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Abstract: This paper investigates the theory and applications of linear and skew polycyclic codes over the ring R = 
R1 ×R2 ×R3, where Ri (0 ≤ i ≤ 3) are finite commutative rings. We first explore the structure of linear codes over R, 
establishing foundational properties. Then, we introduce skew polycyclic codes over R, a generalization of polycyclic 
code over a finite field. We delve into the algebraic structure of these codes and demonstrate how they differ from their 
classical counterparts. Furthermore, we examine the dual codes of skew polycyclic codes over R, providing necessary and 
sufficient conditions for a code to be self-dual. Finally, we investigate the Gray images of skew polycyclic codes over R, 
focusing on codes with optimal parameters. We provide explicit construction of Gray maps that yield images with good 
properties, such as large minimum distances and favorable automorphism groups. These results have potential applications 
in constructing new classes of error-correcting codes. We demonstrate this through an example of skew polycyclic codes 
applied in secret sharing schemes.
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1. Introduction
Coding theory plays a vital role in modern communication systems, ensuring reliable data transmission through noisy

channels. Linear codes over finite rings, known for their algebraic structure, have emerged as a prominent class of codes
with applications in error correction and information transmission [1–3]. Since the work of Hammons et al. [4], which
linked non-linear codes over Z2 to linear codes over Z4, interest in codes over rings has significantly grown. Cyclic codes,
due to their polynomial structure, have also garnered much attention. These codes are particularly valuable in various
fields, including secret sharing schemes and DNA-based applications [5, 6]. Earlier studies focused on finite rings, often
requiring the automorphism order to divide the code length, until Siap et al. [7] removed this condition. Recently, research
has extended to skew polynomial rings with both automorphisms and derivations, as seen in the work of Boulagouaz and
Leroy [8], and Ma et al. [9], further broadening the scope of coding theory applications. In this context, the phenomenon
of triality in characteristic 0, a geometric concept with profound implications for principal bundles and fixed points,
offers a valuable perspective on the algebraic structures underlying skew polycyclic codes. While triality is primarily
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associated with characteristic 0, it serves as a valuable counterpart to the objects we investigate in characteristic p. This
relationship underscores the interconnectedness of concepts across different characteristics and enriches our understanding
of fundamental algebraic structures. For further reading, it is recommended to [10–12]. The study of codes over the ring
R=R1 ×R2 ×R3, where Ri (0 ≤ i ≤ 3) are finite frameworks that provide a more efficient communication framework.
This paper explores several classes of codes overR, focusing on their theoretical properties and potential applications.

This paper aims to contribute to the ongoing development of coding theory by introducing and analyzing new classes
of codes over the product ring R. Through a combination of algebraic theory and practical constructions, we provide
insights into the structure and potential applications of these codes. We begin with an exploration of linear codes over the
ringR. These codes are an extension of classical linear codes over finite fields, and they inherit many good properties, such
as straightforward encoding and decoding procedures. The product’s ring structure ofR introduces additional complexity,
resulting in new challenges and possibilities for the advancement and analysis of these codes. The next focus is on skew
polycyclic codes overR. These skew polycyclic codes represent a broad class with potential applications in commutative
algebra and cryptography. We investigate the algebraic properties of these codes, emphasizing their generator polynomials
and the implications of the skew structure. The study of the dual codes of skew polycyclic codes overR follows naturally
from this exploration. Dual codes play a vital role in error detection and correction, and their properties are closely tied to
the algebraic structure of the original codes. We derive conditions under which skew polycyclic codes are self-dual and
analyze the resulting code structures. Finally, we consider the Gray images of skew polycyclic codes overR, particularly
those with optimal parameters. Gray Maps is a powerful tool that transforms code over rings into codes over fields, often
preserving or enhancing some code properties. By applying Gray maps to skew polycyclic codes, we construct new
classes of codes with good properties, such as large minimum distances and high levels of symmetry. These results are
not only theoretically interesting but also have practical significance in the design of efficient and robust coding schemes.
Skew polycyclic codes offer a powerful framework for secret sharing, providing enhanced security features such as error
detection and correction. A practical example is presented where an optimal code is used to securely distribute a password
among participants.

The manuscript is organized as follows: Section 3 introduces linear codes over the ringR=R1×R2×R3, detailing
their fundamental properties and construction methods within this composite ring structure. Section 4 delves into skew
polycyclic codes over the same ringR, exploring their algebraic properties and how they extend classical polycyclic codes.
In Section 5, we examine the duals of skew polycyclic codes, discussing their duality relationships and implications for
code design. Finally, Section 6 examines the Gray images of skew polycyclic codes and explores their optimization. We
also demonstrate an application of skew polycyclic codes in secret sharing schemes through an example, illustrating how
secrets can be securely shared and reconstructed only when a threshold number of participants combine their shares.

2. Preliminaries
In this section, we recall some notions concerning the additive ring R = R1 ×R2 ×R3, defined as follows: The

ring R constructed as the Cartesian product of three rings, R1 =
2
∑

i=0
uiFq, with u3 = u, R2 =

3
∑

i=0
viFq, with v4 = v, and

R3 =
4
∑

i=0
wiFq, with w5 = w, Fq represents a finite field with q elements where q = pn for some n ∈ N. Each Ri is an

individual ring with its operations of addition and multiplication. The additive structure of R is defined as component-
wise, meaning that for any two elements (r1, r2, r3) and (s1, s2, s3) inR, their sum is given by (r1 + s1, r2 + s2, r3 + s3).
This additive structure inherits properties from the individual rings, makingR an additive ring that plays a crucial role in
our work.

Each element is represented by the ordered triple c = (c1 | c2 | c3), where c1 ∈ R1, c2 ∈ R2, and c3 ∈ R3. As noted
in reference [13], the components c1, c2, and c3 are given by the following expressions:
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c1 =
3

∑
i=1

µic1i, µ1 =
u+u2

2
, µ2 =

−u+u2

2
and µ3 = 1−u2,

c2 =
3

∑
i=1

ρic2i, ρ1 =
v+ v2 + v3

3
, ρ2 =

−v− v2 +2v3

3
and ρ3 = 1− v3,

c3 =
3

∑
i=1

ηic3i, η1 =
w+w2 +w3 +w4

4
, η2 =

−w−w2 −w3 +3w4

4
and η3 = 1−w4.

A linear codeC of length n over R is defined as an R-submodule of the module Rn and the elements ofC are called
codewords. If B and C are codes, we denote B⊕C to represent the code {b+ c | b ∈ B, c ∈ C} and B⊗C to denote the
code {(b, c) | b ∈ B, c ∈C}. The dual code of C is defined as C⊥ = {x | ∀y ∈C, x · y = 0}, which is also a linear code of
length n over R. A codeC is self-orthogonal ifC ⊆C⊥ and self-dual ifC =C⊥. A polycyclic codeC induced by a vector
v = (v0, v1, . . . , vn−1) ∈ Rn over R, is a linear code with the property that for any c = (c0, c1, . . . , cn−1) ∈C, we have
(0, c0, c1, . . . , cn−2)+ cn−1(v0, v1, . . . , vn−1) ∈ C. If v0 = 1 and vi = 0 for all 1 ≤ i ≤ n− 1, then C is called a cyclic
code. Moreover, if v0 = θ ∈ R∗ and vi = 0 for all 1 ≤ i ≤ n−1, then C is called as a θ -constacyclic code.

The following lemma is fundamental to the subsequent analysis. It establishes a relationship between the elements
of the ring R and their corresponding properties, providing the necessary results that follow. This lemma not only clarifies
the structure of the problem but also serves as a critical tool for proving more theorems in the later sections.

lemma 2.1 [14] The element µiρ jηk, 1 ≤ i, j, k ≤ 3, form a fundamental set of idempotents for R, and we have
• (µiρ jηk)(µi′ρ j′ηk′) = 0, for i 6= i′, j 6= j′, and k 6= k′, where 1 ≤ i, j, k, i′, j′, k′ ≤ 3.
• (µiρ jηk)

2 = µiρ jηk, for 1 ≤ i, j, k ≤ 3.

• ∑3
i=1

[
∑3

j=1
(
∑3

k=1 µiρ jηk
)]

= 1.

3. Linear codes over R = R1 ×R2 ×R3

Typically, additive codes over R = R1 × R2 × R3 are subgroups of Rn1
1 × Rn2

2 × Rn3
3 , as shown in [15–17].

Consequently, we can express any code C =C1 ×C2 ×C3 over R= R1 ×R2 ×R3 in the following manner:

C = (µ1C1
1 ⊕µ2C2

1 ⊕µ3C3
1)× (ρ1C1

2 ⊕ρ2C2
2 ⊕ρ3C3

2)× (η1C1
3 ⊕η2C2

3 ⊕η3C3
3), (1)

Theorem 3.1 Consider C a linear code of length n = 3n1 +3n2 +3n3 over R= R1 ×R2 ×R3, then

C =
3⊕

i=1

[
3⊕

j=1

(
3⊕

k=1

µiρ jηkCi jk

)]
, (2)

with Ci jk =Ci
1 ×C j

2 ×Ck
3, for 1 ≤ i, j, k ≤ 3.

Proof. The proof follows from Lemma 2.1 and (1).
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3.1 Gray map and gray images of linear codes over R = R1 ×R2 ×R3

We specify the Gray map, which is crucial in coding theory over rings. The Gray map is a bijective linear 
transformation that takes elements from a ring and maps them to a corresponding vector space, effectively allowing 
us to study codes over rings within the framework of classical linear codes. By using the Gray map, we can translate 
problems in ring theory into more familiar linear algebraic problems, facilitating the analysis and construction of codes 
with desirable properties. According to [18]:

Φ : R=R1 ×R2 ×R3 → F9n
q

(s1, s2, s3) 7→ Φ(s1, s2, s3),

(3)

where

Φ(s1, s2, s3) =((a11, a21, a31)M1, (a12, a22, a32)M1, . . . , (a1n, a2n, a3n)M1,

(b11, b21, b31)M2, (b12, b22, b32)M2, . . . , (b1n, b2n, b3n)M2,

(c11, c21, c31)M3, (c12, c22, c32)M3, . . . , (c1n, c2n, c3n)M3) ,

with s1 = ∑3
i=1 µiai j, s2 = ∑3

i=1 ρibi j and s3 = ∑3
i=1 ηici j, for 1 ≤ j ≤ n. Moreover, Mi, for 1 ≤ i ≤ 3, are square matrices

of order 3 satisfying MiMt
i = εI3, for some ε ∈ F∗

q. We can confirm that Φ is a distance-preserving map from (R =

R1 ×R2 ×R3, dL) to (Fq, dH). The parameters of the Gray image of a linear code C under Φ are provided in the
following result.

Theorem 3.2 If C =
⊕3

i=1
[⊕3

j=1
(⊕3

k=1 µiρ jηkCi jk
)]

is an [n, k, dL] linear code over R = R1 ×R2 ×R3, then
Φ(C) is [9n; k; dH ]q-linear codes over Fq, where dL = dH .

Proof. Let x=(x1, x2, x3)= (∑3
i=1 µiai j, ∑3

i=1 ρibi j, ∑3
i=1 ηici j), y=(y1, y2, y3)= (∑3

i=1 µia
′
i j, ∑3

i=1 ρib
′
i j, ∑3

i=1 ηic
′
i j)

∈C, for 1 ≤ j ≤ n, α ∈ Fq, then

Φ(x+ y) =Φ(x1 + y1, x2 + y2, x3 + y3)

=

((
a11 +a

′
11, a21 +a

′
21, a31 +a

′
31

)
M1, . . . ,

(
a1n +a

′
1n, a2n +a

′
2n, a3n +a

′
3n

)
M1,

(
b11 +b

′
11, b21 +b

′
21, b31 +b

′
31

)
M2, . . . ,

(
b1n +b

′
1n, b2n +b

′
2n, b3n +b

′
3n

)
M2,

(
c11 + c

′
11, c21 + c

′
21, c31 + c

′
31

)
M3, . . . ,

(
c1n + c

′
1n, c2n + c

′
2n, c3n + c

′
3n

)
M3

)

=

(
(a11, a21, a31)M1, . . . , (a1n, a2n, a3n)M1, (b11, b21, b31)M2, . . . , (b1n, b2n, b3n)M2,
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(c11, c21, c31)M3, . . . , (c1n, c2n, c3n)M3

)
+

((
a
′
11, a

′
21, a

′
31

)
M1, . . . ,

(
a
′
1n, a

′
2n, a

′
3n

)
M1,

(
b
′
11, b

′
21, b

′
31

)
M2, . . . ,

(
b
′
1n, b

′
2n, b

′
3n

)
M2,

(
c
′
11, c

′
21, c

′
31

)
M3, . . . ,

(
c
′
1n, c

′
2n, c

′
3n

)
M3

)

=Φ(x)+Φ(y).

Φ(αx) =Φ(αx1,αx2, αx3)

=

(
(αa11, αa21,αa31)M1, . . . , (αa1n, αa2n, αa3n)M1, (αb11, αb21,αb31)M2, . . . ,

(αb1n,αb2n, αb3n)M2, (αc11, αc21, αc31)M3, . . . , (αc1n, αc2n, αc3n)M3

)

=α
(
(a11, a21,a31)M1, . . . , (a1n, a2n, a3n)M1, (b11, b21, b31)M2, . . . , (b1n, b2n, b3n)M2,

(c11, c21, c31)M3, . . . , (c1n, c2n, c3n)M3

)

=αΦ(x).

So Φ is linear. Since Φ is bijective, then |C|= |Φ(C)|. As Φ is a distance preserving map, we have dL = dH .
Theorem 3.3 Consider C a linear code of length n over R= R1 ×R2 ×R3, then we have

Φ(C) =C111 ⊗C112 ⊗·· ·⊗C333, and |C|= |C111|× |C112|× · · ·× |C333|. (4)

Proof. Similar to the approach utilized in proving Theorem 8 [19].
The generator matrix of the linear code C =

⊕3
i=1
[⊕3

j=1
(⊕3

k=1 µiρ jηkCi jk
)]

over R = R1 ×R2 ×R3 can be
expressed in terms of the generator matrices of Ci jk, for 1 ≤ i, j, k ≤ 3 as follows

G =


µ1ρ1η1G111

µ1ρ1η2G112
...

µ3ρ3η3G333

 , (5)
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where Gi jk are generator matrices of a linear code Ci jk over Fq, for 1 ≤ i, j, k ≤ 3. Additionally, by applying the Gray
map Φ, the following result can be easily derived.

Theorem 3.4 If C =
⊕3

i=1
[⊕3

j=1
(⊕3

k=1 µiρ jηkCi jk
)]

is a linear code of length n over R = R1 ×R2 ×R3 with
generator matrix G, then

Φ(G) =


G111 0 . . . 0

0 G112 . . . 0
...

...
. . .

...
0 0 . . . G333

 . (6)

Proof. The results can be obtained using the matrix provided below

Φ(G) =


Φ(µ1ρ1η1G111)

Φ(µ1ρ1η2G112)
...

Φ(µ3ρ3η3G333)

 . (7)

The corollary below examines the relationship between the Gray image of a linear codeC =
⊕3

i=1
[⊕3

j=1
(⊕3

k=1 µiρ j

ηkCi jk
)
] over R= R1 ×R2 ×R3 and the Gray image of its dual.

Corollary 3.5 Let C =
⊕3

i=1
[⊕3

j=1
(⊕3

k=1 µiρ jηkCi jk
)]

be a linear code of length n over R= R1 ×R2 ×R3, then
Φ(C⊥) = [Φ(C)]⊥. Further, C is a self-dual code if and only if Φ(C) is a self-dual code.

Proof. Consider s = (s1, s2, s3) ∈ C and x = (x1, x2, x3) ∈ C⊥, where s1 = ∑3
i=1 µiai j, s2 = ∑3

i=1 ρibi j, and s3 =

∑3
i=1 ηici j, and x1 = ∑3

i=1 µia
′
i j, x2 = ∑3

i=1 ρib
′
i j, and x3 = ∑3

i=1 ηic
′
i j, for 1 ≤ j ≤ n. Then

< s, x >R=< (s1, s2, s3), (x1, x2, x3)>R

=< s1, x1 >R1 +< s2, x2 >R2 +< s3, x3 >R3

=µ1

n−1

∑
j=0

a1 ja
′
1 j +µ2

n−1

∑
j=0

a2 ja
′
2 j +µ3

n−1

∑
j=0

a3 ja
′
3 j

+ρ1

n−1

∑
j=0

b1 jb
′
1 j +ρ2

n−1

∑
j=0

b2 jb
′
2 j +ρ3

n−1

∑
j=0

b3 jb
′
3 j

+η1

n−1

∑
j=0

c1 jc
′
1 j +η2

n−1

∑
j=0

c2 jc
′
2 j +η3

n−1

∑
j=0

c3 jc
′
3 j

= 0,

Contemporary Mathematics 5646 | Karima Chatouh, et al.



which suggests that ∑n−1
j=0 ai ja

′
i j = 0, ∑n−1

j=0 bi jb
′
i j = 0 and ∑n−1

j=0 ci jc
′
i j = 0, for 0 ≤ i ≤ 3.

Following the Gray map previously defined, we have

Φ(s) =((a11, a21, a31)M1, (a12, a22, a32)M1, . . . , (a1n, a2n, a3n)M1,

(b11, b21, b31)M2, (b12, b22, b32)M2, . . . , (b1n, b2n, b3n)M2,

(c11, c21, c31)M3, (c12, c22, c32)M3, . . . , (c1n, c2n, c3n)M3) ,

and

Φ(x) =
((

a
′
11, a

′
21, a

′
31

)
M1,

(
a
′
12, a

′
22, a

′
32

)
M1, . . . ,

(
a
′
1n, a

′
2n, a

′
3n

)
M1,

(
b
′
11, b

′
21, b

′
31

)
M2,

(
b
′
12, b

′
22, b

′
32

)
M2, . . . ,

(
b
′
1n, b

′
2n, b

′
3n

)
M2,

(
c
′
11, c

′
21, c

′
31

)
M3,

(
c
′
12, c

′
22, c

′
32

)
M3, . . . ,

(
c
′
1n, c

′
2n, c

′
3n

)
M3

)
.

Building on these relationships, we obtain

< Φ(s), Φ(x)>Fq=
n−1

∑
j=0

(a1 j, a2 j, a3 j)M1M⊥
1

[
(a

′
1 j, a

′
2 j, a3 j)

′
]t

+
n−1

∑
j=0

(b1 j, b2 j, b3 j)M2M⊥
2

[
(b

′
1 j, b

′
2 j, b

′
3 j)
]t

+
n−1

∑
j=0

(c1 j, c2 j, c3 j)M3M⊥
3

[
(c

′
1 j, c

′
2 j, c

′
3 j)
]t

=ε
n−1

∑
j=0

(a1 j, a2 j, a3 j)
[
(a

′
1 j, a

′
2 j, a

′
3 j)
]t

+ ε
n−1

∑
j=0

(b1 j, b2 j, b3 j)
[
(b

′
1 j, b

′
2 j, b

′
3 j)
]t

+ ε
n−1

∑
j=0

(c1 j, c2 j, c3 j))
[
(c

′
1 j, c

′
2 j, c

′
3 j)
]t
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=ε

[
n−1

∑
j=0

a1 ja
′
1 j +

n−1

∑
j=0

a2 ja
′
2 j +

n−1

∑
j=0

a3 ja
′
3 j

+
n−1

∑
j=0

b1 jb
′
1 j +

n−1

∑
j=0

b2 jb
′
2 j +

n−1

∑
j=0

b3 jb
′
3 j

+
n−1

∑
j=0

c1 jc
′
1 j +

n−1

∑
j=0

c2 jc
′
2 j +

n−1

∑
j=0

c3 jc
′
3 j

]

= 0.

This leads us to the relation Φ(C⊥)⊆ [Φ(C)]⊥. Moreover, | Φ(C⊥) |=| [Φ(C)]⊥ | we reach the conclusion Φ(C⊥) =

[Φ(C)]⊥.

4. Skew polycyclic codes over R = R1 ×R2 ×R3

In this section, we examine the structure of skew polycyclic codes over R = R1 ×R2 ×R3. To investigate these
codes, we start by defining an automorphism of R. Specifically, we consider the automorphisms φi : Ri −→ Ri for
1 ≤ i ≤ 3, which are defined as follows:

φ1(µ1d1 +µ2d2 +µ3d3) = µ1φ1(d1)+µ2φ1(d2)+µ3φ1(d3) = µ1dp
1 +µ2dp

2 +µ3dp
3 ,

φ2(ρ1e1 +ρ2e2 +ρ3e3) = ρ1φ2(e1)+ρ2φ2(e2)+ρ3φ2(e3) = ρ1ep
1 +ρ2ep

2 +ρ3ep
3 ,

φ3(η1 f1 +η2 f2 +η3 f3) = η1φ3( f1)+η2φ3( f2)+η3φ3( f3) = η1 f p
1 +η2 f p

2 +η3 f p
3 .

We now define the automorphism on R= R1 ×R2 ×R3 by:

φ : R= R1 ×R2 ×R3 −→R

c = (c1, c2, c3) 7−→ φ(c),

(8)

where φ(c) = ( φ1(c1), φ2(c2), φ3(c3) ) = φ1(c1)+φ2(c2)+φ3(c3).

We consider the structure of skew polycyclic codes overR=R1×R2×R3. By applying the automorphism defined
previously, we can specify the properties and operations that characterize these codes.

Definition 4.1 [20] Consider C as a linear code of length n over the ring R = R1 × R2 × R3. Let φ be an
automorphism of R, and let v = (e0, e1, · · · , en−1) ∈ Rn. The code C is called a skew φ-polycyclic code induced
by the vector v, if for every codeword c = (c0, c1, · · · , cn−1) ∈C, the following condition holds:
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σv, φ(c) = (0, φ(c0), φ(c1), . . . , φ(cn−2))+φ(cn−1)(e0, e1, . . . , en−1) ∈C. (9)

When v = (1, 0, . . . , 0) or v = (−1, 0, . . . , 0), the corresponding code is referred to as a skew φ-cyclic (or simply
skew cyclic) code and a skew φ-negacyclic (or simply skew negacyclic) code, respectively. Let’s introduce the concept
of a skew-polynomial ring, denoted as R [x, φ]. This ring consists of polynomials, with coefficients fromR, i.e.,

R [x, φ] =
{

a0 +a1 x+a2 x2 + ...+an xn | ai ∈R, n ∈ N
}

(10)

The addition of polynomials follows the standard procedure, but the multiplication defined by:

x ·a = φ(a) · x, for a ∈R (11)

This multiplication rule generally makes R [x, φ] non-commutative, unless φ happens to be the identity map. The
elements of this ring are called skew-polynomials. When does a skew-polynomial f (x) belong to the center of R [x, φ]?
This is important because it aids in our understanding of skew φ-polycyclic codes, particularly when viewed as ring ideals.

Lemma 4.2Consider a skew-polynomial ringR [x, φ]whereφ is an automorphism ofR. Let f (x)= xn− fn−1xn−1−
·· ·− f1x− f0 be a polynomial in this ring, where φ( fi) = fi, for 0 ≤ i < n, fn = 1 and the order of φ divides i, for 0 ≤ i ≤ n.
Then f belongs to the center of R [x, φ], i.e., f ∈ Z(R [x, φ]) .

Proof. To show f (x) is in the center, we need to prove that it commutes with all elements ofR [x, φ]. Let’s consider
an arbitrary element g(x) = a0 +a1x+ . . .+amxm in R [x, φ], we first show that f0 commutes with g(x), we have

f0g(x) = f0a0 + f0a1x+ · · ·+ f0amxm

g(x) f0 = a0 f0 +a1φh( f0)x+ . . .+amφm
h ( f0)xm

These are equal because φ( f0) = f0.
Next, we show that fixi commutes with g(x) for 1 ⩽ i ⩽ n, we obtain

fixig(x) = fiφi(a0)xi + fiφi(a1)xi+1 + · · ·+ fiφi(an)xi+n

g(x) fixi = a0φi( fi)xi +a1φi( fi)xi+1 + · · ·+anφi( fi)xi+n

These are equal because φ( f i) = f i and φi(ak) = ak (since the order of φ divides i). Therefore, f (x) is in the center
of R [x, φ].

Lemma 4.3 For a polynomial f (x) = xn − fn−1xn−1 −·· ·− f1x− f0 in the center ofR [x, φ]. If f (x) = g(x)h(x) for
some polynomials g(x) and h(x) in R [x, φ], then f (x) = h(x)g(x).

Proof. Consider f (x) ∈ Z(R [x, φ]) and f (x) = g(x)h(x) for some polynomials g(x) and h(x) in R [x, φ]. Then, we
have the sequence g(x)(h(x)g(x))= (g(x)h(x))g(x)= f (x)g(x)= g(x) f (x)= g(x)(g(x)h(x)).This leads to g(x)(h(x)g(x)−
g(x)h(x)) = 0.
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Suppose T (x) = g(x)(h(x)g(x)−g(x)h(x)), where g(x) = ∑3
i=1 ∑3

j=1 ∑3
k=1 µiρ jηkgi jk(x) and h(x) = ∑3

i=1 ∑3
j=1 ∑3

k=1
µiρ jηkhi jk(x) for some polynomials gi jk(x) and hi jk(x) in Fq[x; φ] where 1 ≤ i, j, k ≤ 3. Then, we obtain:

T (x) =
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkgi jk(x)
[( 3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkhi jk(x)
)

( 3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkgi jk(x)
)
−
( 3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkgi jk(x)
)

( 3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkhi jk(x)
)]

=
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkgi jk(x)
[( 3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkhi jk(x)gi jk(x)
)

−
( 3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkgi jk(x)hi jk(x)
)]

=

( 3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkgi jk(x)
)( 3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkhi jk(x)gi jk(x)
)

−
( 3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkgi jk(x)
)( 3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkgi jk(x)hi jk(x)
)

=
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηk

(
gi jk(x)hi jk(x)gi jk(x)−gi jk(x)gi jk(x)hi jk(x)

)

=
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkgi jk(x)
(

hi jk(x)gi jk(x)−gi jk(x)hi jk(x)
)

= 0.

This indicates that gi jk(x)
(
hi jk(x)gi jk(x)−gi jk(x)hi jk(x)

)
= 0, for 1 ≤ i, j, k ≤ 3. Consequently, this means that

either hi jk(x) = 0 or hi jk(x)gi jk(x)− gi jk(x)hi jk(x) = 0 since Fq[x; φ] has no non-trivial zero divisors. In other words,
hi jk(x)gi jk(x) = gi jk(x)hi jk(x), for 1 ≤ i, j, k ≤ 3. Therefore, we can conclude that

g(x)h(x) =
( 3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkgi jk(x)
)( 3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkhi jk(x)
)
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=
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkgi jk(x)hi jk(x)

=
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkhi jk(x)gi jk(x)

=

( 3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkhi jk(x)
)( 3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkgi jk(x)
)

=h(x)g(x)

Thus, the lemma is proven.
Let f (x) ∈ Z(R [x, φ]) as defined previously. Then the left ideal R [x, φ] f (x) = {r(x) f (x) | r(x) ∈ R [x, φ]}

generated by f (x) is also a right ideal, forming a two-sided ideal. Consequently,
R [x, φ]

R [x, φ] f (x)
is a ring. If the conditions

of the preceding lemma are not satisfied,
R [x, φ]

R [x, φ] f (x)
forms a left R [x, φ]-module under the left multiplication:

r(x)(h(x) +R [x, φ] f (x)) = r(x)h(x) +R [x, φ] f (x) where r(x), h(x) ∈ R [x, φ]. We can identify an element c =

(c0, c1, . . . , cn−1) ∈ Rn with the polynomial pn(c) = c0 + c1x+ . . .+ cn−1xn−1 ∈ R [x, φ]
R [x, φ] f (x)

. Any code of length

n over R can be viewed as a subset of
R [x, φ]

R [x, φ] f (x)
, where n = deg( f (x)).

Lemma 4.4 Let C be a linear code of length n over the ring R. The code C is a skew φ-polycyclic code induced

by a vector v if and only if C can be represented as a left R [x, φ]-submodule of the module
R [x, φ]

R [x, φ] f (x)
, where the

polynomial f (x) is defined as f (x) = xn − pn(v).
Proof. Consider C as a skew φ-polycyclic code of length n induced by vector v, and let the polynomial f (x) =

xn − v(x) where v(x) = pn(v) = ∑n−1
i=0 eixi. For c = (c0, c1, . . . , cn−1) ∈ C, we have σv, φ(C) ⊆ C. Let c(x) = ∑n−1

i=0 cixi.
To explore the behavior of c(x) under multiplication by x, we first calculate the product x · c(x), which can be expressed
as:

x · c(x) =
n−2

∑
i=0

φ(ci)xi+1 +φ(cn−1)xn. (12)

Given that xn is equivalent to v(x) within the module
R [x, φ]

R [x, φ] f (x)
, we substitute xn with ∑n−1

i=0 eixi, resulting in

x · c(x) =
n−2

∑
i=0

φ(ci)xi+1 +φ(cn−1)
n−1

∑
i=0

eixi. (13)

This polynomial corresponds to σv, φ(c). Therefore, xc(x) belongs to C, and hence r(x)c(x) ∈ C for any r(x) ∈
R [x, φ]. To establish the reverse implication, assume that C is indeed a left R [x, φ]-submodule of the module

R [x, φ]
R [x, φ] f (x)

and c(x) = ∑n−1
i=0 cixi ∈C. Then r(x)c(x) ∈C for any r(x) ∈R [x, φ], implying xc(x) ∈C. Note that xc(x) is
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the polynomial corresponding to σv, φ(c) for c = (c0, c1, . . . , cn−1) ∈C. Therefore, σv, φ(C)⊆C, and henceC is a skew
φ-polycyclic code over R.

Lemma 4.5 LetC be a linear code of length n overR, and letC =C1×C2×C3, whereC1, C2 andC3 are linear codes
of length n over R1, R2 and R3. Given a codeword c = (b0, b1, . . . , bn−1) ∈C and a vector v = (e0, e1, . . . , en−1) ∈Rn.
So we have:

σv1, φ1(c1)σv2, φ2(c2)σv3, φ3(c3) = σv, φ(c), (14)

where v = (v1| v2| v3) and c = (c1| c2| c3).
Proof. Let cs = (b0, s, b1, s, . . . , bn−1, s) ∈ Rs and vs = (e0, s, e1, s, . . . , en−1, s) ∈ Rn

s , for 1 ≤ s ≤ 3. Consider
c = (c1| c2| c3) and v = (v1| v2| v3), we have

σv, φ(c) =(0, φ(b0), φ(b1), . . . , φ(bn−2))+φ(bn−1)(e0, e1, . . . , en−1)

=

(
0, φ1(b0, 1)+φ2(b0, 2)+φ3(b0, 3),φ1(b1, 1)+φ2(b1, 2)+φ3(b1, 3), . . . ,φ1(bn−2, 1)

+φ2(bn−2, 2)+φ3(bn−2, 3)

)
+

(
φ1(bn−1, 1 e0, 1)+φ2(bn−1, 2 e0, 2)+φ3(bn−1, 3 e0, 3)

, . . . ,φ1(bn−1, 1 en−1, 1)+φ2(bn−1, 2 en−1, 2)+φ3(bn−1, 3 en−1, 3)

)

=

[
(0, φ1(b0, 1),φ1(b1, 1), . . . ,φ1(bn−2, 1))+φ1(bn−1,1)(e0, 1,e1, 1, . . . , en−1, 1)

]

+

[
(0, φ2(b0, 2),φ2(b1, 2), . . . , φ2(bn−2, 2))+φ2(bn−1, 2)(e0, 2, e1, 2, . . . , en−1, 2)

]

+

[
(0, φ3(b0, 3), φ3(b1, 3), . . . , φ3(bn−2, 3))+φ3(bn−1, 3)(e0, 3, e1, 3, . . . , en−1, 3)

]

=

[
(0, φ1(b0, 1), φ1(b1, 1), . . . , φ1(bn−2, 1))+φ1(bn−1, 1)(e0, 1, e1, 1, . . . , en−1,1) ,

(0, φ2(b0, 2), φ2(b1, 2), . . . , φ2(bn−2, 2))+φ2(bn−1, 2)(e0, 2,e1, 2, . . . , en−1, 2) ,

(0, φ3(b0, 3),φ3(b1, 3), . . . , φ3(bn−2, 3))+φ3(bn−1, 3)(e0, 3,e1, 3, . . . , en−1, 3)

]
.

Therefore,
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σv, φ(c) = σv1, φ1(c1)σv2, φ2(c2)σv3, φ3(c3).

Theorem 4.6 Let C =
⊕3

i=1
[⊕3

j=1
(⊕3

k=1 µiρ jηkCi jk
)]

be a linear code of length n over R = R1 ×R2 ×R3, and
let v = (e0, e1, . . . , en−1) ∈Rn where

vr =
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηker, i jk ∈R, 0 ≤ r ≤ n−1. (15)

Then C is a skew φ-polycyclic code induced by the vector v if and only if each Ci jk is a skew φ-polycyclic code
induced by the vector vi jk, for 1 ≤ i, j, k ≤ 3, where vi jk = (e0, i jk, e1, i jk, . . . , e(n−1), i jk) ∈ F3n

q , for 1 ≤ i, j, k ≤ 3.
Specifically, C is a skew cyclic (or skew negacyclic) code over R if and only if each Ci jk is a skew cyclic (or skew
negacyclic) code over F3n

q , for 1 ≤ i, j, k ≤ 3.
Proof. Let C be a skew φ-polycyclic code over R induced by the vector

v =
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkvi jk (16)

and consider bi jk = (b0, i jk, b1, i jk, . . . , b(n−1), i jk) ∈Ci jk, for 1 ≤ i, j, k ≤ 3. Then

c = (b0, b1, . . . , bn−1) =
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkbi jk ∈C

where cr = ∑3
i=1 ∑3

j=1 ∑3
k=1 µiρ jηkbr, i jk, for 0 ≤ r ≤ n−1. Since C is a skew φ-polycyclic code over R, it follows that

σv, φ(c) = (0, φ(b0), φ(b1), . . . , φ(bn−2))+φ(bn−1)(e0, e1, . . . , en−1) ∈C. (17)

Note that

σv, φ(c) =(0, φ(b0), φ(b1), . . . , φ(bn−2))+φ(bn−1)(e0, e1, . . . , en−1)

=

(
0,

3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkφ(b0, i jk), . . . ,
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkφ(b(n−2), i jk)

)

+
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkφ(b(n−1), i jk)

(
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηke0, i jk, . . . ,
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηke(n−1), i jk

)

Volume 5 Issue 4|2024| 5653 Contemporary Mathematics



=
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηk

(
0, φ(b0, i jk), . . . , φ(b(n−2), i jk)

)

+
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkφ(b(n−1), i jk)

(
e0, i jk, . . . , e(n−1), i jk

)

=
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηk

[(
0, φ(b0, i jk), . . . , φ(b(n−2), i jk)

)

+φ(b(n−1), i jk)
(
e0, i jk, . . . , e(n−1), i jk

)]

=
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkσvi jk, φ(bi jk),

where vi jk = (e0, i jk, e1, i jk, . . . , en−1, i jk) ∈ F3n
q , for 1 ≤ i, j, k ≤ 3 consequently

σvi jk, φ(bi jk) ∈Ci jk, for 1 ≤ i, j, k ≤ 3,

thus,Ci jk is a skew φ-polycyclic code over Fq induced by vi jk = (e0, i jk,e1, i jk, . . . , en−1, i jk)∈ F3n
q for each 1≤ i, j, k ≤ 3.

Conversely, suppose Ci jk is a skew φ-polycyclic code over Fq induced by

vi jk = (e0, i jk, e1, i jk, . . . , en−1, i jk) ∈ F3n
q and c = (b0, b1, . . . , bn−1) ∈C,

where

cr =
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkbr, i jk, f or 0 ≤ r ≤ n−1.

Then

bi jk = (b0, i jk, b1, i jk, . . . , bn−1, i jk) ∈Ci jk, f or 1 ≤ i, j, k ≤ 3

since

c =
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkbi jk.
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AsCi jk is a skew φ-polycyclic code induced by vi jk, we have σvi jk, φ(bi jk) ∈Ci jk for, 1 ≤ i, j, k ≤ 3, which implies

3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkσvi jk, φ(bi jk) ∈C.

Hence,

3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkσvi jk, φ(bi jk) =
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηk

[(
0, φ(b0, i jk), . . . , φ(b(n−2), i jk)

)
+φ(b(n−1), i jk)

(
e0, i jk, . . . , e(n−1), i jk

)]

=
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηk

(
0, φ(b0, i jk), . . . , φ(b(n−2), i jk)

)
+

3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkφ(b(n−1), i jk)

(
e0, i jk, . . . , e(n−1), i jk

)

=

(
0,

3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkφ(b0, i jk), . . . ,
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkφ(b(n−2), i jk)

)

+
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkφ(b(n−1), i jk)

(
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηke0, i jk, . . . ,
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηke(n−1), i jk

)

=(0, φ(b0), φ(b1), . . . , φ(bn−2))+φ(bn−1)(e0, e1, . . . , en−1)

=σv, φ(c).

Thus, σv, φ(c) ∈C, establishing that C is indeed a skew φ-polycyclic code over R.
By applying the above arguments and Theorem 4.6, we can now derive the generator polynomial for any skew

φ-polycyclic code over R= R1 ×R2 ×R3 induced by a polynomial f ∈R [x, φ].
Lemma 4.7 For a polynomial f = ∑3

i=1 ∑3
j=1 ∑3

k=1 µiρ jηk fi jk ∈ R [x, φ], where each fi jk belongs to Fq[x; φ] for
0 ≤ i, j, k ≤ 3, we can construct a skew φ-polycyclic code C = ∑3

i=1 ∑3
j=1 ∑3

k=1 µiρ jηkCi jk over R, where Ci jk is a skew
φ-polycyclic code over Fq induced by gi jk, is a right divisor of fi jk, for 0 ≤ i, j, k ≤ 3. Then the codeC can be described
as
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C = 〈µ1ρ1η1g111(x), µ1ρ1η2g112(x), · · · , µ3ρ3η3g333(x)〉. (18)

Proof. First, we observe that C consists of all elements of the form:

c(x) =
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkhi jk(x)gi jk(x),

where hi jk(x)∈Fq[x; φ], clearly any such c(x) can be expressed as a combination of 〈µ1ρ1η1g111(x), µ1ρ1η2g112(x), · · · ,
µ3ρ3η3g333(x)〉, so

C ⊆ 〈µ1ρ1η1g111(x), µ1ρ1η2g112(x), · · · , µ3ρ3η3g333(x)〉. (19)

Conversely, consider an arbitrary element of 〈µ1ρ1η1g111(x), µ1ρ1η2g112(x), · · · , µ3ρ3η3g333(x)〉, it is written as
follows

r(x) =
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηksi jk(x)gi jk(x), where si jk ∈R [x, φ] . (20)

Therefore, the element µiρ jηksi jk(x), for 0≤ i, j, k ≤ 3 can be simplified to µiρ jηkhi jk(x) for some hi jk(x)∈Fq[x; φ].
Thus, we have

C ⊇ 〈µ1ρ1η1g111(x), µ1ρ1η2g112(x), · · · , µ3ρ3η3g333(x)〉. (21)

Theorem 4.8 Suppose f = ∑3
i=1 ∑3

j=1 ∑3
k=1 µiρ jηk fi jk in R [x, φ], where fi jk ∈ Fq[x; φ].

Let C = ∑3
i=1 ∑3

j=1 ∑3
k=1 µiρ jηkCi jk represent a skew φ-polycyclic code over R, induced by a monic polynomial

f , with Ci jk = 〈gi jk(x)〉, where gi jk is a right divisor of fi jk, for 1 ≤ i, j, k ≤ 3. Then the code C = 〈g(x)〉, where
g(x) = ∑3

i=1 ∑3
j=1 ∑3

k=1 µiρ jηkgi jk(x) serves as a right divisor of f (x).
Proof. According to Theorem 4.6, the code C is a skew φ-polycyclic code over R, induced by a monic polynomial

f if and only if each Ci jk is a skew φ-polycyclic code generated by a right divisor gi jk of fi jk, for 1 ≤ i, j, k ≤ 3. We
know that

C = 〈µ1ρ1η1g111(x), µ1ρ1η2g112(x), · · · , µ3ρ3η3g333(x)〉,

define g(x) = ∑3
i=1 ∑3

j=1 ∑3
k=1 µiρ jηkgi jk(x), and consequently 〈g(x)〉 is a subset of C. Simultaneously, for 1 ≤ i, j, k ≤

3, µiρ jηkgi jk(x) = µiρ jηkg(x), implying C ⊆ 〈g(x)〉. Therefore, C = 〈g(x)〉. Now, assume that fi jk can be decomposed
as fi jk(x) = hi jk(x)gi jk(x) for each 1 ≤ i, j, k ≤ 3, and consider h(x) = ∑3

i=1 ∑3
j=1 ∑3

k=1 µiρ jηkhi jk(x). Then
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h(x)g(x) =
( 3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkhi jk(x)
)( 3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkgi jk(x)
)

=
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηkhi jk(x)gi jk(x)

=
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηk fi jk(x)

= f (x).

This shows that g is the right divisor of f , thus completing the proof.
Theorem 4.9 Let C =

⊕3
i=1
[⊕3

j=1
(⊕3

k=1 µiρ jηkCi jk
)]

be a skew polycyclic codes over R = R1 ×R2 ×R3, then
Φ(C) is a skew polycyclic code over Fq.

Proof. The result is derived by applying (3) from Theorem 3.4.

5. The dual of skew polycyclic codes over R = R1 ×R2 ×R3

This section explores the intricate structure of dual-skew polycyclic codes, focusing on their unique properties and
classification. Additionally, we have established sufficient conditions for a skew polycyclic code to be self-dual.

Theorem 5.1 Let C =
⊕3

i=1

[⊕3
j=1

(⊕3
k=1 µiρ jηkCi

1 ×C j
2 ×Ck

3

)]
be a skew polycyclic code over R = R1 ×R2 ×

R3, thenC⊥ =
⊕3

i=1

[⊕3
j=1

(⊕3
k=1 µiρ jηk(Ci

1)
⊥× (C j

2)
⊥× (Ck

3)
⊥
)]

, is a skew polycyclic code overR=R1×R2×R3.
Proof. Suppose c = ∑3

i=1 ∑3
j=1 ∑3

k=1 µiρ jηkci jk, where ci jk ∈Ci jk, for 1 ≤ i, j, k ≤ 3. If ri jk ∈C⊥
i jk, for 1 ≤ i, j, k ≤ 3,

then it follows that ci jk · ri jk = 0, for 1 ≤ i, j, k ≤ 3. Now, consider the vector r = ∑3
i=1 ∑3

j=1 ∑3
k=1 µiρ jηkri jk, then we

have

c · r =
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηk(ci jk · ri jk) = 0,

which implies that r ∈C⊥.
Therefore, ∑3

i=1 ∑3
j=1 ∑3

k=1 µiρ jηk(Ci jk)
⊥ ⊆C⊥. Now, take any vector r = ∑3

i=1 ∑3
j=1 ∑3

k=1 µiρ jηkri jk ∈C⊥. Let ci jk

be any element from Ci jk for 1 ≤ i, j, k ≤ 3, and consider c = ∑3
i=1 ∑3

j=1 ∑3
k=1 µiρ jηkci jk ∈C. Then,

0 = c · r =
3

∑
i=1

3

∑
j=1

3

∑
k=1

µiρ jηk(ci jk · ri jk),

which implies that ci jk · ri jk = 0 for 1 ≤ i, j, k ≤ 3. Consequently, ri jk ∈ (Ci jk)
⊥, so r ∈ ∑3

i=1 ∑3
j=1 ∑3

k=1 µiρ jηk(Ci jk)
⊥,

and thus C⊥ ⊆ ∑3
i=1 ∑3

j=1 ∑3
k=1 µiρ jηk(Ci jk)

⊥. Note that this decomposition is unique, so this sum is direct. Thus, the
desired result is obtained.
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Corollary 5.2 The codeC is a self-dual skew polycyclic code overR=R1×R2×R3 if and only ifCi jk are self-dual
skew polycyclic codes over Fq, for 0 ≤ i, j, k ≤ 3.

Proof. Assume C =
⊕3

i=1

[⊕3
j=1

(⊕3
k=1 µiρ jηkCi

1 ×C j
2 ×Ck

3

)]
is a linear code over R. Follow Theorem 5.1, the

dual code of C is given by

C⊥ =
3⊕

i=1

[
3⊕

j=1

(
3⊕

k=1

µiρ jηk(Ci
1)

⊥× (C j
2)

⊥× (Ck
3)

⊥

)]
. (22)

If each Ci jk is self-dual, meaning Ci jk =C⊥
i jk, for 1 ≤ i, j, k ≤ 3, then

C⊥ =
3⊕

i=1

[
3⊕

j=1

(
3⊕

k=1

µiρ jηkCi
1 ×C j

2 ×Ck
3

)]
=C. (23)

Thus, C is self-dual. Conversely, suppose C is self-dual, so C = C⊥. Let ci jk ∈ Ci jk, for 1 ≤ i, j, k ≤ 3. Then,
the element c = ∑3

i=1 ∑3
j=1 ∑3

k=1 µiρ jηkci jk ∈ C involves that ∑3
i=1 ∑3

j=1 ∑3
k=1 µiρ jηkci jk ∈ C⊥. This means ci jk ∈ C⊥

i jk,
for 1 ≤ i, j, k ≤ 3, so Ci jk ⊆ C⊥

i jk, for 1 ≤ i, j, k ≤ 3. To show the reverse inclusion, take any ci jk ∈ C⊥
i jk. Then,

∑3
i=1 ∑3

j=1 ∑3
k=1 µiρ jηkci jk ∈C⊥ =C, implying ci jk ∈Ci jk, for 1 ≤ i, j, k ≤ 3. Thus, C⊥

i jk ⊆Ci jk , confirming that Ci jk is
self-dual, for 1 ≤ i, j, k ≤ 3.

6. Gray images of skew polycyclic codes with optimal parameters
Based on the reference [21], a linear code over a finite field is deemed to have optimal parameters if it meets specific

bounds such as those given by Singleton, Griesmer, or Gilbert-Varshamov. These bounds are specified by the following
formulas:

d ≤ n− k+1, (24)

n ≥
k−1

∑
i=0

dH

qi (25)

and

Aq(n, d)≥ qn

d−1
∑

i=0
Ci

n(q−1)i
. (26)

In this context, Aq(n, d) denotes the maximum size of a q-ary code with length n and minimum distance d. In our
research, we aim to construct codes with optimal parameters over the finite field Fq, drawing from the rich structure of
skew polycyclic codes over the ring R = R1 ×R2 ×R3. This goal is driven by the practical need for error-correcting
codes in finite field settings, often encountered in digital communication systems, cryptography, and various information
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processing applications. By utilizing tools such as Magma, Sage, and the database (http://www.codetables.de), we have
discovered several codes with optimal parameters.

Example 6.1 Consider R = R1 ×R2 ×R3, where q = 3 the factorization of x20 − 1 = (x+ 1)(x+ 2)(x2 + 1)(x4 +

x3 +2x+1)(x4 + x3 + x2 + x+1)(x4 +2x3 + x+1)(x4 +2x3 + x2 +2x+1). Note that for 0 ≤ i, j, k ≤ 3, Ci jk denotes a
skew polycyclic code over F3 defined by the generator polynomial 〈x8 + x7 +2x6 +2x5 +2x4 + x3 +1〉, and C is a code
characterized by the parameters [20, 8, 9]. In accordance with Theorems 3.2, 4.9 and Lemma 4.7, it can be concluded
that Φ(C) [180, 72, 81] forms a skew polycyclic code over F3 with good parameters.

Example 6.2 Consider R = R1 ×R2 ×R3, where q = 4. The factorization of x18 − 1 is given by: x18 − 1 =

(x+1)2(x+α)2(x+α2)2(x3 +α)2(x+α2)2. For 0 ≤ i, j, k ≤ 3, letCi jk denote a skew polycyclic code over F4 defined
by the generator polynomial 〈x4 +α2x2 + 1〉. The code C is characterized by the parameters [18, 4, 12]. According to
Theorems 3.2, 4.9 and Lemma 4.7, it can be concluded that Φ(C)with parameters [162, 36, 108] forms a skew polycyclic
code over F4 with good parameters.

Example 6.3 Consider R = R1 ×R2 ×R3, where q = 8. The factorization of x38 − 1 is given by: x38 − 1 =

(x+1)2(x+α)2(x6+α3x5+α6x4+α6x3+α6x2+α3x+1)2(x+α)2(x6+α5x5+α3x4+α3x3+α3x2+α5x+1)2(x6+

α6x5+α5x4+α5x3+α5x2+α6x+1)2. For 0 ≤ i, j, k ≤ 3, letCi jk denote a skew polycyclic code over F8 defined by the
generator polynomial 〈α2x17 +α4x16 +α4x13 +α3x11 +α4x10 +α6x9 +α3x8 +α3x7 +x6 +α2x5 +α2x4 +αx3 +α2x+
α3〉. The code C is characterized by the parameters [38, 12, 20]. According to Theorems 3.2, 4.9 and Lemma 4.7, it can
be concluded that Φ(C) with parameters [342, 108, 180] forms a skew polycyclic code over F8 with good parameters.

Example 6.4 Consider R = R1 ×R2 ×R3, where q = 9. The factorization of x58 − 1 is given by: x58 − 1 =

(x+ 1)(x+ 2)(x14 +wx13 + x12 +w2x11 +w3x10 + 2x9 +w2x8 +w2x7 +w2x6 + 2x5 +w3x4 +w2x3 + x2 +wx+ 1)(x14 +

w3x13 + x12 +w6x11 +wx10 +2x9 +w6x8 +w6x7 +w6x6 +2x5 +wx4 +w6x3 + x2 +w3x+1)(x14 +w5x13 + x12 +w6x11 +

w3x10+x9+w2x8+w6x7+w2x6+x5+w3x4+w6x3+x2+w5x+1)(x14+w7x13+x12+w2x11+wx10+x9+w6x8+w2x7+

w6x6+x5+wx4+w2x3+x2+w7x+1). For 0 ≤ i, j, k ≤ 3, letCi jk denote a skew polycyclic code over F9 defined by the
generator polynomial 〈x18+w6x17+w7x16+x15+w7x14+x13+w6x12+w5x11+w5x10+w2x8+w3x7+w5x6+x5+x4+

w2x3 +w2x2 +w2x+w5〉. The code C is characterized by the parameters [58, 40, 12]. According to Theorems 3.2, 4.9
and Lemma 4.7, it can be concluded that Φ(C) with parameters [522, 360, 108] forms a skew polycyclic code over F8

with good parameters.
The tables below provides details of some optimal linear skew polycyclic codes derived using the Gray map Φ.

Table 1. Linear skew polycyclic codes Φ(C) with good parameters over F3

Ci jk[n, k, d] Ci jk =
⟨
gi jk(x)

⟩
, 0 ≤ i, j, k ≤ 3 Φ(C) O

[32, 24, 5]

(
x24 + x22 + x20 + x18 + x16 + x14 + x12

+x8 + x6 + x4 + x2 +1

)
[288, 216, 45] yes

[48, 40, 4]



x42 +2x41 + x40 + x38 + x36 +2x35

+x34 +2x33 + x32 + x30 +2x29

+x28 +2x27 +2x26 + x24 +2x23

+x22 +2x21 +2x20 +2x18

+x17 +2x16 +2x14 + x13 +2x12

+2x11 +2x9 + x8 + x6

+2x5 + x4 +2x3 + x2 +1


[432, 360, 36] yes

[52, 24, 16]
(

x24 + x22 + x14 +2x12 +2x8 +2x6 +1
)

[468, 216, 144] yes

[60, 30, 18]
(

x30 + x27 + x24 + x21 + x12 + x9 + x6 +2
)

[144, 64, 16] yes
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Table 2. Linear skew polycyclic codes Φ(C) with good parameters over F4

Ci jk[n, k, d] Ci jk =
⟨
gi jk(x)

⟩
, 0 ≤ i, j, k ≤ 3 Φ(C) O

[22, 8, 11]

 x12 +αx11 +α2x10 +αx9 +α2x8

+αx7 +α2x6 + x5 + x4 + x3 + x2 +1

 [198, 72, 99] yes

[35, 23, 8]


x12 + x10 +α2x9 +α2x8 +α2x7

+α2x6 +α2x5 +αx3 +αx2

+αx+1

 [315, 207, 72] yes

[65, 36, 15]



x29 +α2x28 +αx27 + x26 + x25

+αx23 +α2x20 +αx19 +αx18

+α2x17 +αx16 + x15 + x14 +αx13

+α2x12 +αx11 +αx10 +α2x9

+αx6 + x4 + x3 +αx2 +α2x+1


[585, 324, 135] yes

[85, 44, 20]



x41 +α2x40 +α2x39 +α2x38 + x37

+α2x36 +α2x35 + x34 +α2x33 + x32

+αx31 +αx29 + x27 + x22 +αx21

+α2x19 +αx18 + x17 +αx16 + x14

+αx13 + x12 +α2x11 +αx10 + x9

+αx8 +α2x7 +αx6 +α2x5 +α2x4

+αx3 +α2x2 + x+1


[765, 396, 180] yes

Table 3. Linear skew polycyclic codes Φ(C) with good parameters over F8

Ci jk[n, k, d] Ci jk =
⟨
gi jk(x)

⟩
, 0 ≤ i, j, k ≤ 3 Φ(C) O

[37, 25, 9]


x12 +α5x11 +α5x10 +α2x9 +α6x8

+α2x7 +α6x6 +α2x5 +α6x4 +α2x3

+α5x2 +α5x+1

 [333, 225, 81] yes

[57, 50, 6]

x7 +α4x6 +αx5 +α4x4 +α4x3 +αx2

+α4x+1

 [513, 450, 54] yes

[73, 61, 8]

 x12 + x11 +α5x10 +α5x9 +α3x8

+α2x6 +α3x4 +α5x3 +α5x2 + x+1

 [657, 549, 72] yes

[95, 65, 16]



x30 +α5x29 +α6x28 +α4x27 +α3x26

+α2x25 +α5x24 +α3x23 +α6x22 +α6x21

+α3x20 +α6x19 +α3x18 +α5x17 +α6x16

+α4x15 +α5x14 +α3x13 +α6x12 +α5x11

+α3x10 +α4x9 +α3x8 +α6x7 +α4x6

+α5x5 +α4x4 +α3x3 +α5x2

+α4x+1


[144, 64, 16] yes
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6.1 Practical application: optimal skew polycyclic code in secret sharing schemes

Skew polycyclic codes offer a robust framework for secret sharing, leveraging their unique structural properties to
enhance security and robustness. The generation of secret shares enables effective integration of these codes into secret-
sharing mechanisms, providing built-in error detection and correction and offering enhanced security features that make
the system more resilient to attacks. Moreover, polycyclic codes are well-suited for implementing multi-secret sharing
schemes, where multiple secrets are shared simultaneously. Their applicability extends to several cryptographic contexts,
such as threshold cryptography, complex access structures, distributed key management, and the emerging field of DNA-
based multi-secret sharing schemes. In cases where standard secret-sharing schemes might prove inadequate, polycyclic
codes provide a more efficient and secure alternative, ensuring that shared secrets remain protected even in distributed or
high-risk environments.

6.1.1 Secret sharing context

According to [3, 5], secret sharing schemes are employed to split a secret s into multiple shares for distribution
among participants. The objective is to guarantee that the secret can only be reconstituted when a minimum number of
participants gather and combine their shares. This requirement is known as the reconstruction threshold. Additionally, the
properties of secret-sharing schemes include confidentiality and robustness. Confidentiality ensures that several shares
below the threshold do not reveal any information about the secret. Robustness means that the secret should be able to
be reconstructed even if some shares are lost or corrupted. Optimal codes of length n and dimension k possess properties
that make them excellent candidates for secret-sharing schemes because they enable efficient information encoding while
ensuring error detection and correction capabilities. Their algebraic properties guarantee that any group of k participants
can reconstruct the secret, while any subset of fewer than k participants does not provide enough information to deduce
the secret. Suppose we want to securely share a password among n members of an organization, such that the password
(the secret) can only be recovered if at least k members come together. If fewer than k members gather, they should not
be able to retrieve the password. In the case of corruption of some shares (up to e shares), it should be possible to identify
and fix errors before reconstructing the password. To achieve this, we will use an optimal polynomial code of length 32
and dimension 24 over the finite field F3.

6.1.2 Construction and application steps

The construction and application steps involve defining the mathematical structure, generating the necessary
codewords, and distributing these codewords as secret shares.

• The secret s is a vector of 24 symbols, each belonging to the field F3. For example, let’s consider the codeword
s = 201210221002101221120121.

• The vector represents the password we wish to share with the 32 members.
•We use a generator matrix G of the optimal polycyclic code of length n = 32 and dimension k = 24, where
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G =



20121022100211022112012110110210
01210221002110221120121101102102
12102210021102211201211011021020
21022100211022112012110110210201
10221002110221120121101102102012
02210021102211201211011021020121
22100211022112012110110210201210
21002110221120121101102102012102
10021102211201211011021020121022
00211022112012110110210201210221
02110221120121101102102012102210
21102211201211011021020121022100
11022112012110110210201210221002
10221120121101102102012102210021
02211201211011021020121022100211
22112012110110210201210221002110
21120121101102102012102210021102
11201211011021020121022100211022
12012110110210201210221002110221
20121101102102012102210021102211
01211011021020121022100211022112
12110110210201210221002110221120
21101102102012102210021102211201
11011021020121022100211022112012



.

The matrix G is selected so that its rows are vectors of the polycyclic code and allow encoding messages of 24
symbols into codewords of 32 symbols.

• The codeword c is obtained by multiplying the vector s by the matrix G:

c = 20121022100211022112012110110210.

• Each share of the secret corresponds to a component of the codeword c.
•We have 32 participants, each receiving a share corresponding to one of the 32 symbols of c.
• This scheme is designed so that any 24 participants (or more) can reconstruct the secret.
• The 24 combined shares can be used to solve the system of linear equations given by the generator matrix G,

allowing the recovery of the vector s.
• If fewer than 24 shares are combined, it is impossible to reconstruct s, as there are too many possible solutions to

the linear equation.

6.1.3 Error detection and correction

The use of skew polycyclic code in secret sharing not only ensures secure distribution of shares but also enables
effective error detection and correction. If a share is corrupted or altered, the code’s structure can identify and correct the
error, ensuring that the original secret can still be accurately reconstructed.
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• If some shares are corrupted or incorrect (e.g., due to transmission errors), the properties of the polycyclic code
allow for calculating a syndrome and locating the errors.

• For example, if the codeword received by 24 participants is:

c = 20121022100211022112010110110220

• The parity check matrix H, where

H =



10212011200122011221021210000000
02120112001220112210212201000000
21201120012201122102122000100000
12011200122011221021220200010000
20112001220112210212202200001000
01120012201122102122022000000100
11200122011221021220220100000010
12001220112210212202201200000001



allows for calculating the syndrome corresponding to c, which indicates the position of the error in the 23rd share, where
parity-check matrix H must be orthogonal to the generator matrix G, meaning that G ·HT = 0, which guarantees that
valid codewords lie in the null space of H. Additionally, the control matrix should have a rank, ensuring the number of
independent rows equals the number of parity checks, thereby maximizing error-detection capabilities. Furthermore, the
rows of H must be linearly independent to avoid redundant parity checks and ensure that distinct error patterns produce
unique error syndromes. These conditions are essential for the code’s functionality in detecting and correcting errors.

• The code is corrected, and s is reconstructed with the correct shares. Fewer than 24 shares provide no information
about s. This protects the secret against any attempts at reconstruction by unauthorized subsets.

• The secret can be reconstructed even if up to 8 shares are lost or corrupted.
• Error correction ensures the integrity of the received information before reconstruction.

6.1.4 Real-world use case: secret sharing in cryptography

This scheme can be used to share a cryptographic key or other sensitive information among multiple parties within
an organization. Here’s an example:

• The financial system uses a secret sharing scheme to distribute a digital signature key among 32 members of the
board of directors.

• If at least 24 members come together, they can reconstruct the key and validate the transaction.
• To ensure that any transaction is approved by a qualified majority, only 24 members can reconstruct the key.

7. Conclusion
In this article, we explored the structure and properties of linear codes over the ring R = R1 ×R2 ×R3, focusing

specifically on skew polycyclic codes. The study began by investigating the fundamental properties of linear codes within
this algebraic framework. We then delved into skew polycyclic codes overR, demonstrating their significance and utility
in coding theory. These codes, which generalize classical polycyclic codes by incorporating polynomial rings, possess
rich algebraic structures that make them suitable for various applications. The analysis was further extended to the duals
of skew polycyclic codes overR, revealing significant duality relationships that can be used to construct new codes with
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good properties. Additionally, a practical example demonstrated the effectiveness of skew polycyclic codes in secure
secret sharing schemes, emphasizing their utility in cryptographic contexts like distributed key management.
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