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Abstract: One main challenge in the application of the lifetime distribution models, such as inverse Weibull (IW)
distribution is the need for an appropriate estimation method based on experimental conditions. When prior information
and certain guessed values are available for model parameters the Bayesian shrinkage (BS) method becomes a valuable
approach in this situation. This study considered the BS estimation method in the two-parameter IW distribution under
the squared error loss function (SELF) and the type-II censored data. The maximum likelihood (ML), the least squares
(LS), and Bayes estimation methods were also examined for a comparative study. Due to the complexity of calculations,
the Lindley approach was utilized to approximate the Bayes estimates. The BS estimates were derived and a score test
for the guessed value was presented. Additionally, a Monte Carlo simulation was conducted to evaluate the efficiency of
all estimation methods. Furthermore, a real data set was implemented to illustrate and compare the BS estimates with the
other estimates. The simulation study indicated the consistency of the estimators. The numerical studies also demonstrated
that the BS estimators outperform the others.
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PDF Probability Density Function
SELF Square Error Loss Function
TTT Total Time on Test

1. Introduction
The Weibull distribution has an extensive application in lifetime data analysis. The wide variety of the forms of

the Weibull distribution that can be adjusted by changing the parameters makes this distribution popular. In literature,
extensive research has been done on this distribution; for example, see Johnson et al. [1], Murthy [2] and Kundu [3].
Depending on the shape parameter value, the probability density function (PDF) of the Weibull distribution may be
decreasing or unimodal, and its hazard function (HF) may be decreasing or increasing (See Figure 1(a)). Therefore,
the Weibull distribution has been widely used in modeling survival and failure time data where the empirical estimates
of the HF are monotonic. While, it may be inappropriate where the HF estimate of the data is non-monotonic, whatever
the values of its parameters are. In many practical studies, it is usually established in advance that the hazard rate cannot
be monotonic. For example, when the course of a disease may be depicted in a pattern where mortality rate peaks after
a limited period and then slowly declines. A real example of this situation is in a study of the curability of breast cancer,
where Langlands et al. [4] found that the death rate reaches its peak after about three years; as another real example,
Bennett [5] analyzed data from the Veterans Administration lung cancer trial presented by Prentiss [6] and found the
smoothed empirical HF estimates for both low and high-performance status groups were not clearly monotonic. It is
reasonable to analyze such data sets with suitable models. If, after empirical studies, we conclude that the HF is non-
monotonic, then the IW distribution is one of the appropriate choices in modeling (See Figure 1(b) which covers the range
of the values of the IW parameters reported in the literature).

Figure 1. (a) Weibull distribution HF; (b) IW distribution HF for different amounts of (α,λ )

Based on theoretical considerations and also practical applications in many diverse fields, the IW distribution is a
suitable distribution with high flexibility for modeling complete or censored lifetime data (See for example, Murthy [2];
Kundu and Howlader [7]). Consequently, numerous researchers have focused on defining the IW distribution in different
forms under complete and censored lifetime data, and have introduced classical and Bayesian estimation methods for this
distribution. Using a Bayesian framework is preferred to classical inferences including ML and LS estimation methods
when prior information is available for the IW parameters. In many practical situations where there are also guessed values
for the parameters, the combination of Bayesian and shrinkage approaches (called BS approach) can perform better than
any other approaches. It is essential to establish the definition of the IW distribution before delving deeper into discussions.
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Suppose that a random variable Y has the Weibull distribution with the scale parameter λ and the shape parameter α .
Then, the random variable X = 1/Y is called an IW random variable and we write, X ∼ IW (α, λ ). The PDF of X can be
obtained as follows Keller et al. [8]:

fX (x|α, λ ) = αλx−(α+1)e−λx−α
, x > 0, α > 0, λ > 0. (1)

Also, from (1), the cumulative distribution function (CDF) of X is derived as follows:

FX (x|α, λ ) = e−λx−α
. (2)

The mean and variance are given by

E(X) = λ
1
α Γ
(

1− 1
α

)
,

and

Var(X) = λ
2
α

(
Γ
(

1− 2
α

)
−
(

Γ
(

1− 1
α

))2
)
.

According to the above equations, the mean and variance of the IW (α, λ ) random variable exist when α > 2.
One of the common problems in reliability and survival analysis is data censorship. So, the study of the lifetime

distributions under the types of censored data is usually one of the interesting topics for statisticians. Some recent studies
in this field are Dey et al. [9], Jia et al. [10], Dey et al. [11] and Asar and Arabi Belaghi [12].

Consider n items are to be tested in a lifetime experiment for which the observed failure times are the order statistics
of a random sample, denoted by X(1) ⩽ . . .⩽ X(n), from a random variable X . Since the waiting time for the final failure is
unbounded, the experiment may be terminated before the last failure [13]. For this reason, in some cases, the experiment
may end when the r-th failure, X(r), is observed, which is called a type-II censoring scheme. In this case, the value of
the failure time r is usually fixed while the end point X(r) is a random variable. This form of censoring reduces time and
cost, but information about essential parameters in the censored data is lost [14]. Therefore, type-II censored data will
naturally be less efficient than complete data. In addition to the type-II censoring scheme, there are other schemes such as
random censoring and combined (hybrid) censoring Epstein [15] and progressively Type-II censoring Balakrishnan and
Aggarwala [16].

Reviewing the literature, a number of studies can be found on modeling censored lifetime data through the IW
distribution. Calabria and Pulcini [17] studied the ML estimates of the parameters of the IW distribution for the complete
and type-II censored data. Kundu and Howlader [7] used (Markov chain Monte Carlo) MCMC procedure to compute the
Bayes estimates and prediction problems of the IW distribution under type-II censored data. Yaghmaei et al. [18] proposed
the classical and Bayesian methods to estimate the scale parameter of the IW distribution. Sultan et al. [19] provided both
the classical and Bayesian inference for a two-parameter IW distribution where type-II progressively censored data are
available. Kazemi and Azizpoor [20] presented the classical and Bayesian inferences of the IW distribution under type-I
hybrid censoring. Delavari et al. [21] presented the BS estimates for the scale parameter of the IW distribution based
on the squared error and LINEX loss functions under type-II censored data (One can refer to Prakash and Singh [22],
Naghizade Qomi [23], and Naghizadeh Qomi et al. [24] to see the application of the BS method in statistical models).
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They showed the performance of the ML and the Bayesian estimates are quite satisfactory. Yaghoobzadeh Shahrestani
et al. [25] obtained E-Bayesian estimation of parameters of IW distribution under the unified hybrid censoring scheme.
Okasha et al. [26] investigated the Bayesian estimators of the rate parameter of the IW distribution under two error loss
functions. However, they didn’t present the estimate of the parameter under censoring due to the form of the survival
function of the IW distribution. To see other studies in this field, one may refer to Singh et al. [27], Ateya [28], Alam and
Nassar [29] and Ren and Hu [30].

The literature review of the two-parameter IW distribution defined in (1) under type-II censored data reveals a gap
in the studying the Bayesian inference through the Lindley approximation technique and the BS approach. Additionally,
comparing these suggested approaches with classical approaches can be useful in the application. To do so, we suppose
the experiment is under a type-II censoring scheme, where observations end after the occurrence of r-th failure. The
IW distribution is examined in order to model the censored data and derive the ML, LS, and Bayes estimates of the
parameters. Also, we use Lindley approximation technique is considered to obtain the Bayes estimates due to the lack
of explicit solutions. As a highlight of this paper, a BS method is suggested for the estimation of the parameters. As we
know, when the experimenter has a guessed value about the parameter value, the shrinkage estimators are valuable in
application. In this case, the guessed value can be used to infer the parameter. Here, a score test procedure is proposed
for choosing the guessed value based on the sample data. Moreover, the comparison of the BS estimates with the other
popular estimates through a Monte Carlo simulation and a real data analysis is another outstanding point of this work.

The continuation of the article is organized as follows. Section 2 focuses on estimating the parameters of IW
distribution using ML and LS estimation methods under Type-II censored data. In Section 3 according to the method
developed by Lindley [31], the Bayes and BS estimators are derived in a form that avoids integrals. In Section 4, the
efficiency of the mentioned methods is evaluated based on a Monte Carlo simulation study. Section 5 provides a real data
example to illustrate our results. Finally, Section 6 gives discussion and conclusions.

2. ML and LS estimation methods
2.1 ML estimation method

In this subsection, the ML estimates of the parameters are derived for a type-II censored IW random sample of size n.
Let x(1), . . . , x(r) be the r smallest observations of a random sample X1, . . . , Xn. Then, the likelihood function is presented
as (Arnold et al. [32]) as

L(α,λ |x(1), . . . , x(r)) =
n!

(n− r)!

r

∏
i=1

f (x(i))[1−F(x(r))]
n−r

∝ αrλ r
r

∏
i=1

x−(α+1)
(i) exp

(
−λ

r

∑
i=1

x−α
(i)

)[
1− exp(−λx−α

(r) )
]n−r

. (3)

Hence, the log-likelihood function from (3) becomes

ℓ(α, λ ) =ℓ(α, λ |x(1), . . . , x(r)) = ln(L(α, λ |x(1), . . . , x(r)))

∝ r(ln(αλ ))− (α +1)
r

∑
i=1

ln
(
x(i)
)
−λ

r

∑
i=1

x−α
(i) +(n− r) ln(1−B),
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where B = B (α, λ ) = exp{−λx−α
(r) }. First, we take the derivatives of the log-likelihood function with respect to α and

λ , and then set them equal to zero.

∂ℓ(α, λ )
∂α

=
r
α
−

r

∑
i=1

ln
(
x(i)
)
+λ

r

∑
i=1

x−α
(i) ln

(
x(i)
)
+(n− r)

B ln(B)
1−B

ln
(
x(r)
)
= 0, (4)

and

∂ℓ(α, λ )
∂λ

=
r
λ
−

r

∑
i=1

x−α
(i) − n− r

λ
B ln(B)
1−B

= 0. (5)

The ML estimates of α and λ , i.e. α̂ML and λ̂ML , are the solutions of the equations (4) and (5), respectively (Calabria
and Pulcini [17]). These equations show that the solutions are not in closed forms. Therefore, an iterative algorithm is
needed to solve the equations.

2.2 LS estimation method
 Let X(1), . . . , X(r) be a type-II censored random sample from the IW distribution. If the CDF in (2) is changed to a

linear function, then we have,

ln(− lnF(x)) = ln(λ )−α ln(x). (6)

Let Y = ln[− lnF(x)], X = ln(x), β1 =−α and β0 = ln(λ ). The equation (6) can be written as

Y = β0 +β1X .

Now, if the rank average is used to estimate the values of the CDF, then the estimator of F is equal to

F̂(X(i)) =
i

r+1
.

In the following, the regression parameters β0 and β1 are chosen such that the sum of squared errors, that is

Q(β0, β1) =
r

∑
i=1

(
Yi −β0 −β1 ln

(
X(i)
))2

,

is minimized. With differentiating Q with respect to β0 and β1 and setting equal to zero, the LS estimates of β0 and β1

respectively yield as follows:

β̂1 =
r ∑r

i=1 ln
(
X(i)
)

ln
(
− ln F̂(X(i))

)
−∑r

i=1 ln
(
X(i)
)

∑r
i=1 ln

(
− ln

(
F̂(X(i)

))
r ∑r

i=1
(
ln
(
X(i)
))2 −

(
∑r

i=1 ln
(
X(i)
))2
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and

β̂0 =
1
r

r

∑
i=1

ln
(
− ln F̂(X(i))

)
− β̂1

1
r

r

∑
i=1

ln
(
X(i)
)
.

Therefore, the LS estimates of the parameters α and λ , respectively, are given by

α̂LS =−
r ∑r

i=1 ln
(
X(i)
)

ln
(
− ln F̂(X(i))

)
−∑r

i=1 ln
(
X(i)
)

sumr
i=1 ln

(
− ln F̂(X(i))

)
r ∑r

i=1
(
ln
(
X(i)
))2 −

(
∑r

i=1 ln
(
X(i)
))2

and

λ̂LS = exp

{
1
r

r

∑
i=1

ln
(
− ln

(
F̂(X(i))

))
+ α̂

1
r

r

∑
i=1

ln
(
X(i)
)}

.

See also Calabria and Pulcini [17].

3. Bayes and BS estimation methods
3.1 Assumptions on priors

When the shape parameter α is known, the scale parameter λ has a prior conjugate gamma distribution. When both
parameters are unknown, they therefore have no prior conjugate. In this case, we consider the following assumptions on
α and λ :

··· α and λ are independent;
··· α follows from the non-informative improper prior distribution π2 (α), where:

π2(α) ∝
1
α
, α > 0;

··· λ follows from the gamma prior distribution with the scale parameter a and the shape parameter b i.e. λ ∼ Γ (a, b);
Therefore, under the above assumptions, we can take the following joint prior distribution on α and λ as

π(α, λ ) =
ab

αΓ(b)
λ b−1 exp (−αλ ), α > 0, λ > 0, a > 0, b > 0.

3.2 Posterior analysis and bayes estimators
According to the observed type-II censored random sample as well as the above prior assumptions, the joint posterior

density function of α and λ can be written as

π(α, λ |x(1), . . . , x(r)) =
π(α, λ )L(α, λ |x(1), . . . , x(r))

K
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where L (α, λ |x(1), . . . , x(r)) is defined in (3) and

K =
∫ ∞

0

∫ ∞

0
π(α, λ )L(α, λ |x(1), . . . , x(r))dαdλ .

is the marginal unconditional density. So, we have

π(α, λ |x(1), . . . , x(r)) =
αr−1λ r+b−1

K
exp

{
−λ

(
α +

r

∑
i=1

x−α
(i)

)}
r

∏
i=1

x−(α+1)
(i) (1−B)n−r.

Now, we obtain the Bayes estimator and the generalized Bayes estimator for the unknown parameters α and λ under
the SELF. As we know, the Bayesian estimator under the SELF is the posterior mean of the parameter. Therefore, the
Bayes estimate of λ and the generalized Bayes estimate of α under the SELF are respectively as below:

λ̂Bayes = E(λ |x(1), . . . , x(r)) =
∫ ∞

0
λ
∫ ∞

0
π(α, λ |x(1), . . . , x(r))dαdλ

=
1
K

∫ ∞

0

∫ ∞

0
αr−1λ r+b exp

{
−λ

(
a+

r

∑
i=1

x−α
(i)

)}
r

∏
i=1

x−(α+1)
(i) (1−B)n−rdαdλ , (7)

and

α̂Bayes = E(α|x(1), . . . , x(r)) =
∫ ∞

0
α
∫ ∞

0
π(α, λ |x(1), . . . , x(r))dλdα

=
1
K

∫ ∞

0

∫ ∞

0
αrλ r+b−1 exp

{
−λ

(
a+

r

∑
i=1

x−α
(i)

)}
r

∏
i=1

x−(α+1)
(i) (1−B)n−rdλdα, (8)

In the next section, we use the well-known approximated method to obtain all the considered estimators.

3.3 Lindley approximation
We obtained the Bayes estimators of λ and α under SELF in the previous subsection. It should be noted that these

estimators are the ratio of two integrals that do not have a simple closed form. Here, with the approach developed by
Lindley [31], an excellent approximation is provided for the Bayesian estimators that is really easy to use.

Consider the integral ratio R = R (x1, . . . , xn) as below

R(x1, . . . , xn) =

∫
(θ1, θ2)

U(θ1, θ2)exp{ℓ(θ1, θ2)+P(θ1, θ2)}d(θ1, θ2)∫
(θ1, θ2

)exp{ℓ(θ1, θ2)+P(θ1, θ2)}d(θ1, θ2)
, (9)

where x1, . . . , xn is an observed random sample from a distribution with parameters θ1 and θ2, U = U(θ1, θ2) is just a
function of θ1 and θ2, ℓ = ℓ (θ1, θ2) is the log-likelihood function, and P = P (θ1, θ2) = ln (π(θ1, θ2)), in which π is
the prior. For notational simplicity, we define
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Â = A(θ̂1, θ̂2),

Âi = Ai

∣∣∣∣
θ1=θ̂1, θ2=θ̂2

where

Ai =
∂

∂θi
A(θ1, θ2),

Âi j =
∂

∂θ j
A j

∣∣∣∣
θ1=θ̂1, θ2=θ̂2

,

and

Âi jk =
∂

∂θ j
A jk

∣∣∣∣
θ1=θ̂1, θ2=θ̂2

, i, j, k = 1, 2 where A jk =
∂
∂ j Ak,

in which (θ̂1, θ̂2)
⊤ denotes the MLE of (θ1, θ2)

⊤. Also, suppose that σ̂ i j is the (i, j)-th element of the inverse of the
observed information matrix of the log-likelihood function ℓ evaluated at (θ̂1, θ̂2)

⊤.
Then, based on Lindley [31], an approximation for R (x1, . . . , xn), when the sample size n is sufficiently large, would

be as

R(x1, . . . , xn) =Û +
1
2
[(Û11 +2Û1P̂1)σ̂11 +(Û12 +2Û1P̂2)σ̂12 +(Û21 +2Û2P̂1)σ̂21 +(Û22 +2Û2P̂2)σ̂22]

+
1
2
[(Û1σ̂11 +Û2σ̂12)(ℓ̂111σ̂11 + ℓ̂121σ̂12 + ℓ̂211σ̂21 + ℓ̂221σ̂22)

+(Û1σ̂21 +Û2σ̂22)(ℓ̂112σ̂11 + ℓ̂122σ̂12 + ℓ̂212σ̂21 + ℓ̂222σ̂22)]. (10)

Now, we can obtain the Lindley approximation for the Bayes estimators by matching the equations (7) and (8) with
the integral ratio in (9) and then using the equation (10). The common items that we need in (10) to approximate the
equations (7) and (8) are as follows
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ℓ̂αα =−

{
r

α̂2 + λ̂
r

∑
i=1

(
ln
(
x(i)
))2 x−α̂

(i) +(n− r)
(
ln
(
x(r)
))2 C

}
,

ℓ̂αλ = ℓ̂λα =
r

∑
i=1

(
ln
(
x(i)
))

x−α̂
(i) +

(n− r) ln
(
x(r)
)

λ̂
C,

ℓ̂λλ =− 1

λ̂ 2
(r+(n− r)D),

ℓ̂ααα =
2r
α̂3 + λ̂

r

∑
i=1

(
ln
(
x(i)
))3 x−α̂

(i) +(n− r)
(
ln
(
x(r)
))3 E,

ℓ̂ααλ = ℓ̂αλα = ℓ̂λαα =−
r

∑
i=1

(
ln
(
x(i)
))2 x−α̂

(i) −
(n− r)

(
ln
(
x(r)
))2

λ̂
E,

ℓ̂λλα = ℓ̂λαλ = ℓ̂αλλ =
(n− r) ln

(
x(r)
)

λ̂ 2
F,

ℓ̂λλλ =
1

λ̂ 3
(2r+(n− r)(2D−F)),

P̂α =− 1
α̂
,

P̂λ =
b−1

λ̂
−a,

where

Ĉ =C(α̂, λ̂ ) =
B̂ ln(B̂)(ln(B̂e)− B̂)

(1− B̂)2
,

D̂ = D(α̂, λ̂ ) =
B̂(ln(B̂))2

(1− B̂)2
,

Ê = E(α̂, λ̂ ) =
B̂ ln(B̂)

{
(ln(B̂e)− B̂)(ln(B̂e)− B̂+ B̂ ln(B̂))+(1− B̂)2 ln(B̂)

}
(1− B̂)3

,

F̂ = F(α̂, λ̂ ) =
B̂(ln(B̂))2

{
2(1− B̂)+ ln(B̂)(1+ B̂)

}
(1− B̂)3

,
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B̂ = B(α̂, λ̂ ) = exp{−λ̂x−α̂
(r) }.

To approximate the equation (7), we have to implement the following equations in (10):

Û = λ̂ , Ûλ = 1, Ûα = Ûαα = Ûαλ = Ûλα = Ûλλ = 0.

Also, to approximate the equation (8), we have to implement the following equations in (10):

Û = α̂, Ûα = 1, Ûλ = Ûαα = Ûαλ = Ûλα = Ûλλ = 0.

Therefore, the Bayes estimation of λ and the generalized Bayes estimation of α under SELF are approximated,
respectively, as follows

λ̂Bayes =λ̂ +

[
σ̂λλ

(
b−1

λ̂
−a
)
− σ̂αλ 1

α̂

]

+
1
2

[
σ̂αλ (ℓ̂ααα σ̂αα +2ℓ̂αλα σ̂αλ + ℓ̂λλα σ̂λλ ) +σ̂λλ (ℓ̂ααλ σ̂αα +2ℓ̂αλλ σ̂αλ + ℓ̂λλλ σ̂λλ )

]
.

and

α̂Bayes =α̂ +

[
σ̂αλ

(
b−1

λ̂
−a
)
− σ̂αα 1

α̂

]

+
1
2

[
σ̂αα(ℓ̂ααα σ̂αα +2ℓ̂αλα σ̂αλ + ℓ̂λλα σ̂λλ ) +σ̂λλ (ℓ̂ααλ σ̂αα +2ℓ̂αλλ σ̂αλ + ℓ̂λλλ σ̂λλ )

]
.

3.4 BS estimation method
Shrinkage estimation approach is to find an estimator through optimization of any usual estimator with a desirable

criterion measure like mean squared error (MSE). Let α̂Bayes and λ̂Bayes be the usual Bayes estimators, respectively, for α
and λ . Then, following Thompson [33] and some related works Dey [9]; Singh [34]; Sing et al. [35]; Vishwakarma and
Gupta [36], the Bayes shrinkage estimators of α and λ , respectively, are proposed as follows:

α̂BS = w1α̂Bayes +(1−w1)α0,

and

λ̂BS = w2λ̂Bayes +(1−w2)λ0,
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where 0 ⩽ wi ⩽ 1, i = 1, 2 are called the shrinkage coefficients and, α0 and λ0 are our guess for the parameters α and λ .
Note: When there is no guarantee that the guessed values α0 and λ0 are close to the true values of α and λ , we may

conduct the following hypothesis test:
H0 : α = α0 and λ = λ0 versus H1 : α ̸= α0 or λ ̸= λ0.

Here, the score test is proposed for testing the null hypothesis (Rao [37]), H0. In this case, the score test statistic is
given by

SC0 = (ℓα0 , ℓλ0)
T J −1(α0, λ0)(ℓα0 , ℓλ0)∼ χ2

2 ,

where J (α0, λ0) is the observed information matrix of the log-likelihood function ℓ evaluated at (α0, λ0),

ℓα0 =
∂ℓ(α, λ )

α

∣∣∣
α=α0, λ=λ0

,

and

ℓλ0 =
∂ℓ(α, λ )

λ

∣∣∣
α=α0, λ=λ0

.

We reject H0, at the significance level η , if:

SC0 > χ2
2, 1−η/2 or SC0 < χ2

2, η/2.

In application, the guessed values are chosen randomly from a uniform distribution around the ML estimates, and
the score test is done.

By using MSE, the shrinkage coefficients are equal to

w1 =
(α −α0)(κα, 1 −α0)

κα, 2 −2α0κα, 1 +α2
0
,

and

w2 =
(λ −λ0)(κλ , 1 −λ0)

κλ , 2 −2λ0κλ , 1 +λ 2
0
,

where κθ , r = E(θ̂B)
r. Since w1 and w2 depend on the unknown parameters α and λ , so we replace them by α̂B and λ̂B,

respectively, and we get

ŵ1 =
(α̂B −α0)(κ̂α, 1 −α0)

κ̂α, 2 −2α0κ̂α, 1 +α2
0
,
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and

ŵ2 =
(λ̂ −λ0)(κ̂λ , 1 −λ0)

κ̂λ , 2 −2λ0κ̂λ , 1 +λ 2
0
.

κ̂θ , r can be calculated numerically using, e.g., the MCMC procedure.

4. Monte carlo simulation study
Here, a Monte Carlo simulation was presented to evaluate the empirical performance of all estimates in finite sample

sizes in terms of the bias and MSE criteria. Moreover, the R 4.2.3 software (R Core Team, [38]) was used to conduct all
programs.

We took the true parameter values for the IW distribution as (α, λ ) = (0.5, 0.25), (1.5, 0.5) and (3, 0.75) based
on the values used in Figure 1. For any combination of parameters, 1,000 samples with sample sizes n = 100, 300 and
500 were first generated and then we produced type-II censored data with different amounts of r. Also, the following
algorithm was used to produce a random sample data with size n from IW distribution:

Step 1: Determine the values of n, α and λ .
Step 2: Generate a random sample u1, . . . , un from U ∼Uni f orm (0, 1).
Step 3: Compute the i-th IW random observation using the below formula:

xi =

(
− 1

λ
ln(ui)

)− 1
α
.

In each iteration, the ML, LS, Bayes and BS estimates of the parameters were first derived and then, the bias and
MSE of all iterations were calculated, respectively, through the following formulae:

Bias =
1

1,000

1,000

∑
j=1

(θ̂ j −θ),

and

xi =

(
− 1

λ
ln(ui)

)− 1
α
.

MSE =
1

1,000

1,000

∑
j=1

(θ̂ j −θ)2,

where θ is the true value of parameter and θ̂ j is the estimate of θ in j-th iteration. It should be noted that, in each iteration,
for the BS estimate, the guessed values are chosen randomly from a uniform distribution around the true values, and the
score test is conducted. If H0 is rejected, the process is repeated.

Tables 1-3 present the simulation results. From these results, it can be clearly seen that the biases and MSEs for all
the estimators decrease in almost all cases when the sample size n and also effective sample size r increase. It can also
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be seen that for sufficiently large effective sample sizes (i.e., r ⩾ 100 in any sample size), all estimation procedures have
almost the same performance. However, when the effective sample size r is too small with respect to the sample size n,
the BS estimation method has the best performance.

Compared to other estimation methods, the LS estimation method has the worst performance due to having large
biases and MSEs in almost all settings. The performance of Bayes estimates in different settings in terms of the bias and
MSE criteria is slightly better than ML estimates. Furthermore, as expected, the bias and MSE of all estimation methods
increase naturally when the true values of parameters increase. However, in this case, the bias and MSE of BS estimators
are much better than those of the other estimators. This shows that knowing a suitable guessed point for the parameters
can effectively improve the performance of the BS estimator in any situation.

Based on simulation results, it is proposed that the use of Bayes and the BS estimation methods in consideration of
bias and MSE in general, especially when the effective sample size, r, in type II censoring schemes, is too small with
respect to the original sample size, n.

Table 1. The bias and MSE’s of the estimators for α = 0.5, λ = 0.25, a = 1.1, b = 0.2 and different values of n and r

Parameter α = 0.5 λ = 0.25

n r Criterion ML LS Bayes BS ML LS Bayes BS

100

20
Bias 0.04513 -0.02748 0.03696 0.02363 -0.01759 0.06354 0.00569 -0.00529
MSE 0.01340 0.01025 0.01152 0.00571 0.00830 0.01801 0.00790 0.00241

30
Bias 0.01712 -0.03029 0.01280 0.00402 -0.01554 0.02797 -0.00202 -0.00278
MSE 0.00626 0.00709 0.00578 0.00141 0.00606 0.00863 0.00569 0.00120

50
Bias 0.01515 -0.01358 0.01300 0.00150 -0.00478 0.01924 0.00154 0.00576
MSE 0.00344 0.00325 0.00329 0.00131 0.00307 0.00394 0.00299 0.00122

100
Bias 0.00524 -0.02677 0.00485 0.00280 -0.00300 0.01713 0.00208 0.00437
MSE 0.00151 0.00327 0.00149 0.00128 0.00209 0.00276 0.00205 0.00183

300

30
Bias 0.02695 -0.03038 0.02211 0.01784 -0.01622 0.05228 0.00294 -0.00805
MSE 0.00700 0.00753 0.00626 0.00343 0.00825 0.01644 0.00793 0.00297

60
Bias 0.01357 -0.01479 0.01143 0.00284 -0.00521 0.02929 0.00280 0.00079
MSE 0.00288 0.00311 0.00274 0.00084 0.00294 0.00500 0.00289 0.00067

150
Bias 0.00493 -0.00650 0.00426 0.00315 -0.00312 0.00559 -0.00098 -0.00010
MSE 0.00094 0.00109 0.00092 0.00083 0.00111 0.00130 0.00109 0.00099

300
Bias 0.00141 -0.01362 0.00128 0.00129 0.00040 0.00751 0.00111 0.00106
MSE 0.00058 0.00116 0.00058 0.00058 0.00063 0.00083 0.00063 0.00063

500

25
Bias 0.03719 -0.0302 0.02893 0.02801 -0.01876 0.077683 0.00100 0.00017
MSE 0.01011 0.00950 0.00845 0.00575 0.01033 0.02798 0.01010 0.00549

50
Bias 0.01807 -0.01840 0.01459 0.00838 -0.00965 0.04269 0.00305 -0.00274
MSE 0.00401 0.00430 0.00369 0.00141 0.00443 0.00897 0.00432 0.00113

100
Bias 0.00757 -0.01220 0.00600 0.00024 -0.00719 0.01665 -0.00195 0.00205
MSE 0.00169 0.00185 0.00163 0.00054 0.00185 0.00288 0.00179 0.00065

250
Bias 0.00216 -0.00520 0.00166 0.00169 -0.00181 0.00358 -0.00040 -0.00055
MSE 0.00053 0.00059 0.00053 0.00052 0.00063 0.00071 0.00062 0.00062

500
Bias 0.00323 -0.00634 0.00309 0.00309 0.00019 0.00652 0.00070 0.00068
MSE 0.00034 0.00062 0.00034 0.00034 0.00037 0.00048 0.00037 0.00037
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Table 2. The bias and MSE’s of the estimators for α = 0.15, λ = 0.5, a = 1.3, b = 0.4 and different values of n and r

Parameter α = 0.5 λ = 0.25

n r Criterion ML LS Bayes BS ML LS Bayes BS

100

20
Bias 0.14274 -0.07481 0.12788 0.02786 -0.03256 0.07059 -0.01198 -0.00041
MSE 0.11782 0.09585 0.10437 0.02715 0.01961 0.03123 0.01696 0.00469

30
Bias 0.09551 -0.06019 0.08716 0.00819 -0.01904 0.03301 -0.00866 0.00939
MSE 0.06781 0.05539 0.06320 0.01886 0.01273 0.01543 0.01163 0.00537

50
Bias 0.05097 -0.03747 0.04731 0.03034 -0.00710 0.02013 -0.00371 0.00255
MSE 0.03355 0.03117 0.03250 0.02622 0.00745 0.00824 0.00707 0.00594

100
Bias 0.01783 -0.07405 0.01790 0.01702 -0.00264 0.00927 -0.00302 -0.00312
MSE 0.01464 0.02624 0.01454 0.01438 0.00387 0.00384 0.00374 0.003751

300

30
Bias 0.08229 -0.09045 0.07553 0.03114 -0.03339 0.06710 -0.01523 -0.00711
MSE 0.06104 0.06249 0.05588 0.02316 0.01706 0.02888 0.01509 0.00573

60
Bias 0.04101 -0.04991 0.03778 0.00665 -0.01121 0.03217 -0.00456 0.00684
MSE 0.02641 0.02956 0.02547 0.01217 0.00640 0.00951 0.00608 0.00323

150
Bias 0.02166 -0.01088 0.02054 0.02058 -0.00264 0.00900 -0.00152 -0.00163
MSE 0.00950 0.00940 0.00939 0.00940 0.00245 0.00279 0.00241 0.00241

300
Bias 0.00517 -0.03570 0.00520 0.00518 -0.00206 0.00391 -0.00218 -0.00219
MSE 0.00434 0.00887 0.00433 0.00433 0.00147 0.00151 0.00145 0.00145

500

25
Bias 0.10237 -0.10589 0.08565 0.05907 -0.03381 0.10070 -0.00309 -0.01057
MSE 0.08386 0.08768 0.07043 0.03519 0.02432 0.04897 0.02110 0.00866

50
Bias 0.03835 -0.07013 0.03199 0.00040 -0.02118 0.05212 -0.00841 -0.00127
MSE 0.03136 0.03883 0.02935 0.00778 0.01029 0.01719 0.00948 0.00321

100
Bias 0.02751 -0.03133 0.02428 0.01343 -0.00534 0.02417 -0.00060 0.00454
MSE 0.01654 0.01827 0.01605 0.01264 0.00421 0.00582 0.00409 0.00328

250
Bias 0.00604 -0.01524 0.00499 0.00501 -0.00099 0.00532 -0.00005 -0.00009
MSE 0.00553 0.00599 0.00549 0.00549 0.00129 0.00143 0.00128 0.00128

500
Bias 0.00569 -0.02349 0.00551 0.00550 0.00028 0.00331 0.00038 0.00037
MSE 0.00268 0.00548 0.00267 0.00267 0.00087 0.00088 0.00087 0.00087
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Table 3. The bias and MSE’s of the estimators for α = 3, λ = 0.75, a = 1.4, b = 0.6 and different values of n and r

Parameter α = 0.5 λ = 0.25

n r Criterion ML LS Bayes BS ML LS Bayes BS

100

20
Bias 0.26671 -0.16850 0.25825 0.06921 -0.04580 0.06735 -0.03476 0.00038
MSE 0.51586 0.42292 0.47899 0.17543 0.02778 0.03540 0.02401 0.00912

30
Bias 0.16159 -0.12967 0.15683 0.07601 -0.02960 0.03133 -0.02619 -0.00319
MSE 0.24458 0.22040 0.23621 0.15553 0.01758 0.01937 0.01609 0.01051

50
Bias 0.09637 -0.08295 0.09381 0.08931 -0.00593 0.01495 -0.00799 -0.00804
MSE 0.11777 0.11255 0.11616 0.11323 0.01150 0.01149 0.01089 0.01092

100
Bias 0.05008 -0.13413 0.05208 0.05172 0.00119 0.00086 -0.00353 -0.00352
MSE 0.06096 0.11415 0.06111 0.06106 0.00805 0.00729 0.00770 0.00771

300

30
Bias 0.19792 -0.13918 0.20133 0.09899 -0.03742 0.08820 -0.02644 0.00193
MSE 0.28224 0.27701 0.26826 0.12359 0.02520 0.04209 0.02246 0.00918

60
Bias 0.10371 -0.07694 0.10320 0.07628 -0.01289 0.03282 -0.00986 -0.00468
MSE 0.11125 0.11166 0.10913 0.09042 0.00905 0.01188 0.00864 0.00769

150
Bias 0.04238 -0.02646 0.04162 0.04150 -0.00542 0.00288 -0.00609 -0.00611
MSE 0.03819 0.03955 0.03802 0.03801 0.00322 0.00319 0.00317 0.00318

300
Bias 0.02121 -0.06606 0.02184 0.02180 0.00490 0.00420 0.00332 0.00332
MSE 0.01974 0.03822 0.01976 0.01976 0.00220 0.00211 0.00216 0.00216

500

25
Bias 0.23145 -0.18722 0.21921 0.10440 -0.03611 0.12667 -0.01302 -0.00790
MSE 0.38736 0.35968 0.33489 0.15454 0.03423 0.06635 0.02891 0.01208

50
Bias 0.08753 -0.12816 0.08402 0.01649 -0.01296 0.06355 -0.00426 0.01137
MSE 0.13187 0.15034 0.12590 0.07117 0.01426 0.02480 0.01334 0.00683

100
Bias 0.05293 -0.07132 0.04996 0.04937 -0.00738 0.02273 -0.00454 -0.00478
MSE 0.05790 0.06554 0.05681 0.05643 0.00571 0.00770 0.00554 0.00554

250
Bias 0.01800 -0.02651 0.01672 0.01668 -0.00366 0.00172 -0.00367 -0.00368
MSE 0.02064 0.02228 0.02053 0.02053 0.00190 0.00198 0.00188 0.00188

500
Bias 0.01902 -0.04022 0.01900 0.01899 0.00099 0.00018 0.00036 0.00036
MSE 0.01144 0.02131 0.01143 0.01143 0.00159 0.00152 0.00158 0.00158

5. Guinea pigs data application
In the following, the methods presented in the previous sections are examined through a real data analysis. The

data set is a particular set with 72 observations involving the survival times (in days) of guinea pigs after injection with
tuberculosis bacillus, studied by Bjerkedal [39]. Indeed, guinea pigs are used as a model to study human tuberculosis,
since they are strongly susceptible to this type of bacillus. To see the data, one can refer to Kundu and Howlader [7].
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Figure 2. (a) Weibull distribution HF; (b) IW distribution HF for different amounts of (α, λ )

Table 4. Summary statistics for the survival times of guinea pigs injected with tuberculosis bacillus

Min Max Mean Median SD Skewness Kurtosis

12 376 99.82 70 81.12 1.83 2.89

Figure 2 shows the histogram and the boxplot for the survival times of the guinea pigs data that indicate an asymmetric
and leptokurtic distribution for the data. Also, Table 4 provides descriptive statistics for the survival times (in days) of
guinea pigs injected with tuberculosis bacillus. As seen, the data has strictly positive sample skewness and kurtosis, and
also there is a very long distance between the sample mean and median. The results of Figure 2 and Table 4 verify using
a distribution such as IW to fit the data.

Additionally, we plotted ln(t) against ln
(
− ln

(
F̂(t)

))
in Figure 3, where t is the survival time and F̂(t) is its empirical

cumulative distribution function. This plot shows a strictly negative relationship between ln(t) and ln
(
− ln

(
F̂(t)

))
and

this is another reason to use IW distribution for the data. Another way to propose a suitable distribution for a data is
the shape of its HF. Based on Kundu and Howlader [7], the empirical HF of the guinea pigs data by applying TTT plot
indicates a bathtub (unimodal) hazard rate. Hence, using the IW distribution could be a reasonable suggestion to analyze
the data (See Figure 4).

Figure 3. The scatter plot of ln(t) against ln(− ln(F̂(t)))
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Figure 4. Scaled TTT plot for the guinea pig data

According to the above results, IW distribution was first fitted to the data and then, based on type-II censored schemes
on the data, involving different values of effective sample sizes, and also the complete data, i.e. r = n = 72, the values
of ML, LS, Bayes and BS estimators were derived. Table 5 shows the results along with the average percent of changes
(APC) of the estimated parameters, where

APC =

[
1
2

(∣∣∣∣ α̂r − α̂n

α̂n

∣∣∣∣+
∣∣∣∣∣ λ̂r − λ̂n

λ̂n

∣∣∣∣∣
)]

×100,

in which r and n indices denote the sample sizes for any estimator.
As expected, when the value of r increases, the estimated parameters are closed to their corresponding for complete

data. The APC of BS method is lower than the other method in all of schemes. The ML and Bayes estimates are
approximately the same and the LS estimate is the worst. Figure 5 presents the histogram of the complete data and
the estimated density curves created by four methods with r = 10. As seen, the BS estimated density curve is superior to
the other methods in terms of model fitting.

Figure 5. The histogram of the complete data and the estimated density curves created by four methods with r = 10

Volume 5 Issue 4|2024| 5759 Contemporary Mathematics



Table 5. Estimation methods of α and λ based on type-II censored schemes for the guinea pig data

r method α λ APC

10

ML 0.850 43.655 62.27
LS 0.642 21.372 78.70

Bayes 0.821 50.361 61.02
BS 0.989 50.655 54.10

20

ML 0.918 56.992 57.51
LS 0.760 30.727 74.37

Bayes 0.888 52.107 58.26
BS 1.038 56.490 51.21

30

ML 1.171 123.467 36.88
LS 0.933 53.482 67.39

Bayes 1.125 120.149 37.22
BS 1.130 120.964 36.17

40

ML 1.275 174.503 24.21
LS 1.119 100.136 58.22

Bayes 1.234 169.336 24.25
BS 1.225 171.980 23.41

50

ML 1.342 218.777 14.05
LS 1.300 190.695 45.94

Bayes 1.308 214.608 13.28
BS 1.292 216.270 12.94

60

ML 1.369 240.803 13.28
LS 1.442 323.869 31.71

Bayes 1.334 231.471 9.25
BS 1.319 238.199 7.96

72

ML 1.415 283.853 0.00
LS 1.628 675.391 0.00

Bayes 1.379 273.029 0.00
BS 1.345 277.012 0.00

6. Discussion and conclusions
In many practical studies in lifetime analysis, the empirical HFmay not be monotonic. Consequently, using a flexible

distribution with a non-monotonic HF, such as the IW distribution, has been addressed by many researchers in lifetime
data analysis, particularly in the context of various censoring schemes. Since there are different forms of this distributions,
several methods have been proposed for estimating parameters. Finding an appropriate estimation method in a special
situation with high efficiency, especially when the data are subject to types of censoring, is an outstanding work for
statisticians. The ML, LS methods are the most popular procedures which can be found in the literature for estimating the
IW parameters in complete and censored data. In situations where there are priors and also some guessed points for the
IW parameters, using the Bayesian and BS approaches can be a better choice compared with the classical methods.

The primary objective of our study was to introduce Bayesian estimation method for the IW parameters in the
presence of type-II censored data and then present a method derived from Bayesian estimates, named by BS estimation
method which could potentially yield superior performance. First of all, ML and LS methods were introduced for

Contemporary Mathematics 5760 | Zahra Khodadadi, et al.



comparative purposes. Then Bayesian method was presented and the parameter estimates were derived. Due to the
complexity of Bayesian estimators’ computations, a simpler but approximated approach called the Lindley approach was
suggested. Furthermore, the BS method was proposed to estimate the IW parameters in the presence of any guessed point
based on the Bayesian estimators. Also, a score test for testing our guessed values for the parameters as well as a way to
calculate the shrinkage coefficients was suggested.

Our investigations on ML, LS and Bayesian methods verified the previous results in this field. The simulation
results demonstrated the consistency, and hence the efficiency, of all estimates for the type-II censored data. Notably, The
BS estimators outperformed other estimators under type-II censored data, especially with a small effective sample size.
Additionally, through a real data set, it was noticed that the average percent of changes of the estimates in BS method is
lower than the others in all schemes. Moreover, the estimated density curves by all methods were drawn under a small
effective sample size and it was observed that BS estimated density curve is more consistent with the complete data than
the other curves. These results in real data analysis also verify the simulation results.

Extending this study under types of censoring data will be our main goal in near future. Moreover, applying the BS
estimation method to other statistical models is proposed for future research.
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