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Fr.0 Fredholm operator.

Notations

A :={0, 1, 2, ...} and R is the set of real numbers.

R+ The space of all sequences of positive reals.

Uy, U, and co: The spaces of m-absolutely summable, bounded, and convergent to zero sequences of reals,
respectively.

bY: For v € (0, 1), the v-level set of a fuzzy real b is defined by Matloka [1] as

by ={yeR: b(y) >V}

RO 1I: The set of all convex fuzzy number, normal, upper semi-continuous, and b" is compact.
For m € R 1] we have

1, k=
m(k):{o k;&Z

u”': The space of all sequences of fuzzy reals.

®, U: Infinite dimensional Banach spaces.

I': Banach space of one dimension.

B g, g

PN, and ¢t ﬂg: The space of all bounded, finite rank, approximable, and compact bounded linear mappings from
& into

3, respectively.

B e, St e, Pt 1, and €t s The space of all bounded, finite rank, approximable, and compact bounded linear
mappings from & into itself, respectively.

B0, §t, Bt, and €t: The ideal of bounded, finite rank, approximable and compact mappings between any arbitrary
Banach spaces, respectively.

&F: The linear space of sequences of fuzzy functions.

¢ :=(0,0,..,1,0,0, ---), while T displays at the 4" place.

[d]: The integral part of real number d.

% . The space of finite sequences of fuzzy numbers.

. and ©_: The space of all monotonic increasing and decreasing sequences of positive reals, respectively.

J: The space of all sets with finite number of elements.

¢ The space of bounded sequences of fuzzy functions.

(Z(U))¢: The complement of Range(U).

1. Introduction

The study of variable exponent Lebesgue spaces has gained more momentum due to its application in the
mathematical modeling of non-Newtonian fluids in hydrodynamics, as discussed by Ruzi¢ka [2]. The utilization of
electrorheological fluids, which are a type of non-Newtonian fluids, spans across diverse fields such as military science,
civil engineering, and orthopedics. Diening et al. [3] discussed Lebesgue and Sobolev spaces with variable exponents.
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We consider the following interesting references in which the norms and Lebesgue measures are considered for fluid
applications [4—8]. The solution of discrete dynamical systems is contained in a specific sequence space. So there is
a great interest in mathematics to construct new sequence spaces, see [9]. Mursaleen and Noman [10] examined some
new sequence spaces of non-absolute type related to the spaces £, and /.., and Mursaleen and Basar [11] constructed
and investigated the domain of Cesaro mean of order one in some spaces of double sequences. Mustafa and Bakery
[12] introduced the concept of pssf. They constructed the operators’ ideal by a weighted binomial matrix in the Nakano
sequence space of extended s-fuzzy functions. Komal et al. [13], investigated the multiplication operators acting on
Cesaro sequence spaces under the Luxemburg norm. The multiplication operators acting on Cesaro second order function
spaces examined by Ilkhan et al. [14]. The aim of this paper is to construct a novel stochastic space using a weighted
regular matrix defined by Leonardo numbers and variable exponent sequence spaces. We have provided certain geometric
and topological structures to fuzzy functions, of the multiplication maps acting on it.

2. Definitions and preliminaries

Definition 2.1 [12] &7 is called a pssf, if it satisfies the next setups:

(1c) &F is linear space and ¢, € &, for r € A,

(2¢) &F is solid i.e., form = (m;) € ut, [k| = (|k;|) € &F and |[m;| < |k,|, where r € A/, then [m]| € &7,
(3e) (‘k[%]DreW € &F, whenever (|k),_ , € &F.

Definition 2.2 [15] A subspace pssf &

o is called a p-m pssf, if ||.|| )—gn : € — [0, o) holds the next setups for

every i, k€ &, and § € R:
(@l) k=0 <= [|(|k])l|p-gn = 0, and [|k][ g >0,
(a2) one gets C; > 1 under |67 p—qn < |6|C1||7]| p—gn»
(@3) [[m+kl[p-qv < Ca([[m]p—gn + k]| p—gn) holds with C; > 1,
(@) for 7] < [k, we have (1) l,—qv < (1) lp—qns
(a5) the inequality, || (|k-|)[|p—gnv <l (ki3] Dllp-gn < C3ll(|kr]) || p—gn verifies, for C3 > 1,
(a6) the closure of . = é””F Iy
(a7) the inequality, | (7, 0, 0, 0, ...)[,—qy > ] [7]qx holds for & > 0.
Definition 2.3 [15] The pssf é"HF o is called a p-q.N pssf, if ||.|| ,—gv confirms the setups (al)-(a3) of Definition 2.

If pssf é"HF gy 1S complete p-¢.N pssf, then éﬂpw is said to be a p-q.B pssf.
Theorem 2.4 [12] Each p-m pssf é"HF v 18 @P-4-N pssf.
Definition 2.5 [15] Suppose A = (4) € R and &7

[l-lp—q
is named a .#.0 on g\prqu’ if Hy f = (Awi) € éalf”pﬂ]N’ with f € éa‘prin. The .# .0 is named created by A, if
Hy € %D((gif”p*rw)'

Definition 2.6 [16] For X € B0 {}s is called Fr.0 if Z(U) is closed, dim(ker(U)) < o0, and dim(Z(U))¢ < oo.
Theorem 2.7 [17] For a Bs & under dim(&7) = oo, one has

N is a p-q.N pssf. The operator Hj : &7

— &F
”-”pqu H'prqN

Lemma 2.8 [18] Assume 7, > 1 and 04, 8, € R, for every m € 4, and 3 = sup,), r, then

|0+ 8™ < 2771 (| 0| + | 8| ™). (1)
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3. Configuration and properties of (¥ (¢,7))

[-llp-qv
In this section, we introduce the definition and some inclusion relations of the sequence space (¥ (¢, 1))

H'prqN
equipped with the function ||. || ,—gn.

Assume t;, [ € 4 mark the I'" Leonardo number. Where, the Leonardo numbers are defined as:

v=r =1y=vy_1+vy+1,1>2

Catarino and Borges [19] proved that: '} ¢, =t,40 — (v+2), ve A
We have presented a novel stochastic space (v (g, 1)) of fuzzy functions.

Definition 3.1 If (1)), (¢;) € R*"".

Il-ll p—qn

(¥ (g, 1))

- {B: (dy) € 1" : |84 p_qy < oo, for some & > o},

-l p—qn *

where
- —_ = 1
- R (Lo teqedz; 0
dllp-qv =} (tZZZZ;) ;
leV 1+2 ( + )
h(k, m) = sup max{‘fcf—n‘lf , l%f—mgl}
0<p<1
and

Eﬁ = [Ell;a Eg]a mﬁ = [m?’ mg] € R[O’ 1]'
Clearly, when (;) € R N¢.., one has

(¥ (q, 1))

= {3: (dp) € u* : ||8d|| p—gn < oo, for any § > O}.

H‘”p—qN -

In [20], Yaying et al., studied new Banach sequence spaces involving Leonardo numbers and its associated mappings
ideal.
Theorem 3.2 The space (¥{ (g, 1))

Proof. Evidently, since

is a NAT, whenever (f;) € [1, o)”" N /..

[I-llp—qn

- 4] o n
e()_el|qu:(q0)t0+(|q02q”> +(‘1056]1> +-.-
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qo+al\" , (lgo+ai\” _
Ao+ (10300 (100D - il

Theorem 3.3 Assume #; > 1 and () € R+, for anyl €.V,
(1 1(g, 1)) = {7 = (7o) € b" : @(81) < o=, for some & > 0},

where

o) = Z vt —(1+2)

=0

- (ﬁ (hovacl ) o))” |

Theorem 3.4 Suppose (1) € (1, =) N L., with (%) ¢ L)), hence (1% [(q, l))(p S (K (g n)

-lp—gn "
Proof. Assume d € (|¥|(q, t))(P, one gets
(Ll ova:ds; 0) )" A (Xl oraldl, 0))"
,;;V ( v —(1+2) = IEZ/’V v —(1+2) =
_ _ —1)z _ _
So.d € (1 (g. 1)), - LetF = ((q)) thenTe (H(g0),,, 47 ¢ (g 1), 0
<1z / ze.

In this part we give the suffient settings on ¥ (g, t) to be a p-q.B pssf.

Theorem 3.5 ¥/ (g, t) is a p-m pssf, whenever

(o) (1) €My Nl and 1p > 1.

(02) (t292).cy €D or, (t2q;).c 4y €Ny Nl and one has A > 1 such that to; 192,41 < Atzg;.
Proof. Letd, k € ¥ (g, t), and § € R. Suppose the conditions (o1) and (02) are satisfied.

The part (al): Definitely, ||d||,—qv > 0 and ||(|d|)||,—qv =0 d = 9.

The parts (1c) and (a3):

ld + k|| p—qn = Z
leV

. R(x_or.q.d, 0)\" R _ov.qk, 0)\"
2:1 1 z=0 z=0
= (,%( te2—(+2) ) ﬂé( ta2— (1 +2)

=Co(||d || p—gn + |1kl p—gn) < oo,

<ﬁ (Yo t.q: (& +K.),0) ) "

2 — (142)

hence, d +k € ¥ (g, t).
The parts (1c) and (a2):
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_ Ri(x!_ov.q.84, 0) " , A(Y_gvqd, 0)\" . _
[6d||p—gn = Z ' < Slllp‘6|l Z ‘ =Ci[|d|[p-gn < o

ey ‘C1+2—(1—|-2) ey ’C1+2—(l—|—2)

So, 8d € ¥f' (g, t). Hence ¥ (g, t) is a linear space. Also

i

=

h ():i:o t:qz(ep)z 6) ( qb )tl tz Z < )tl
* \tp2 — (1 +2) (ro4s) S\t —(+2)

eV 42— (l + 2) !

s

Therefore, ¢, € ¥ (g, t), forevery b € A
The parts (2c) and (a4): Let |dy| < |kp|, for b € .4 and |k| € ¥ (g, t). Then

= = m\ = = &\
- h(zl—0t7512|dz|» 0) h(ZI—OtZQZV(ZL 0) -
d _ = =Y < < = = k _ < oo,
1)y lg( ) S (o) = 1

so[d| € ¥ (g, 1) B
The parts (3¢) and (a5): Assume (|d;|) € ¥¢ (g, t) and (r.q;).c , € D—, we get

)

fl Zé:OtZQZ‘E7
Mp-av =Y ( -

d<,
I3 = v —(1+2)

- ty - — 1i41
Z h (ZZ Otz%‘d ) h ():?Z:JE)I tz‘]z|d[§] ) 0)
= +
= ty2— (21 + 2) = t3— (21+3)
_ 7] _
< Z h (ZZ otz%‘d ‘ 0) Z h (ZZIJ(F)l tzQz ) 0)
< +
e ty2—(1+2) = ty2—(1+2)

—_ — l — —_ t/
< h (vaquld| + Yoo (v2:q2: + t2z192:41) |z, O)
ey vy~ (142)

N Z < Z 0 (v2:q2: + v2c4192:41) |2, 0))

= to—(1+2)

a1 fl():z otZCIz|d‘ 0) 2h (ZZ Otz61z|d| 0)
=2 (leZ/V ( v —(1+2) ) +le.2/1/ < vty —(142) ) >
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2h (Zz 0t2q2|d | O)
+1,§y< v —(1+2) )

ﬁ(zz OthZ|d| 0)

<@ 4242 Y ( ) = G| ()| p—gn < =,
leV

v —(1+2)
hence (|d3)) € 7 (4 ).
Obviously, the parts (a6) and (a7) can be easily proven. O
Theorem 3.6 The sequence space (¥ (g, t))H~”p—qN is a p-q.B pssf.

Proof. From Theorem 3.5, one has (¥ (g, t)) Ilp—qv 18 @P-¢-N pssf. To explain that (v (q, D)) lp—qy 1S 2 P-4-B pssf,
let f@ = (f£).e.r bea Csin (¥ (g, 1))|,_,y-> hence for & € (0, 1), one has mg € 4" for any m, j > zo, then

i

||ﬁ_ﬁ||p_qN _ Z h (Zé:o v.4; (ié—;g) ,6) a3

ey v —(142)

That gives

ﬁ(itzqz (d;ﬁ—d{),O) <2.

z=0

As (R 7) is a CMs. So (E) is a Cs in RI% 1, for fixed z € .#". Therefore, ||d7mfﬁ||,,,qN < A=, for every
m > my. Clearly from the linearity, d® € (% (¢, 1))|.|,_,x- O

4. .4 .Oson (¥ (q, 1))

Under the conditions of theorem 3.5. We discuss .#.0 defined on (yf(q, t))
approximable, Fr.O and € .%.

Assume that A € R

Theorem 4.1 The following are satisfied:

(ml) ZI S gm < HA S %0 ﬂ(yll‘:(% t))\\4|\p,qN .

(m2) |A4y| =1, for any b € A <= H, is an I).O.

(m3) H), E‘Btﬂ% (1) <:>()~j)je/1/€c0-

(m4) Hy € CtApr ), L qN<:> (A))jer € co.

(m3) Et A1 Nl % LoD O N

(m6) IfH;L € ‘BD ﬂ ¥ )y Then we have @), @, > 0 with @) < |4] < @,

7qN
forl € (ker(A)) <= Z(H,)) is €.%.
(m7) One has @, @, > 0 with @, < |4 < @, forany [/ € A4 < H) € B0 T

[11lp-gn

to be bounded, Iv.O,

H'Hp—qN

(1 t))H I N is In.O.
. Then H), is Fr.0<=> (ol) ker(A) & .#'NJ and (02) |A1| > p, forany [ € (ker(1))“.

(N
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Proof. The part (m1): (=): If A € lw. One gets @ > 0 under |4;| < a, forany j € 4. Ford € (vf(q, 1))
we obtain

Il-llp—qn>

i i

h (le:o vjq;d;, 6)

leN 42— (l + 2)

B A(Yi_gAitiqid;, O
|Hpdlly-v =Y CREVIIL)

<supo
= v —(1+2) !

= sup o ||d || p—gn-

Hence, Hy, € B0 1,14 )

Il p—gn

(«<=): Presume H) € B0 ﬂ(?’f(% ) and A ¢ (... Therefore, for any j € .4/, one obtains x; € .4 with lxj > J.

-l p—gn
So
— RN 1
HH 7” HliH Z h (Zé:(} A’ztzéh(exb)za 0)
¢ _ = ¢ _ =
Atxpllp—gN xp || p—gN e t1+2—(l—|—2)
O () E) Do )” = ( br(a,)dx, )”
= — ] > — 2 ) > e | —an-
lgb <t1+2 —(+2) lgh tr2—(1+2) e 11p—g
Hence, Hy ¢ B0 1 r (4 1) .So A € L.

Il p—gn

The part (m2): (=>): Let [A4;| =1, ifbe 4. So

—= —= Z h (ZZ:O g A fzs 6) " Z h (leo ©q:fz, 6) ! —=
1= = WAl eV < v —(1+2) e v —(1+2) L £1lp—an:

for every f € (% (¢, 1)),y One gets, Hy is an y.0.
(«<=): If there are some b = by with || < 1. That implies

_ I
PRSP R  S i TEL) A (il
¢ _ = 3 _ — _ 1 Abg [Tbg by
A%bo llp—gN bollp—gN = t42 — (l +2) 1=py \ V42— (l +2)

oo 7]
Chy by > —
< e — = ||¢p, —gN -

Clearly for Ay, | > 1, we get [|[Hy ey, || p—gn > [|€ny || p—gnv- So it must [A;| = 1, for every j € A",
The part (m3): (=): If Hy € Pt A, Dy’ hence H; € €t fr i (, Dy’ Suppose that lim;, .. A, # 0.

One finds p > 0 under which K, = {p € A" :|A,[ > p} £T. When {@,}pc v CKp. So {ta, : 0, € Kp} € tENT° C
(% (@ 0))].,_q- As for any @, @, € K, one has
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i

R it vack (fea):~ (ea,):) . )
Cw, — [4 —_gN =
|| Atw, A a),,”p gN IEZ/,V t1+2—(l+2)

1

> Z B (Zézo tq:p ((eTr)z_(eTp)Z) ) 6)

ley t2 = (142)

> infp" [0, — €, lp-av.

Hence, {eT,p cwp, € Ky} € KOFQ, which cannot have a convergent subsequence under H,. That implies H; ¢
¢t ﬂ(?’f(q-, Dy . So H;, ¢ Bt ﬂ My , That gives a contradiction. Then lim,_;., 4, = 0.

(<=): Suppose that lim,, e l,, = 0 Forp >0,wegetK, ={pe.A :|Ay|>p} CT. Then, for any p > 0, one can

see dim (((yf(q, t))”'”P*‘IN)K ) = dim (RXP) < e. So H) € Ft (((}/f(q, t))”'”P*‘IN)K > Assume A, € R”, for every
P P
r € ./, where

Ap, €K1,
(lr>p: g P T

0, otherwise.

It is clear that, H; < §t (((Yf(q, t))H-Hp—qN>

Therefore,

), as dim (((yf(q, [))H-prqN>B 1 ) < oo, for every r € N

r+1

p1
r+1

I(Hy —Hp ) fllp-av =Y, <

leV

fl(zl otz‘]z( — (A ))fm )
v —(1+2)

_ B (Lo t:g:(A — (Aa)2) [z, 0) = (A2 t.q-( — (Aa)) -, 0)
_le//%(l( v — (142) ) Jrle/‘/%( ( t2— (1+2) )

_1
a+1

a+

_ 5 (fv(zzotzqufm ))S L5 (h(qu)>

_ZEL/V\KL tl+27(l+2) <a+l)t0 lEJV\Ki t]+2*(l+2)

a+1 a+1

1 ﬁ (Ziio tZQZﬁ? 6) i _ 1 _
= (a—l— l)to Z;/ ( Ty — (l—|—2) - (a+ l)fo ||f||p—qN~

1
Hence, ||H), — H,, || < — ;- That explains H € Pt 1
“ (a+1)0°

The part (m4): It follows from Bt (. Dy ¢e ﬂ(%p @ Doy’
The part (m5): Clearly, [ ¢ ¢t Tt @, Do and I € B, (,

SO lpegn”

") . Since &y =Y c s €.
SOy :
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The part (m6): (=>): One has p > 0 under |;| > p, for every [ € (ker(1)). Let m be a limit point of Z(H, ).
Therefore, H, f; € (¥F (q, 1)|.lj,_qv- for any I € 4" with lim;_,.. H, f; = m. So H, f; is a Cs. Therefore,

x e fl Zé: tzQZ()LZ(fu)Z_lz(fb)z),a !
(HaFa~ HaFolly-av= ¥, ( (Zo ))
leV

v —(1+2)

) Z (fl (Zizo (A (fa)e = A< f):), 6) ) |

v —(1+2)

(ﬁ (T vea-(20fo)e — (7)), 0) ) "

X

le N\ (Ker(A))° v~ (142)

h (Zé:o tz‘]z(kz(fa)z - )Lz(fh)z)v 6) !
v —(1+2)

>
le¥'N(ker(A))¢

X

leV

h (Zézo teq (A (0); — A (0)2), 6) !
v —(1+2)

h (P le:o tz‘]z((aa)z - @a 0
v — (142)

)\
) > infp" [0 ~ G-

> )
e

le.

where

{(mﬁ j € (ker(1))",
0, j ¢ (ker(1))°.

(Qa)j =

So, {0} is a Cs in the p-q.B (Y (q, 1)), _qv- One gets f € (v (g, 1|1,y under limy. g = f. As H) €
B0 ﬂ(yF(q O , hence lim; ,.. Hy 0 = Hy f. As lim;_,.. Hy @ = lim; ... Hy f; =m. So H) f = m. That proves m €
e p—gN
% (H,). Hence Z(H)) is € .%.
(«<=): One obtains p > 0 with ||H; f|,—gn > p||f|lp—gn, for any f € <(yf(q7 t))H-prqN)
(

ker(A))“: |4 < p} # 0, soif ap € K, then

. Presume K = {l €
(ker(2))¢
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i

_ A Zé:otz%lz@ao)m 0
L e [CONT) N e ) ( P () )
le.

— [ 17
n (P Zé:o tzQz(eao)z, 0)
leV tl+2_(l+2)

< Sl;pp" [[eaollp—qn:

That explains a contradiction. Therefore, K = ¢, one has |4;| > p, for I € (ker(1))°.

with
llp—gn

The part (m7): (=): If @ € R under oy = a)i By Theorem 4.1, one has Ho, Ha € B0 1},¢(, 1)
Hgy.Hy =Hy.Hy=1. So Hy = H'. l

(<=): Let Hyp be Iv.0. So #(Hy) = ((yf(q, t))H~Hp—qN) o hence, Z(Hy) is €.Z. From the part (m6), one has
¢ > 0 with || > ¢, for any [ € (ker(®)) . Then ker(®) = 0, whenever w;, = 0, for any Iy € 4, hence ¢;, € ker(Hy),
which is a contradiction, since ker(Hy,) is trivial. So |@y| >, forany [ € A", As Hy € fe. From the part (m1), one gets
& > 0 with |e| <&, forany [ € 4. Hence, one has § < || <&, forl e 4.

The part (m8): (=): Suppose that ker(A) & A" N7J€, so & € ker(Hy, ), for any [ € ker(4). That explains a
contradiction, since dim(ker(H),)) = oo. Therefore, ker(A) & .4 N7J. From the part (m6), one has (02) is verified.

(<=): From the part (m6), the setting (02) gives Z(H, ) is ¥.%. The condition (01) means dim(ker(H,)) < oo and
dim((Z(H),))¢) < eo. So H), is Fr.0.

5. Conclusion

We explained a few topological and geometric properties of multiplication maps acting on (yf (q, t)) Loy This
“lIp=q:

novel fuzzy function space is providing a new universal solution space for a wide variety of stochastic Fredholm nonlinear
dynamical systems.
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