin t)2 +(α(t)sin t +α ′(t)cos t)2

=

{
α2(t)cos2 t −2α(t)α ′(t)cos t sin t +(α ′(t))2 sin2 t

+α2(t)sin2 t +2α(t)α ′(t)sin t cos t +(α ′(t))2 cos2 t
}1/2

=

√
α2(t)(cos2 t + sin2 t)+(α ′(t))2(sin2 t + cos2 t)

=
√

α2(t)+(α ′(t))2.

Theorem 3Consider the oval P(t) = (x(t), y(t)), parameterized by (3), in polar coordinates (r, θ). Then, the angular
coordinate θ that represents the polar angle from the polar axis to the line segment which connecting the pole and a point
on the polar curve, is

Contemporary Mathematics 496 | Adel Al-rabtah



θ(t) = t + tan−1 α ′(t)
α(t)

, (7)

where α(t) = a+ cosnt as in Formula (5), and t ∈ [0, 2π].
Proof. The polar angle θ , as shown in Figure 1, is the angle created by the line segment OP with the polar axis, while

the rectangular angle t is the angle between the positive x-axis and the line segment OD, so

tan(t −θ) =
tan t − tanθ

1+ tan t tanθ
=

tan t − y(t)
x(t)

1+
y(t)
x(t)

tan t

=
x(t) tan t − y(t)
x(t)+ y(t) tan t

=
(α(t)cos t −α ′(t)sin t) tan t − (α(t)sin t +α ′(t)cos t)
α(t)cos t −α ′(t)sin t + tan t (α(t)sin t +α ′(t)cos t)

=
α(t)sin t −α ′(t)

sin2 t
cos t

−α(t)sin t −α ′(t)cos t

α(t)cos t −α ′(t)sin t +α(t)
sin2 t
cos t

+α ′(t)sin t

=
−α ′(t)

α(t)
.

Hence,

tan(θ − t) =
α ′(t)
α(t)

⇒ θ(t) = t + tan−1 α ′(t)
α(t)

.

In [10], Al-rabtah and Al-Banawi defined a vertex as a point of the curve, parameterized by P(t), with maximum
curvature. And in Theorem 2, they showed that P(t) has exactly n vertices at

t =
2qπ

n
, q = 0, 1, . . . , n−1,

while the minimum values take place at the corresponding opposite points of the vertices, precisely at

t = (2q+1)
π
n
, where q = 0, 1, . . . , n−1.
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In the following theorem, we show that we achieve equivalent results considering the formulation in polar
coordinates.

Theorem 4 Consider the oval P(t) = (x(t), y(t)), parameterized by (3), in polar coordinates (r, θ). If the polar
angle θ and the rectangular angle t are related with Formula (7), then, the resulting oval, in polar coordinates, has exactly n
vertices at

θ =
2qπ

n
, q = 0, 1, . . . , n−1.

Proof. We need to find the points with
dr
dθ

= 0.

dr
dθ

=
dr
dt

dt
dθ

,

where, from (6),

dr
dt

=
2αα ′+2α ′α ′′

2
√

α2 +(α ′)2
=

α ′(α +α ′′)√
α2 +(α ′)2

.

Deriving all Formula (7) by
d

dθ
, we get:

1 =
dt
dθ

+
1

1+(α ′/α)2
αα ′′− (α ′)2

α2
dt
dθ

=

(
1+

αα ′′− (α ′)2

α2 +(α ′)2

)
dt
dθ

,

=⇒ dt
dθ

=
α2 +(α ′)2

α2 +αα ′′ .

So,

dr
dθ

=
dr
dt

dt
dθ

=
α ′(α +α ′′)√

α2 +(α ′)2

α2 +(α ′)2

α2 +αα ′′ =
α ′
√

α2 +(α ′)2

α
.

This is equal to zero when α ′(t) =−nsinnt = 0, which is satisfied at t = (qπ)/n, where q = 0, 1, . . . , 2n.
Using the second derivative test, we conclude that we have n vertices at the maximum values which occur at t =

(2qπ)/n, where q = 0, 1, . . . , n− 1, and by Formula (7), at θ = (2qπ)/n, with the same values for q. The minimum
values are corresponding to the opposite points and occur at t = ((2q + 1)π)/n, where q = 0, 1, . . . , n − 1, i.e. at
θ = ((2q+1)π)/n, using Formula (7).

To clarify the connection between the rectangular angle t and the polar angle θ , we present the following four
theorems.
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Theorem 5 Consider the oval P(t) = (x(t), y(t)), parameterized by (3), in polar coordinates (r, θ). If the polar
angle θ and the rectangular angle t are related with Formula (7), then, θ and t are equal at the vertices points and their
opposite points, namely, at

t =
qπ
n
, q = 0, 1, . . . , 2n.

Proof. From Formula (7), θ and t are equal if

tan−1 α ′(t)
α(t)

= 0,

which is satisfied if α ′(t)/α(t) = 0, and since α(t) = a+ cosnt ̸= 0, then

α ′(t) =−nsinnt = 0,

⇒nt = qπ ⇒ t =
qπ
n
, q = 0, 1, . . . , 2n.

This is where the vertices points, and their corresponding opposite points are located on the polar curve.
Theorem 6 Consider the oval P(t) = (x(t), y(t)), parameterized by (3), in polar coordinates (r, θ). If the polar

angle θ and the rectangular angle t are related with Formula (7), then, the difference between θ and t has relative extrema
at

t =
1
n

(
2qπ + cos−1

(
−1
a

))
, (8)

and at

t =
1
n

(
2(q+1)π − cos−1

(
−1
a

))
, (9)

for q = 0, 1, . . . , n−1.
Proof. As tan(θ(t)− t) = α ′(t)/α(t) from Formula (7), the relative extrema of the function

β (t) = tan(θ(t)− t),

may be found among the ones of

γ(t) =
α ′(t)
α(t)

.
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⇒ d
dt

(γ(t)) =
d
dt

(
α ′(t)
α(t)

)
=

αα ′′− (α ′)2

α2 = 0 ,

⇒ αα ′′− (α ′)2 = (a+ cosnt)(−n2 cosnt)− (−nsinnt)2

=−an2 cosnt −n2 = 0 ,

=⇒ acosnt +1 = 0 =⇒ cosnt = (−1)/a ,

=⇒ t =
1
n

(
2qπ + cos−1

(
−1
a

))
,

and

t =
1
n

(
2(q+1)π − cos−1

(
−1
a

))
,

for q = 0, 1, . . . , n−1.
Theorem 7 Consider the oval P(t) = (x(t), y(t)), parameterized by (3), in polar coordinates (r, θ). If the polar

angle θ and the rectangular angle t are related with Formula (7), then, the difference between θ and t has an absolute
maximum of

tan−1 n√
a2 −1

,

that occurs at

t =
1
n

(
2(q+1)π − cos−1

(
−1
a

))
,

for q = 0, 1, . . . , n−1.
Proof. To show that we have relative maxima at the determined values of the parameter

t =
1
n

(
2(q+1)π − cos−1

(
−1
a

))

for q = 0, 1, . . . , n−1, we use the second derivative test.
Since, from the proof of Theorem 6,

d
dt

(γ(t)) =
αα ′′− (α ′)2

α2 ,
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then,

d2

dt2 (γ(t)) =
d
dt

(
αα ′′− (α ′)2

α2

)

=
α2 (αα ′′′−α ′α ′′)−

(
αα ′′− (α ′)2

)
(2αα ′)

(α2)2

=
αα ′′′−α ′α ′′

α2 , since αα ′′− (α ′)2 = 0.

To determine the sign of the second derivative, we have to evaluate at the critical values

t =
1
n

(
2(q+1)π − cos−1

(
−1
a

))
,

so,

α = a+ cos(nt) = a+ cos
(

2(q+1)π − cos−1
(
−1
a

))
=

a2 −1
a

,

α ′ =−nsinnt = · · ·= n
√

a2 −1
a

,

α ′′ =−n2 cosnt = · · ·= n2

a
, and

α ′′′ = n3 sinnt = · · ·= −n3
√

a2 −1
a

.

Therefore,

d2

dt2 (γ(t)) =
αα ′′′−α ′α ′′

α2 =
−n3a2

√
a2 −1

(a2 −1)2 < 0 .

Thus, there are relative maxima at t =
(

2(q+1)π − cos−1
(
−1
a

))
/n, for q = 0, 1, . . . , n−1. Since the relative

maxima are equal at all values of t, we obtain the maximum value, and in order to determine this value, we substitute the
value of t into the Formula (7), so
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Max(θ − t) = tan−1 α ′(t)
α(t)

= tan−1

(
n
√

a2 −1
a

÷ a2 −1
a

)
= tan−1 n√

a2 −1
.

Theorem 8 Consider the oval P(t) = (x(t), y(t)), parameterized by (3), in polar coordinates (r, θ). If the polar
angle θ and the rectangular angle t are related with Formula (7), then, the difference between θ and t has an absolute
minimum of

tan−1 −n√
a2 −1

,

that occurs at

t =
1
n

(
2qπ + cos−1

(
−1
a

))
,

for q = 0, 1, . . . , n−1.

Proof. To show that we have relativeminima at the determined values of the parameter t =
1
n

(
2qπ + cos−1

(
−1
a

))
,

we use the second derivative test.
From the proof of Theorem 6, we have

d
dt

(γ(t)) =
αα ′′− (α ′)2

α2 ,

and from the proof of Theorem 7, we have

d2

dt2 (γ(t)) =
αα ′′′−α ′α ′′

α2 .

To determine the sign of the second derivative, we have to evaluate at the critical values

t =
1
n

(
2qπ + cos−1

(
−1
a

))
,

so,

α = a+ cos(nt)= a+ cos
(

2qπ + cos−1
(
−1
a

))
=

a2 −1
a

,

α ′ =−nsinnt = · · ·= −n
√

a2 −1
a

,
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α ′′ =−n2 cosnt = · · ·= n2

a
, and

α ′′′ = n3 sinnt = · · ·= n3
√

a2 −1
a

.

Therefore,

d2

dt2 (γ(t)) =
αα ′′′−α ′α ′′

α2 =
n3a2

√
a2 −1

(a2 −1)2 > 0 .

Thus, there are relative minima at t =
(

2qπ + cos−1
(
−1
a

))
/n, for q = 0, 1, . . . , n−1. Since the relative minima

are equal at all values of t, we obtain the minimum value, and in order to determine this value, we substitute the value of t
into Formula (7), so

Min(θ − t) = tan−1 α ′(t)
α(t)

= tan−1

(
−n

√
a2 −1
a

÷ a2 −1
a

)
= tan−1 −n√

a2 −1
.

Theorem 9 In polar coordinates (r, θ), consider the curve P(t) = (x(t), y(t)), parameterized by (3). If the polar
angle θ and the rectangular angle t are related with Formula (7), then, the arc length L of the polar curve, starting from
any point on the polar curve at a polar angle θ , to its corresponding opposite point at the polar angle θ +π is

L = πa+2
(

n2 −1
n

)
· sin

[
n
(

θ − tan−1 α ′

α

)]
. (10)

Proof. The arc length of the polar curve from a polar angle θ to θ +π is

L =

θ+π∫
θ

√
r2 +

(
dr
dθ

)2

dθ .

Using (2), and the proof of Theorem 4, we obtain
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L =

t+π∫
t

√(√
α2 +(α ′)2

)2

+

(
α ′

α

√
α2 +(α ′)2

)2 α2 +αα ′′

α2 +(α ′)2 dt

=

t+π∫
t

α2 +(α ′)2

α
α2 +αα ′′

α2 +(α ′)2 dt

=

t+π∫
t

(
α +α ′′) dt =

t+π∫
t

(
a− (n2 −1)cosnt

)
dt

=

(
at − n2 −1

n
sinnθ

)∣∣∣∣∣
t+π

t

= πa+2
(

n2 −1
n

)
sinnt,

where t = θ − tan−1 α ′

α
.

Theorem 10 In polar coordinates (r, θ), consider the curve P(t) = (x(t), y(t)), parameterized by (3). If the polar
angle θ and the rectangular angle t are related with Formula (7), then, the arc length L of the polar curve, starting from any
vertex point on the polar curve at a polar angle θ , to its corresponding opposite point at the polar angle θ +π is L = πa.

Proof. We have proved that θ = t at the vertices and at their corresponding opposite points, and in this case, α ′ = 0,
thus,

sin n
(

θ − tan−1 α ′

α

)
= 0,

therefore, L = πa using Equation (10).
The following theorem, which is well-known as Barbier’s theorem, was firstly proved byMellish [1], and stated with

a simple proof by Robertson in [15]. Al-rabtah and Al-Banawi [10] presented another proof using the parametrization in
Equation (4). The new proof here uses the polar representation (r, θ) of the parametric curve, where r and θ are given by
Formula (6), and Formula (7), respectively.

Theorem 11 In polar coordinates (r, θ), consider the curve P(t) = (x(t), y(t)), parameterized by (3). If the polar
angle θ and the rectangular angle t are related with Formula (7), then, the perimeter of the polar curve is equal to L = 2πa.

Proof. The proof follows that of Theorem 9 over the whole domain. That is,
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L =

2π∫
0

√
r2 +

(
dr
dθ

)2

dθ

=

2π∫
0

(
α +α ′′) dt

=

(
at − n2 −1

n
sinnθ

)∣∣∣∣∣
2π

0

= 2πa.

Theorem 12 In polar coordinates (r, θ), consider the curve P(t) = (x(t), y(t)), parameterized by (3). If the polar
angle θ and the rectangular angle t are related with Formula (7). The arc length L of the polar curve, starting from any
vertex point at a polar angle θ , to the next one is equal to L = (2πa)/n, which is equal to the perimeter of the polar curve
divided by the total number of vertices.

Proof.

L =

2(q+1)π/n∫
2qπ/n

√
r2 +

(
dr
dθ

)2

dθ

=

2(q+1)π/n∫
2qπ/n

α +α ′′ dt

=

[
at − n2 −1

n
sinnθ

]∣∣∣∣∣
2(q+1)π/n

2qπ/n

=
2πa

n
.

3. Intersection of an oval with particular circles in polar coordinates
It is interesting to compare our oval to particular circles related to the width of the oval and its vertices. In this section,

we also state new results regarding the intersection points between the oval and such circles.
Theorem 13 Consider the oval P(t) = (x(t), y(t)), parameterized by (3), in polar coordinates (r, θ). The radial

coordinate r has a maximum value of r = a+1, which represents an origin-centered circle of radius a+1, obtained at the
vertices that are located by:

θ =
2qπ

n
, q = 0, 1, . . . , n−1.
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And, it has a minimum value of r = a−1, which represents an origin-centered circle of radius a−1, obtained at the
opposite points, that are located by:

θ =
(2q+1)π

n
, q = 0, 1, . . . , n−1.

Proof. In the proof of Theorem 4, we have shown that there was a maximum value for the radial coordinate r at the
vertices. Since α = a+1 and α ′ = 0 at those points, then the maximum value for the radial coordinate is

r =
√

α2 +(α ′)2 =
√

(a+1)2 +0 = a+1.

Also, we have shown that there was a minimum value for the radial coordinate r at the corresponding opposite points.
Since α = a−1 and α ′ = 0 at those points, then the minimum value for the radial coordinate is

r =
√

α2 +(α ′)2 =
√

(a−1)2 +0 = a−1.

Theorem 14 Consider the oval P(t) = (x(t), y(t)), parameterized by (3), in polar coordinates (r, θ), and the origin-
centered circle r = a+1. The points of intersections between the oval in polar coordinates, for any value of the parameter n
that satisfies the condition of convexity, and the specified circle occur at the vertices on the polar oval given by

θ =
2qπ

n
, q = 0, 1, . . . , n−1.

Proof. Since the maximum values of the radial coordinate of the oval, which is equal to a+ 1, occur only at the
vertices, then the intersection points between the oval in polar coordinates, for any value of the parameter n that satisfies
the condition of convexity, and the specified origin-centered circle r = a+1 occur at the vertices points on the oval.

Theorem 15Consider the oval P(t) = (x(t), y(t)), parameterized by (3), in polar coordinates (r, θ), and the specified
origin-centered circle r = a− 1. The points of intersections between the oval in polar coordinates, for any value of the
parameter n that satisfies the condition of convexity, and the specified circle occur at the corresponding opposite points
of the vertices on the polar oval given by

θ =
(2q+1)π

n
, q = 0, 1, . . . , n−1.

Proof. Since the minimum values for the radial coordinate of the oval, which is equal to a − 1, occur only at
the opposite points of vertices, then the intersection points between the oval in polar coordinates, for any value of the
parameter n that satisfies the condition of convexity, and the specified origin-centered circle r = a − 1 occur at the
corresponding opposite points of the vertices on the polar oval.

Corollary 1 All ovals P(t) = (x(t), y(t)), parameterized by (3), in polar coordinates (r, θ), for any value of the
parameter n that satisfies the condition of convexity, are enclosed between two specific origin-centered circles: the bigger
circle is r = a+1, and the smaller one is r = a−1.

Proof. We have shown in Theorem 13 that the maximum radial coordinate of the polar oval is a+1 which occurs at
the vertices points, and in Theorem 14 we have shown that the polar ovals, for any value of the parameter n that satisfies
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the condition of convexity, intersect the circle at those vertices, which means that all other radial coordinates are less
than a+1.

On the other hand, we have shown in Theorem 13 that the minimum radial coordinate of the polar oval is a−1 which
occurs at the corresponding opposite points of the vertices, and in Theorem 15 we have shown that the polar ovals, for
any value of the parameter n that satisfies the condition of convexity, intersect the circle at those points, which means that
all other radial coordinates are greater than a−1.

Thus, all radial coordinates of the oval in polar coordinates lie between a−1 and a+1. Therefore, all ovals in polar
coordinates, discussed in this study, are enclosed between the two particular circles.

Corollary 2 Consider the oval P(t) = (x(t), y(t)), parameterized by (3), in polar coordinates (r, θ), and the two
particular circles r = a+ 1, and r = a− 1 centered at the origin. The distance between any of the two circles and the
resulting polar oval, for any value of the parameter n that satisfies the condition of convexity, lies in the interval [0, 2].

Proof. Since the maximum value of the radial coordinate of the considered polar oval, which is a+ 1, coincides
with the circle r = a+1, and the minimum value of the radial coordinate of that oval, which is a−1, coincides with the
circle r = a−1, then the distance between any of the two circles and the polar oval lies between zero and two.

Theorem 16 Consider the oval P(t) = (x(t), y(t)), parameterized by (3), in polar coordinates (r, θ), and any origin-
centered circle r = a. The points of intersections between the oval in polar coordinates, for any value of the parameter n
that satisfies the condition of convexity, and the circle occur for

θ =
1
n

[
2qπ + cos−1

(
a−
√

a2 +n2(n2 −1)
n2 −1

)]

+ tan−1


(
−n
) √

−2a
(

a−
√

a2 +n2(n2 −1)
)
−n2 +1

an2 −
√

a2 +n2(n2 −1)

 ,

and for

θ =
1
n

[
2(q+1)π − cos−1

(
a−
√

a2 +n2(n2 −1)
n2 −1

)]

+ tan−1


(

n
) √

−2a
(

a−
√

a2 +n2(n2 −1)
)
−n2 +1

an2 −
√

a2 +n2(n2 −1)

 .

Proof. Since r =
√

α2 +(α ′)2 , then the intersections between the polar curve (r, θ) and the circle r = a occur when
a =

√
α2 +(α ′)2 , this gives
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a2 = (a+ cosnt)2 +n2 sin2 nt ,

=⇒(n2 −1)cos2 nt −2acosnt −n2 = 0 ,

=⇒cosnt =
a−
√

a2 +n2(n2 −1)
n2 −1

,

=⇒t =
1
n

[
2qπ + cos−1

(
a−
√

a2 +n2(n2 −1)
n2 −1

)]
, (11)

and

t =
1
n

[
2(q+1)π − cos−1

(
a−
√

a2 +n2(n2 −1)
n2 −1

)]
. (12)

To find the value of θ that corresponds to the value of t obtained in Equation (11), we use the Formula (7), where

α = a+ cos

[
2qπ + cos−1

(
a−
√

a2 +n2(n2 −1)
n2 −1

)]

= a+
a−
√

a2 +n2(n2 −1)
n2 −1

=
an2 −

√
a2 +n2(n2 −1)
n2 −1

, and

α ′ =−nsin

[
2qπ + cos−1

(
a−
√

a2 +n2(n2 −1)
n2 −1

)]

=−nsin

[
cos−1

(
a−
√

a2 +n2(n2 −1)
n2 −1

)]

=
−n

n2 −1

√
−2a

(
a−
√

a2 +n2(n2 −1)
)
−n2 +1 .

Thus,

Contemporary Mathematics 508 | Adel Al-rabtah



θ =t + tan−1 α ′

α

=
1
n

[
2qπ + cos−1

(
a−
√

a2 +n2(n2 −1)
n2 −1

)]

+ tan−1


(
−n
) √

−2a
(

a−
√

a2 +n2(n2 −1)
)
−n2 +1

an2 −
√

a2 +n2(n2 −1)

 .

To find the value of θ that corresponds to the value of t obtained in Equation (12), we use the Formula (7), where

α = a+ cos

[
2(q+1)π − cos−1

(
a−
√

a2 +n2(n2 −1)
n2 −1

)]

= a+
a−
√

a2 +n2(n2 −1)
n2 −1

=
an2 −

√
a2 +n2(n2 −1)
n2 −1

, and

α ′ =−nsin

[
2(q+1)π − cos−1

(
a−
√

a2 +n2(n2 −1)
n2 −1

)]

= nsin

[
cos−1

(
a−
√

a2 +n2(n2 −1)
n2 −1

)]

=
n

n2 −1

√
−2a

(
a−
√

a2 +n2(n2 −1)
)
−n2 +1 .

Thus,

θ =t + tan−1 α ′

α

=
1
n

[
2(q+1)π − cos−1

(
a−
√

a2 +n2(n2 −1)
n2 −1

)]

+ tan−1


(

n
) √

−2a
(

a−
√

a2 +n2(n2 −1)
)
−n2 +1

an2 −
√

a2 +n2(n2 −1)

 .
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Next, we are going to simulate our theoretical results, so that all examples will be shown in a matter of sketching in
polar coordinates, and all results will be more clarified.

4. Simulation results
Here we give some simulation findings to demonstrate and validate the theoretical analysis and conclusions in this

study.
Example 1 Consider the relation between the polar angle θ and the rectangular angle t, given by the Formula (7).

We show numerically that the polar angles and the rectangular angles are equal at the vertices and opposite points, and
locate and evaluate the minimum and maximum difference between them, and where these extrema occur.

We consider two convex curves of CW with a = 30. Figure 2 shows the two curves of constant width 2a = 60, the
first curve when n = 3, while the second one when n = 5. Figure 2 shows the square with side length that is equal to
2a = 60, and that each of the two curves touches all four sides of that square.

Figure 2. Convex curves of constant width 2a, touching all four sides of the square with side length 2a, where a = 30, n = 3, and n = 5

In Figure 3, we show the difference between the polar angles θ , and the corresponding values of the rectangular
angles t, in the case where a = 30, and the parametric value n = 3 that satisfies the condition of convexity. It is clear that
the difference between θ and t is equal to zero at 0, π/3, 2π/3, π, 4π/3, 5π/3, and 2π , which correspond to where
the vertices and their opposite points of the polar oval are located, as proved in Theorem 5. Figure 3 shows that we
have an absolute maximum value of tan−1(3/

√
302 −1) ≈ 0.0997 occurs at t = (1/3)(2π − cos−1(−1/30)) ≈ 1.5597,

t = (1/3)(4π−cos−1(−1/30))≈ 3.6541, and at t = (1/3)(6π−cos−1(−1/30))≈ 5.7485, which concurs with the results
in Theorem 7. The figure also shows that we have an absolute minimum value of tan−1(−3/

√
302 −1)≈−0.0997 occurs

at t = (1/3)cos−1(−1/30)≈ 0.5347, t = (1/3)(2π +cos−1(−1/30))≈ 2.6291, and at t = (1/3)(4π +cos−1(−1/30))≈
4.7235, which also concurs with the results in Theorem 8.

In Figure 4, we show the difference between the polar angles θ , and the corresponding values of the rectangular
angles t, in the case where a = 30, and the parametric value n = 5 that satisfies the condition of convexity. It is clear
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Figure 3. Difference between the polar angles θ and the corresponding values of the rectangular angles t, where a = 30, and n = 3

that the difference between θ and t is equal to zero at 0, π/5, 2π/5, π, 6π/5 ,7π/5, 8π/5, 9π/5, and 2π , which
correspond to where the vertices and their corresponding opposite points of the polar oval are located, as proved in
Theorem 5. The figure shows that we have an absolute maximum value of tan−1(5/

√
302 −1) ≈ 0.1652 occurs at t =

(1/5)(2π − cos−1(−1/30)) ≈ 0.9358, t = (1/5)(4π − cos−1(−1/30)) ≈ 2.1924, t = (1/5)(6π − cos−1(−1/30)) ≈
3.4491, t = (1/5)(8π −cos−1(−1/30))≈ 4.7057, and at t = (1/5)(10π −cos−1(−1/30))≈ 5.9624, which is consistent
with the results in Theorem 7. The figure also shows that we have an absolute minimum value of tan−1(−5/

√
302 −1)≈

−0.1652 occurs at t = (1/5)(cos−1(−1/30)) ≈ 0.3208, t = (1/5)(2π + cos−1(−1/30)) ≈ 1.5775, t = (1/5)(4π +

cos−1(−1/30)) ≈ 2.8341, t = (1/5)(6π + cos−1(−1/30)) ≈ 4.0907, and at t = (1/5)(8π + cos−1(−1/30)) ≈ 5.3474,
which concurs with the results in Theorem 8.

Figure 4. Difference between the polar angles θ and the corresponding values of the rectangular angles t, where a = 30, and n = 5

Example 2 Consider the oval parameterized with P(t) = (x(t), y(t)), given by (3) with α(t) defined by Formula (5),
in polar coordinates (r, θ), and the particular circle r = a+1 that is centered at the origin, which represents the maximum
radial coordinate of the polar curve, which can also be obtained by substituting n = 0 into the parametric function given
by Formula (3). We compare the obtained ovals at two values of the parameter n with the particular predefined circle, and
discuss the distances between the ovals and the selected circle.
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In Figure 5, we show the circle r = a+1 = 32+1 = 33 centered at the origin with comparisons to two ovals in polar
coordinates, with parametric values n = 3 and n = 5, respectively, obtained by substituting these values of n, that satisfy
the condition of convexity, and a = 32, into the same considered parametric function (3). The figure shows that each oval
has n different vertices points, and n different opposite points, and these ovals intersect the circle at the vertices points,
which satisfy the result of Theorem 14.

Figure 5. Ovals with different values of n, in polar coordinates, compared to the circle r = a+1 centered at the origin, a = 32

In Figure 6, we show the difference between the radius of the particular circle r = a+1 = 32+1 = 33 and the radial
coordinates of the discussed ovals in polar coordinates. Figure 6a shows the differences in the first case when n = 3, we
see that the minimum difference value of 0 occurs at the three vertices points, located at θ = (qπ/3), q = 0, 2, 4, and
we see that the maximum difference value of 2 occurs at the corresponding three opposite points of the vertices, located
at θ = (qπ/3), q = 3, 5, 1, and all other differences lie in the open interval (0, 2). Figure 6b shows the differences in
the second case when n = 5, you can see that the minimum difference value of 0 occurs at the five vertices points, located
at θ = (qπ/5), q = 0, 2, 4, 6, 8, and that the maximum difference value of 2 occurs at the corresponding five opposite
points of the vertices, located at θ = (qπ/5), q = 5, 7, 9, 1, 3, and all other differences lie in the open interval (0, 2).
Therefore, the distance between any point on the circle and the corresponding point on any of the two polar ovals lies in
the closed interval [0, 2], this confirms with the result of Corollary 2.
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Figure 6. Differences between the radius of the concentric circle r = a+1, and the radial coordinates of the polar ovals with different values of n, where
a = 32. (a) First case n = 3. (b) Second case n = 5

Example 3 Consider the oval parameterized with P(t) = (x(t), y(t)), given by (3) with α(t) defined by Formula (5),
in polar coordinates (r, θ). In this example we present comparisons between three ovals, in polar coordinates, to two
particular circles, we show graphically that the three ovals are bounded by the two circles, and the radial coordinates for
any of these ovals are enclosed between the radii of the two circles.

Figure 7 shows two origin-centered circles, the first circle is r = a+ 1 = 49+ 1 = 50, and the second one is r =
a− 1 = 49− 1 = 48. The figure also shows three ovals, with a = 49, obtained by substituting each of the parametric
values: n = 3, 5, and 7, in the considered parametric curve (3), the chosen values of the parameter n must satisfy the
condition of convexity, n <

√
a+1. The figure also confirms that the three polar ovals are enclosed between the two

circles, which satisfies Corollary 1.

Figure 7. Ovals with different values of n bounded by two concentric circles r = a+1, and r = a−1, where a = 49
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To clarify the results in this example, we compare the radii of the two circles with the radial coordinates of the three
ovals with respect to the polar angles. Figure 8 shows comparisons between the radii of the two circles, r = 50 and r = 48,
and the radial coordinates of the three ovals with a = 49, and the parameter values n = 3, n = 5, and n = 7. Notice that,
for each of the three ovals, the radial coordinates lie in the closed interval [48, 50], where the end points of the interval
represent the radii of the two particular circles, also, the distances between any of the two circles and the three polar ovals
lie in the interval [0, 2], these conclusions are consistent with the results in Corollary 1, and Corollary 2.

Figure 8. Radial coordinates of ovals with different values of n bounded by radii of two circles r = a+1, and r = a−1, where a = 49

5. Conclusions
In this research, we formulated ovals of CW in polar coordinates. The interesting relationship properties between the

rectangular and polar angles of these ovals were discussed analytically and geometrically. Interesting properties of ovals
in polar coordinates were examined, the vertices and lengths of such polar curves, in addition to many lengths formulas
for these polar curves between opposite points, and from any vertex to the next one, we introduced a new verification of
Barbier’s theorem. The radii of the considered polar ovals attain their extreme values at their vertices and the corresponding
opposite points. The extreme values of a polar oval coincide with two circles related to it, we found that all these types of
polar ovals are enclosed between these two specific concentric circles. Finally, we analytically determined the intersection
points between the general form of a polar oval and any circle related to it.

Through our work, we arrived at the fact that the radial coordinate and the angular coordinate both can be written in
terms of the support function. Moreover, for future work, the support function itself, in both cases, is a solution of a first-
order ODE. Furthermore, we used polar coordinates to show that not only vertices on ovals of CW govern the behavior
of such geometrical structures, but differences in Cartesian and polar coordinates play a similar role in describing them.

In comparison with Cartesian coordinates, polar coordinates raised the importance of the study of ovals of CW in the
sense that new formulas of length (as well as arc length) of such curves have more mathematically attractive evidence for
conducting future work, especially if this is combined with the process of enclosing polar ovals of CW between particular
circles, as seen in Section 3..

To conclude the list of findings, it is worthwhile to mention that this work is rich in simulation results and can serve
as a future reference for scholars who have an interest in this topic.
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