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Fr.O Fredholm operator.

Notations
N := {0, 1, 2, ...} and R is the set of real numbers.
R+N : The space of all sequences of positive reals.
ℓm, ℓ∞, and c0: The spaces of m-absolutely summable, bounded, and convergent to zero sequences of reals,

respectively.
bν : For ν ∈ (0, 1), the ν-level set of a fuzzy real b is defined by Matloka [1] as

bν = {y ∈ R : b(y)≥ ν}.

R[0, 1]: The set of all convex fuzzy number, normal, upper semi-continuous, and bν is compact.
For m ∈ R[0, 1], we have

m(k) =

{
1, k = m

0, k ̸= m

µF : The space of all sequences of fuzzy reals.
G, V: Infinite dimensional Banach spaces.
Γ: Banach space of one dimension.
Bd ⇑V

G , Ft ⇑V
G ,

Pt ⇑V
G , and Ct ⇑V

G : The space of all bounded, finite rank, approximable, and compact bounded linear mappings from
G into

V, respectively.
Bd ⇑G, Ft ⇑G,Pt ⇑G, and Ct ⇑G: The space of all bounded, finite rank, approximable, and compact bounded linear

mappings from G into itself, respectively.
Bd, Ft, Pt, and Ct: The ideal of bounded, finite rank, approximable and compact mappings between any arbitrary

Banach spaces, respectively.
E F : The linear space of sequences of fuzzy functions.
ed := (0, 0, ..., 1, 0, 0, · · ·), while 1 displays at the dth place.
[d]: The integral part of real number d.
F : The space of finite sequences of fuzzy numbers.
N+ and D−: The space of all monotonic increasing and decreasing sequences of positive reals, respectively.
I: The space of all sets with finite number of elements.
ℓF

∞: The space of bounded sequences of fuzzy functions.
(R(U))c: The complement of Range(U).

1. Introduction
The study of variable exponent Lebesgue spaces has gained more momentum due to its application in the

mathematical modeling of non-Newtonian fluids in hydrodynamics, as discussed by Ruẑiĉka [2]. The utilization of
electrorheological fluids, which are a type of non-Newtonian fluids, spans across diverse fields such as military science,
civil engineering, and orthopedics. Diening et al. [3] discussed Lebesgue and Sobolev spaces with variable exponents.
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We consider the following interesting references in which the norms and Lebesgue measures are considered for fluid
applications [4–8]. The solution of discrete dynamical systems is contained in a specific sequence space. So there is
a great interest in mathematics to construct new sequence spaces, see [9]. Mursaleen and Noman [10] examined some
new sequence spaces of non-absolute type related to the spaces ℓp and ℓ∞, and Mursaleen and Başar [11] constructed
and investigated the domain of Cesàro mean of order one in some spaces of double sequences. Mustafa and Bakery
[12] introduced the concept of pssf. They constructed the operators’ ideal by a weighted binomial matrix in the Nakano
sequence space of extended s-fuzzy functions. Komal et al. [13], investigated the multiplication operators acting on
Cesàro sequence spaces under the Luxemburg norm. The multiplication operators acting on Cesàro second order function
spaces examined by İlkhan et al. [14]. The aim of this paper is to construct a novel stochastic space using a weighted
regular matrix defined by Leonardo numbers and variable exponent sequence spaces. We have provided certain geometric
and topological structures to fuzzy functions, of the multiplication maps acting on it.

2. Definitions and preliminaries
Definition 2.1 [12] E F is called a pssf, if it satisfies the next setups:
(1c) E F is linear space and er ∈ E F , for r ∈ N ,
(2c) E F is solid i.e., for m = (mr) ∈ µF , |k|= (|kr|) ∈ E F and |mr| ≤ |kr|, where r ∈ N , then |m| ∈ E F ,
(3c)

(∣∣∣k[ r
2 ]

∣∣∣)
r∈N

∈ E F , whenever
(∣∣kx

∣∣)
r∈N

∈ E F .
Definition 2.2 [15] A subspace pssf E F

∥.∥p−qN
is called a p-m pssf, if ∥.∥p−qN : E F → [0, ∞) holds the next setups for

every m, k ∈ E F , and δ ∈ R:
(a1) k = ϑ ⇐⇒∥(|k|)∥p−qN = 0, and ∥k∥p−qN ≥ 0,
(a2) one gets C1 ≥ 1 under ∥δm∥p−qN ≤ |δ |C1∥m∥p−qN ,
(a3) ∥m+ k∥p−qN ≤C2(∥m∥p−qN +∥k∥p−qN) holds with C2 ≥ 1,
(a4) for |mr| ≤ |kr|, we have ∥(|mr|)∥p−qN ≤ ∥(|kr|)∥p−qN ,
(a5) the inequality, ∥(|kr|)∥p−qN ≤ ∥(|k[ r

2 ]
|)∥p−qN ≤C3∥(|kr|)∥p−qN verifies, for C3 ≥ 1,

(a6) the closure of F = E F
∥.∥p−qN

,
(a7) the inequality, ∥(m, 0, 0, 0, ...)∥p−qN ≥ α|m|∥e1∥p−qN holds for α > 0.
Definition 2.3 [15] The pssf E F

∥.∥p−qN
is called a p-q.N pssf, if ∥.∥p−qN confirms the setups (a1)-(a3) of Definition 2..

If pssf E F
∥.∥p−qN

is complete p-q.N pssf, then E F
∥.∥p−qN

is said to be a p-q.B pssf.
Theorem 2.4 [12] Each p-m pssf E F

∥.∥p−qN
is a p-q.N pssf.

Definition 2.5 [15] Suppose λ = (λk) ∈ RN and E F
∥.∥p−qN

is a p-q.N pssf. The operator Hλ : E F
∥.∥p−qN

→ E F
∥.∥p−qN

is named a M .O on E F
∥.∥p−qN

, if Hλ f =
(

λb fb

)
∈ E F

∥.∥p−qN
, with f ∈ E F

∥.∥p−qN
. The M .O is named created by λ , if

Hλ ∈Bd(E F
∥.∥p−qN

).
Definition 2.6 [16] For X ∈Bd ⇑E is called Fr.O if R(U) is closed, dim(ker(U))< ∞, and dim(R(U))c < ∞.
Theorem 2.7 [17] For a Bs E F under dim(E F) = ∞, one has

Ft ⇑E F&Pt ⇑E F& Ct ⇑E F&Bd ⇑E F .

Lemma 2.8 [18] Assume rm > 1 and αm, δm ∈ R, for every m ∈ N , and i= supm rm, then

|αm +δm|rm ≤ 2i−1 (|αm|rm + |δm|rm) . (1)
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3. Configuration and properties of
(
γF
r (q, t)

)
∥.∥p−qN

In this section, we introduce the definition and some inclusion relations of the sequence space
(
γF
r (q, t)

)
∥.∥p−qN

equipped with the function ∥.∥p−qN .
Assume rl , l ∈ N mark the lth Leonardo number. Where, the Leonardo numbers are defined as:

r0 = r1 = 1,rl = rl−1 + rl−2 +1, l ≥ 2.

Catarino and Borges [19] proved that: ∑v
k=0 rv = rv+2 − (v+2), v ∈ N .

We have presented a novel stochastic space
(
γF
r (q, t)

)
∥.∥p−qN

of fuzzy functions.

Definition 3.1 If (tl), (ql) ∈ R+N .

(
γF
r (q, t)

)
∥.∥p−qN

:=
{

d = (db) ∈ µF : ∥δd∥p−qN < ∞, for some δ > 0
}
,

where

∥d̄∥p−qN = ∑
l∈N

(
ћ̄
(
∑l

z=0 rzqzdz, 0
)

rl+2 − (l +2)

)tl

,

ћ̄(k̄, m̄) = sup
0≤β≤1

max
{∣∣∣k̄β

1 − m̄β
1

∣∣∣ , ∣∣∣k̄β
2 − m̄β

2

∣∣∣}

and

k
β
= [k

β
1 , k

β
2 ], mβ = [mβ

1 , mβ
2 ] ∈ R[0, 1].

Clearly, when (tl) ∈ R+N ∩ ℓ∞, one has

(
γF
r (q, t)

)
∥.∥p−qN

=
{

d = (db) ∈ µF : ∥δd∥p−qN < ∞, for any δ > 0
}
.

In [20], Yaying et al., studied new Banach sequence spaces involving Leonardo numbers and its associated mappings
ideal.

Theorem 3.2 The space
(
γF
r (q, t)

)
∥.∥p−qN

is a NAT , whenever (tl) ∈ [1, ∞)N ∩ ℓ∞.
Proof. Evidently, since

∥e0 − e1∥p−qN = (q0)
t0 +

(
|q0 −q1|

2

)t1
+

(
|q0 −q1|

5

)t2
+ · · ·

Volume 5 Issue 4|2024| 5537 Contemporary Mathematics



̸= (q0)
t0 +

(
|q0 +q1|

2

)t1
+

(
|q0 +q1|

5

)t2
+ · · ·= ∥(|e0 − e1|)∥p−qN .

Theorem 3.3 Assume tl ≥ 1 and (tl) ∈ R+N , for any l ∈ N .

(
|γF
r |(q, t)

)
φ :=

{
f = ( fk) ∈ µF : φ(δ f )< ∞, for some δ > 0

}
,

where

φ( f ) =
∞

∑
l=0

(
ћ̄
(
∑l

z=0 rzqz| fz|, 0
)

rl+2 − (l +2)

)tl

.

Theorem 3.4 Suppose (tl) ∈ (1, ∞)N ∩ ℓ∞ with
(

l+1
rl+2−(l+2)

)
/∈ ℓ(tl), hence

(
|γF
r |(q, t)

)
φ $

(
γF
r (q, t)

)
∥.∥p−qN

.
Proof. Assume d ∈

(
|γF
r |(q, t)

)
φ , one gets

∑
l∈N

(
ћ̄
(
∑l

z=0 rzqzdz, 0
)

rl+2 − (l +2)

)tl

≤ ∑
l∈N

(
ћ̄
(
∑l

z=0 rzqz|dz|, 0
)

rl+2 − (l +2)

)tl

< ∞.

So, d ∈
(
γF
r (q, t)

)
∥.∥p−qN

. Let f =
(
(−1)z

rzqz

)
z∈N

, then f ∈
(
γF
r (q, t)

)
∥.∥p−qN

and f /∈
(
|γF
r |(q, t)

)
φ .

In this part we give the suffient settings on γF
r (q, t) to be a p-q.B pssf.

Theorem 3.5 γF
r (q, t) is a p-m pssf, whenever

(o1) (tl) ∈N+∩ ℓ∞ and t0 > 1.
(o2) (rzqz)z∈N ∈D− or, (rzqz)z∈N ∈N+∩ ℓ∞ and one has A ≥ 1 such that r2z+1q2z+1 ≤ Arzqz.

Proof. Let d, k ∈ γF
r (q, t), and δ ∈ R. Suppose the conditions (o1) and (o2) are satisfied.

The part (a1): Definitely, ∥d∥p−qN ≥ 0 and ∥(|d|)∥p−qN = 0 ⇔ d = ϑ .
The parts (1c) and (a3):

∥d + k∥p−qN = ∑
l∈N

(
ћ̄
(
∑l

z=0 rzqz
(
dz + kz

)
,0
)

rl+2 − (l +2)

)tl

≤2i−1

(
∑

l∈N

(
ћ̄
(
∑l

z=0 rzqzdz, 0
)

rl+2 − (l +2)

)tl

+ ∑
l∈N

(
ћ̄
(
∑l

z=0 rzqzkz, 0
)

rl+2 − (l +2)

)tl)

=C2(∥d∥p−qN +∥k∥p−qN)< ∞,

hence, d + k ∈ γF
r (q, t).

The parts (1c) and (a2):
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∥δd∥p−qN = ∑
l∈N

(
ћ̄
(
∑l

z=0 rzqzδdz, 0
)

rl+2 − (l +2)

)tl

≤ sup
l
|δ |tl ∑

l∈N

(
ћ̄
(
∑l

z=0 rzqzdz, 0
)

rl+2 − (l +2)

)tl

=C1∥d∥p−qN < ∞.

So, δd ∈ γF
r (q, t). Hence γF

r (q, t) is a linear space. Also

∑
l∈N

 ћ̄
(

∑l
z=0 rzqz(eb)z, 0

)
rl+2 − (l +2)

tl

=
∞

∑
l=b

(
rbqb

rl+2 − (l +2)

)tl
≤ ∞

sup
l=b

(rbqb)
tl

∞

∑
l=b

(
1

rl+2 − (l +2)

)tl
< ∞.

Therefore, eb ∈ γF
r (q, t), for every b ∈ N .

The parts (2c) and (a4): Let |db| ≤ |kb|, for b ∈ N and |k| ∈ γF
r (q, t). Then

∥(|d|)∥p−qN = ∑
l∈N

(
ћ̄
(
∑l

z=0 rzqz|dz|, 0
)

rl+2 − (l +2)

)tl

≤ ∑
l∈N

(
ћ̄
(
∑l

z=0 rzqz|kz|, 0
)

rl+2 − (l +2)

)tl

= ∥(|k|)∥p−qN < ∞,

so |d| ∈ γF
r (q, t).

The parts (3c) and (a5): Assume (|dz|) ∈ γF
r (q, t) and (rzqz)z∈N ∈D−, we get

∥(|d[ z
2 ]
|)∥p−qN = ∑

l∈N

 ћ̄
(

∑l
z=0 rzqz|d[ z

2 ]
|, 0
)

rl+2 − (l +2)

tl

= ∑
l∈N

 ћ̄
(

∑2l
z=0 rzqz|d[ z

2 ]
|, 0
)

r2l+2 − (2l +2)

t2l

+ ∑
l∈N

 ћ̄
(

∑2l+1
z=0 rzqz|d[ z

2 ]
|, 0
)

r2l+3 − (2l +3)

t2l+1

≤ ∑
l∈N

 ћ̄
(

∑2l
z=0 rzqz|d[ z

2 ]
|, 0
)

rl+2 − (l +2)

tl

+ ∑
l∈N

 ћ̄
(

∑2l+1
z=0 rzqz|d[ z

2 ]
|, 0
)

rl+2 − (l +2)

tl

≤ ∑
l∈N

(
ћ̄
(
r2lq2l |dl |+∑l

z=0 (r2zq2z + r2z+1q2z+1) |dz|, 0
)

rl+2 − (l +2)

)tl

+ ∑
l∈N

(
ћ̄
(
∑l

z=0 (r2zq2z + r2z+1q2z+1) |dz|, 0
)

rl+2 − (l +2)

)tl

≤2i−1

(
∑

l∈N

(
ћ̄
(
∑l

z=0 rzqz|dz|, 0
)

rl+2 − (l +2)

)tl

+ ∑
l∈N

(
2ћ̄
(
∑l

z=0 rzqz|dz|, 0
)

rl+2 − (l +2)

)tl)
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+ ∑
l∈N

(
2ћ̄
(
∑l

z=0 rzqz|dz|, 0
)

rl+2 − (l +2)

)tl

≤(22i−1 +2i−1 +2i) ∑
l∈N

(
ћ̄
(
∑l

z=0 rzqz|dz|, 0
)

rl+2 − (l +2)

)tl

=C3∥(|dz|)∥p−qN < ∞,

hence (|d[ z
2 ]
|) ∈ γF

r (q, t).
Obviously, the parts (a6) and (a7) can be easily proven.
Theorem 3.6 The sequence space (γF

r (q, t))∥.∥p−qN is a p-q.B pssf.
Proof. From Theorem 3.5, one has (γF

r (q, t))∥.∥p−qN is a p-q.N pssf. To explain that (γF
r (q, t))∥.∥p−qN is a p-q.B pssf,

let f a = ( f a
z )z∈N be a Cs in (γF

r (q, t))∥.∥p−qN , hence for λ ∈ (0, 1), one has m0 ∈ N for any m, j ≥ z0, then

∥dm −d j∥p−qN = ∑
l∈N

 ћ̄
(

∑l
z=0 rzqz

(
dz

z −d j
z

)
,0
)

rl+2 − (l +2)

tl

< λi.

That gives

ћ̄

(
l

∑
z=0

rzqz

(
dm

z −d j
z

)
,0

)
< λ .

As (R[0, 1], ћ̄) is a CMs. So (d j
z ) is a Cs in R[0, 1], for fixed z ∈ N . Therefore, ∥dm − d0∥p−qN < λi, for every

m ≥ m0. Clearly from the linearity, d0 ∈ (γF
r (q, t))∥.∥p−qN .

4. M .Os on (γF
r (q, t))∥.∥p−qN

Under the conditions of theorem 3.5. We discuss M .O defined on (γF
r (q, t))∥.∥p−qN to be bounded, Iv.O,

approximable, Fr.O and C .R.
Assume that λ ∈ RN .
Theorem 4.1 The following are satisfied:
(m1) λ ∈ ℓ∞ ⇐⇒ Hλ ∈Bd ⇑(γF

r (q, t))∥.∥p−qN
.

(m2) |λb|= 1, for any b ∈ N ⇐⇒ Hλ is an Iy.O.
(m3) Hλ ∈Pt ⇑(γF

r (q, t))∥.∥p−qN
⇐⇒ (λ j) j∈N ∈ c0.

(m4) Hλ ∈ Ct ⇑(γF
r (q, t))∥.∥p−qN

⇐⇒ (λ j) j∈N ∈ c0.

(m5) Ct ⇑(γF
r (q, t))∥.∥p−qN

&Bd ⇑(γF
r (q, t))∥.∥p−qN

.
(m6) If Hλ ∈Bd ⇑(γF

r (q, t))∥.∥p−qN
. Then we have ω1, ω2 > 0 with ω1 < |λl |< ω2,

for l ∈ (ker(λ ))c ⇐⇒ R(Hλ ) is C .R.
(m7) One has ω1, ω2 > 0 with ω1 < |λl |< ω2, for any l ∈ N ⇐⇒ Hλ ∈Bd ⇑(γF

r (q, t))∥.∥p−qN
is Iv.O.

(m8) If Hλ ∈Bd ⇑(γF
r (q, t))∥.∥p−qN

. Then Hλ isFr.O⇐⇒ (o1) ker(λ )$N ∩I and (o2) |λl | ≥ ρ , for any l ∈ (ker(λ ))c.
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Proof. The part (m1): (=⇒): If λ ∈ ℓ∞. One gets α > 0 under |λ j| ≤ α , for any j ∈ N . For d ∈ (γF
r (q, t))∥.∥p−qN ,

we obtain

∥Hλ d∥p−qN = ∑
l∈N

 ћ̄
(

∑l
j=0 λ jr jq jd j, 0

)
rl+2 − (l +2)

tl

≤ sup
l

α tl ∑
l∈N

 ћ̄
(

∑l
j=0 r jq jd j, 0

)
rl+2 − (l +2)

tl

= sup
l

α tl∥d∥p−qN .

Hence, Hλ ∈Bd ⇑(γF
r (q, t))∥.∥p−qN

.
(⇐=): Presume Hλ ∈Bd ⇑(γF

r (q, t))∥.∥p−qN
and λ /∈ ℓ∞. Therefore, for any j ∈ N , one obtains x j ∈ N with λx j > j.

So

∥Hλ exb∥p−qN = ∥λ exb∥p−qN = ∑
l∈N

 ћ̄
(

∑l
z=0 λzrzqz(exb)z, 0

)
rl+2 − (l +2)

tl

=
∞

∑
l=xb

( λ(xb)r(xb)qxb

rl+2 − (l +2)

)tl
>

∞

∑
l=xb

(
br(xb)qxb

rl+2 − (l +2)

)tl
> bt0∥exb∥p−qN .

Hence, Hλ /∈Bd ⇑(γF
r (q, t))∥.∥p−qN

. So λ ∈ ℓ∞.
The part (m2): (=⇒): Let |λb|= 1, if b ∈ N . So

∥Hλ f∥p−qN = ∥λ f∥p−qN = ∑
l∈N

(
ћ̄
(
∑l

z=0 rzqzλz fz, 0
)

rl+2 − (l +2)

)tl

= ∑
l∈N

(
ћ̄
(
∑l

z=0 rzqz fz, 0
)

rl+2 − (l +2)

)tl

= ∥ f∥p−qN ,

for every f ∈ (γF
r (q, t))∥.∥p−qN . One gets, Hλ is an Iy.O.

(⇐=): If there are some b = b0 with |λb|< 1. That implies

∥Hλ eb0∥p−qN = ∥λ eb0∥p−qN = ∑
l∈N

 ћ̄
(

∑l
z=0 rzqzλz(eb0)z, 0

)
rl+2 − (l +2)

tl

=
∞

∑
l=b0

(
|λb0 |rb0qb0

rl+2 − (l +2)

)tl

<
∞

∑
l=b0

(
rb0qb0

rl+2 − (l +2)

)tl
= ∥eb0∥p−qN .

Clearly for |λb0 |> 1, we get ∥Hλ eb0∥p−qN > ∥eb0∥p−qN . So it must |λ j|= 1, for every j ∈ N .
The part (m3): (=⇒): If Hλ ∈ Pt ⇑(γF

r (q, t))∥.∥p−qN
, hence Hλ ∈ Ct ⇑(γF

r (q, t))∥.∥p−qN
. Suppose that limp→∞ λp ̸= 0.

One finds ρ > 0 under which Kρ = {p ∈ N : |λp| ≥ ρ} " I. When {ωp}p∈N ⊂ Kρ . So {eωp : ωp ∈ Kρ} ∈ ℓF
∞ ∩Ic ⊂

(γF
r (q, t))∥.∥p−qN . As for any ωr, ωp ∈ Kρ , one has
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∥Hλ eωr −Hλ eωp∥p−qN = ∑
l∈N

 ћ̄
(

∑l
z=0 rzqzλz

(
(eωr)z − (eωp)z

)
, 0
)

rl+2 − (l +2)

tl

≥ ∑
l∈N

 ћ̄
(

∑l
z=0 rzqzρ

(
(eωr)z − (eωp)z

)
, 0
)

rl+2 − (l +2)

tl

≥ inf
l

ρ tl∥eωr − eωp∥p−qN .

Hence, {eωp : ωp ∈ Kρ} ∈ ℓF
∞, which cannot have a convergent subsequence under Hλ . That implies Hλ /∈

Ct ⇑(γF
r (q, t))∥.∥p−qN

. So Hλ /∈Pt ⇑(γF
r (q, t))∥.∥p−qN

, That gives a contradiction. Then limp→∞ λp = 0.
(⇐=): Suppose that limp→∞ λp = 0. For ρ > 0, we get Kρ = {p ∈N : |λp| ≥ ρ} ⊂ I. Then, for any ρ > 0, one can

see dim
((

(γF
r (q, t))∥.∥p−qN

)
Kρ

)
= dim

(
RKρ

)
< ∞. So Hλ ∈ Ft

((
(γF

r (q, t))∥.∥p−qN

)
Kρ

)
. Assume λr ∈ RN , for every

r ∈ N , where

(λr)p =

λp, p ∈ K 1
r+1

,

0, otherwise.

It is clear that, Hλr ∈ Ft

((
(γF

r (q, t))∥.∥p−qN

)
p 1

r+1

)
, as dim

((
(γF

r (q, t))∥.∥p−qN

)
B 1

r+1

)
< ∞, for every r ∈ N .

Therefore,

∥(Hλ −Hλa) f∥p−qN = ∑
l∈N

(
ћ̄
(
∑l

z=0 rzqz(λz − (λa)z) fz,0
)

rl+2 − (l +2)

)tl

= ∑
l∈N ∩K 1

a+1

(
ћ̄
(
∑l

z=0 rzqz(λz − (λa)z) fz, 0
)

rl+2 − (l +2)

)tl

+
∞

∑
l∈N \K 1

a+1

(
ћ̄
(
∑l

z=0 rzqz(λz − (λa)z) fz, 0
)

rl+2 − (l +2)

)tl

=
∞

∑
l∈N \K 1

a+1

(
ћ̄
(
∑l

z=0 rzqzλz fz, 0
)

rl+2 − (l +2)

)tl

≤ 1
(a+1)t0

∞

∑
l∈N \K 1

a+1

(
ћ̄
(
∑l

z=0 rzqz fz, 0
)

rl+2 − (l +2)

)tl

<
1

(a+1)t0 ∑
l∈N

(
ћ̄
(
∑l

z=0 rzqz fz, 0
)

rl+2 − (l +2)

)tl

=
1

(a+1)t0
∥ f∥p−qN .

Hence, ∥Hλ −Hλa∥ ≤
1

(a+1)t0
. That explains Hλ ∈Pt ⇑(γF

r (q, t))∥.∥p−qN
.

The part (m4): It follows from Pt ⇑(γF
r (q, t))∥.∥p−qN

& Ct ⇑(γF
r (q, t))∥.∥p−qN

.
The part (m5): Clearly, I /∈ Ct ⇑(γF

r (q, t))∥.∥p−qN
and I ∈Bd ⇑(γF

r (q, t))∥.∥p−qN
. Since λI = ∑l∈N el .
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The part (m6): (=⇒): One has ρ > 0 under |λl | ≥ ρ , for every l ∈ (ker(λ ))c. Let m be a limit point of R(Hλ ).
Therefore, Hλ fl ∈ (γF

r (q, t))∥.∥p−qN , for any l ∈ N with liml→∞ Hλ fl = m. So Hλ fl is a Cs. Therefore,

∥Hλ fa −Hλ fb∥p−qN = ∑
l∈N

 ћ̄
(

∑l
z=0 rzqz(λz( fa)z −λz( fb)z), 0

)
rl+2 − (l +2)

tl

= ∑
l∈N ∩(ker(λ ))c

 ћ̄
(

∑l
z=0 rzqz(λz( fa)z −λz( fb)z), 0

)
rl+2 − (l +2)

tl

+ ∑
l∈N \(ker(λ ))c

 ћ̄
(

∑l
z=0 rzqz(λz( fa)z −λz( fb)z), 0

)
rl+2 − (l +2)

tl

≥ ∑
l∈N ∩(ker(λ ))c

 ћ̄
(

∑l
z=0 rzqz(λz( fa)z −λz( fb)z), 0

)
rl+2 − (l +2)

tl

= ∑
l∈N

 ћ̄
(

∑l
z=0 rzqz(λz(αa)z −λz(αb)z), 0

)
rl+2 − (l +2)

tl

> ∑
l∈N

 ћ̄
(

ρ ∑l
z=0 rzqz((αa)z − (αb)z), 0

)
rl+2 − (l +2)

tl

≥ inf
l

ρ tl∥αa −αb∥p−qN ,

where

(αa) j =

{
( fa) j, j ∈ (ker(λ ))c ,

0, j /∈ (ker(λ ))c .

So, {αl} is a Cs in the p-q.B (γF
r (q, t))∥.∥p−qN . One gets f ∈ (γF

r (q, t))∥.∥p−qN under liml→∞ αl = f . As Hλ ∈
Bd ⇑(γF

r (q, t))∥.∥p−qN
, hence liml→∞ Hλ αl = Hλ f . As liml→∞ Hλ αl = liml→∞ Hλ fl = m. So Hλ f = m. That proves m ∈

R(Hλ ). Hence R(Hλ ) is C .R.
(⇐=): One obtains ρ > 0 with ∥Hλ f∥p−qN ≥ ρ∥ f∥p−qN , for any f ∈

(
(γF

r (q, t))∥.∥p−qN

)
(ker(λ ))c

. Presume K =
{

l ∈

(ker(λ ))c : |λl |< ρ
}
̸= /0, so if a0 ∈ K, then
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∥Hλ ea0∥p−qN = ∥
(

λb(ea0)b)
)

b∈N
∥p−qN = ∑

l∈N

 ћ̄
(

∑l
z=0 rzqzλz(ea0)z, 0

)
rl+2 − (l +2)

tl

< ∑
l∈N

 ћ̄
(

ρ ∑l
z=0 rzqz(ea0)z, 0

)
rl+2 − (l +2)

tl

≤ sup
l

ρ tl∥ea0∥p−qN ,

That explains a contradiction. Therefore, K = ϕ , one has |λl | ≥ ρ , for l ∈ (ker(λ ))c.

The part (m7): (=⇒): If α ∈ RN under αl =
1
ωl

. By Theorem 4.1, one has Hω , Hα ∈ Bd ⇑(γF
r (q, t))∥.∥p−qN

with

Hω .Hα = Hα .Hω = I. So Hα = H−1
ω .

(⇐=): Let Hω be Iv.O. So R(Hω) =
(
(γF

r (q, t))∥.∥p−qN

)
N
. hence, R(Hω) is C .R. From the part (m6), one has

ζ > 0 with |ωl | ≥ ζ , for any l ∈ (ker(ω))c. Then ker(ω) = /0, whenever ωl0 = 0, for any l0 ∈ N , hence el0 ∈ ker(Hω),
which is a contradiction, since ker(Hω) is trivial. So |ωl | ≥ ζ , for any l ∈ N . As Hω ∈ ℓ∞. From the part (m1), one gets
ξ > 0 with |ωl | ≤ ξ , for any l ∈ N . Hence, one has ζ ≤ |ωl | ≤ ξ , for l ∈ N .

The part (m8): (=⇒): Suppose that ker(λ ) $ N ∩ Ic, so el ∈ ker(Hλ ), for any l ∈ ker(λ ). That explains a
contradiction, since dim(ker(Hλ )) = ∞. Therefore, ker(λ )$ N ∩I. From the part (m6), one has (o2) is verified.

(⇐=): From the part (m6), the setting (o2) gives R(Hλ ) is C .R. The condition (o1) means dim(ker(Hλ ))< ∞ and
dim((R(Hλ ))

c)< ∞. So Hλ is Fr.O.

5. Conclusion
We explained a few topological and geometric properties of multiplication maps acting on

(
γF
r (q, t)

)
∥.∥p−qN

. This
novel fuzzy function space is providing a new universal solution space for a wide variety of stochastic Fredholm nonlinear
dynamical systems.
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