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Abstract: Cut-free sequent calculi are handy tools for backward proof-search of logical formulas or sequents. In
the present paper, we introduce a Gentzen-type sequent calculus for the logic of common knowledge. To maintain a
deterministic backward proof-search process, we do not include cut or cut-like rules in the introduced calculus. Also,
derivation loops are used to define provable sequents and to establish termination of backward proof-search. Using
this sound and complete finitary loop-type sequent calculus we construct a decision procedure for the logic of common
knowledge. The procedure allows to efficiently determine whether an arbitrary formula or sequent is valid in the logic.
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1. Introduction
The logic of common knowledge was introduced in [1]. LCK is based on multi-modal logics extended with the

common knowledge operator. Common knowledge of a proposition p can be characterized by the following infinitary
conjunction: everybody knows p and everybody knows that everybody knows p and everybody knows that everybody
knows that everybody knows p and so on. LCK has many applications and plays a significant role in computer science,
artificial intelligence, game theory, etc. [2].

A cut-free sequent calculus is a handy tool for backward proof-search of logical formulas or sequents. We choose
a formula in the antecedent or succedent of a considered sequent and detect the outermost operator (logical or modal) of
the formula. According to the operator and its location (antecedent or succedent), a unique derivation rule of the sequent
calculus is chosen and backward applied to the sequent. As a result, one or several sequents, depending on the shape of
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applied rule, are obtained. The process is continued for the obtained sequents, etc. A backward proof-search tree with
some sequent S at the root is generated. The tree is a proof of S if all leaves of the tree satisfy some conditions, e.g., the
leaves are axioms. The rule of cut complicates this deterministic backward proof-search process. It has the following
shape:

Γ ⇒ ∆, c c, Π ⇒ Λ
Π, Γ ⇒ ∆, Λ

(cut).

In general, it is not clear what the formula c, called the cut-formula, should be so that to be convinced that a considered
sequent is provable or non-provable. That makes the rule non-deterministic from the backward perspective. The same is
true for cut-like rules such as the invariant rule in [3]. Hilbert-type calculi contain so called Modus Ponens rule

A A ⇒ B
B

.

This rule is an analogue of the cut rule. Such calculi are usually not used for efficient proof-search of formulas, e.g.,
in decision procedures. Hilbert-type calculi for LCK are considered in [4–6].

It was shown in [7] that common Gentzen-type sequent calculi for LCK are not complete without a cut rule. A
complete cut-free calculus with an infinitary rule (a rule with infinitely many premises) is considered in [7, 8]. A sequent
calculus with such an infinitary rule for a fragment of first order linear time logic was presented in [9]. It was proved
in [10] that the infintary rule in [7] can be turned into a finitary one by restricting the number of its premises. A survey of
proof theory of common knowledge can be found in [11].

Cut-free sequent calculi commonly possess the sub-formula property: each sequent in a backward proof-search tree
with a sequent S at the root consists of the subformulas of formulas in S. This property is used to establish termination
of backward proof-search in cases when the premises of some derivation rules are not simpler than the corresponding
conclusions.

Cut-free sequent calculi for modal and temporal logics are considered in the literature, e.g., [12–16]. The loop-type
sequent calculi for the logic of likelihood and the linear tense temporal logic are introduced in [17, 18], respectively.

The Gentzen-type sequent calculusGLCK for LCK is introduced in the present paper. The calculus does not contain
cut and cut-like rules. In addition to axioms, we use so-called derivation loops to define provable inGLCK sequents. The
derivation loops are also used to terminate potentially infinite backward proof-search. We prove thatGLCK is sound and
complete for LCK. Using the introduced calculus GLCK, a decision procedure for LCK is constructed. The procedure
allows us to determine efficiently whether an arbitrary formula or sequent is valid in LCK.

The present paper is structured as follows. Syntax and semantics of LCK are presented in Section 2. The sequent
calculusGLCK is introduced in Section 3. The derivation loops and connected with them notions are defined in Section 4.
The soundness and completeness of GLCK are proved in Sections 5 and 6, respectively. The validity-check procedure
for LCK based on the calculus GLCK is described in Section 7.

2. Syntax and semantics of LCK
We consider a language with µ agents for some natural number µ > 0. Formulas of LCK consist of propositional

variables, the logical connectives ∨, ∧,→, ¬, the modal operators Ki (1 ≤ i ≤ µ), andC. Each propositional variable is a
formula, and such a formula is called atomic. Formulas of LCK are defined as follows

ϕ : = p|(ϕ ∨ψ)|(ϕ ∧ψ)|(ϕ → ψ)|¬ϕ |Kiϕ |Cϕ ,
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where 1 ≤ i ≤ µ and p is an atomic formula.
The formula Cϕ is understood intuitively as the infinite conjunction

∞
∧

i=1
E iϕ , where E def

=
µ
∧

i=1
Kiϕ and

Emϕ = E . . .E︸ ︷︷ ︸
m

ϕ .

The formula Kiϕ means “agent i knows ϕ”, Eϕ means “every agent knows ϕ”, and Cϕ means “ϕ is common
knowledge of all agents”.

Subformulas of a formula are defined in the traditional way, e.g., the subformulas of (ϕ → ψ) are (ϕ → ψ) and
all subformulas of ϕ and ψ . We do not burden formulas with parentheses if it causes no ambiguities, e.g., we write
(ϕ ∧ψ)→ φ instead of ((ϕ ∧ψ)→ φ).

In the paper, we use (1) the letters p, q, and r, possibly subscripted, to denote propositional variables and (2) the
letters ϕ , φ , and ψ , possibly subscripted, to denote arbitrary formulas.

Sequents are objects of the type Γ ⇒ ∆, where Γ and ∆ are finite, possibly empty, multisets of formulas. If Γ =

ϕ1, . . . , ϕn, then, as usual, ΘΓ = Θϕ1, . . . , Θϕn, where Θ ∈ {Ki, C}. The letter S (possibly subscripted) is used in the
paper to denote sequents. Any sequent

ϕ1, . . . , ϕm ⇒ ψ1, . . . , ψn

is understood informally as the formula

(ϕ1 ∧ . . .∧ϕm)→ (ψ1 ∨ . . .∨ψn).

The sequent |S| is obtained from S by contracting equal members in the antecedent and succedent, e.g., if S = (p, p
⇒ p, q, q), then |S|= (p ⇒ p, q).

Given a countable set of atomic propositions Φ, a Kripke interpretation M is a tuple 〈S, R1, . . . , Rµ , π〉, where:
(i) S 6= /0 is a set of states,
(ii) Ri ⊆ S×S (1 ≤ i ≤ µ),
(iii) π : S→ 2Φ.
We say that t ∈ S is reachable from s ∈ S, iff there is a finite chain s1, . . . , sn (n ≥ 2) such that (1) s1 = s, (2) sn = t,

and (3) (si, si+1) ∈ R ji for each 1 ≤ i ≤ (n−1), where ji ∈ {1, . . . , µ}. If n = 2, then t is also called K-reachable from s.
We use the expression s 7→ s′ to denote that s′ is K-reachable from s.

The binary relation |= between pairs (M, s) and LCK formulas, where s ∈ S, is defined as follows:
(M, s) |= p, iff p ∈ π(s),
(M, s) |= ¬ϕ , iff (M, s) 6|= ϕ ,
(M, s) |= ϕ ∨ψ , iff (M, s) |= ϕ or (M, s) |= ψ ,
(M, s) |= ϕ ∧ψ , iff (M, s) |= ϕ and (M, s) |= ψ ,
(M, s) |= ϕ → ψ , iff (M, s) 6|= ϕ or (M, s) |= ψ ,
(M, s) |= Kiϕ , iff (M, t) |= ϕ for all t ∈ S such that (s, t) ∈ Ri,
(M, s) |=Cϕ , iff (M, t) |= ϕ for all t ∈ S reachable from s.
We extend the relation |= for sequents: (M, s) |= ϕ1, . . . , ϕm ⇒ ψ1, . . . , ψn, iff there is i ∈ {1, . . . , m} such that

(M, s) 6|= ϕi or there is j ∈ {1, . . . , n} such that (M, s) |= ψ j. It is true that (M, s) |= ϕ1, . . . , ϕn ⇒ ψ1, . . . , ψm implies
(M, s) |= (ϕ1 ∧ . . .∧ϕn)→ (ψ1 ∨ . . .∨ψm), and vice versa. In particular, (M, s) |=⇒ ψ , iff (M, s) |= ψ .
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If (M, s) |= ∇ for all possible pairs (M, s), where ∇ is a formula or a sequent, then we write |= ∇ and call ∇ valid
(in LCK). It is true that, e.g., the formula Cϕ → Kiϕ is valid.

Proposition 1 (M, s) |= S, iff (M, s) |= |S|.
Proof. The proof of the proposition is obvious.

3. Deductive system
We use the letter ε to denote the empty string, where εχ = χε = χ for any expressions χ; also, (ABiC)1≤i≤m =

AB1C, . . . , ABmC, where A, B, and C are any, possibly ε , expressions.
The sequent calculus GLCK consists of an axiom schema and propositional and modal rules:
1. Axiom schema: Γ, ϕ ⇒ ϕ , ∆.
2. Propositional rules:

|Γ ⇒ ϕ ,∆||ψ,Γ ⇒ ∆|
ϕ → ψ,Γ ⇒ ∆

(→⇒),
|Γ,ϕ ⇒ ψ,∆|

Γ ⇒ ϕ → ψ,∆
(⇒→),

|ϕ ,ψ,Γ ⇒ ∆|
ϕ ∧ψ,Γ ⇒ ∆

(∧⇒),
|Γ ⇒ ϕ ,∆||Γ ⇒ ψ,∆|

Γ ⇒ ϕ ∧ψ,∆
(⇒∧),

|ϕ ,Γ ⇒ ∆||ψ,Γ ⇒ ∆|
ϕ ∨ψ,Γ ⇒ ∆

(∨⇒),
|Γ ⇒ ϕ ,ψ,∆|
Γ ⇒ ϕ ∨ψ,∆

(⇒∨),

|Γ ⇒ ϕ ,∆|
¬ϕ ,Γ ⇒ ∆

(¬⇒),
|Γ,ϕ ⇒ ∆|
Γ ⇒¬ϕ ,∆

(⇒¬).

Modal rules:

|Γ ⇒ ϕ |
Σ1, ΩKi , KiΓ ⇒ Kiϕ , ∆K , Σ2

(Ki),

|(Kiϕ)1≤i≤µ , (KiCϕ)1≤i≤µ , Γ ⇒ ∆|
Cϕ , Γ ⇒ ∆

(C ⇒),

(|Γ ⇒ ∆, Kiϕ |)1≤i≤µ(|Γ ⇒ ∆, KiCϕ |)1≤i≤µ

Γ ⇒ ∆, Cϕ
(⇒C).

Here: Γ, ∆, Π denote finite, possibly empty, multisets of formulas; in the rule (Ki): (1) Σ1 and Σ2 denote finite,
possibly empty, multisets of atomic formulas; (2) each member of ΩKi is of the type K jϕ , where j ∈ {1, . . . , µ} \ {i};
(3) each member of ∆K is of the type K jϕ , where j ∈ {1, . . . , µ}. It is required that the conclusion of (Ki) is not
an axiom. Premises of the shape |Γ ⇒ ∆, Kiϕ |, 1 ≤ i ≤ µ , are called k-premises of (⇒ C). Premises of the shape
|Γ ⇒ ∆, KiCϕ |, 1 ≤ i ≤ µ , are called kc-premises of (⇒C).

Remark 1We prove in Section 6 that all derivation rules of GLCK, except (Ki), are invertible. The restriction that
Σ1, Σ2 consist of atomic formulas implies the following strategy of backward proof-search: apply invertible rules (i.e.,
rules other than (Ki)) as long as possible. That allows us to reduce backtracking. If we drop the restriction that Σ1, Σ2

consist of atomic formulas, then the following backward application of (Ki) is possible:
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p ⇒ q
p∧q, Ki p ⇒ Kiq, p

(Ki),

where the premise is not provable, though the conclusion can be proved by applying backwards rule (∧⇒) to it.
Principal formulas of the derivation rules are defined in the usual way, e.g.,Cϕ is the principal formula of rules (C ⇒)

and (⇒C). We use the expression (⇒Cϕ) to specify that Cϕ is the principal formula of (⇒C).

4. Derivation loops and provable sequents
Backward GLCK proof-search trees are generated as usual by subsequently applying backward derivation rules to

sequents.
We use the letterV to denote a backward proof-search tree, and the expressionV (S) to specify that S is the root ofV .
σ [ϕ ] is the sequence of symbols in ϕ , except parentheses, e.g.,

σ [(p∨ p)→ Kiq] = p, ∨, p, →, Ki, q.

Definition 1 The length of a formula ϕ (λ (ϕ) in notation) is the number of elements in σ [ϕ ] plus the number of ‘C’
in σ [ϕ ]. For example, λ (p∧ p) = 3, λ (Ki p) = 2, and λ (Cp) = 2+1 = 3. The length of a sequent S (λ (S) in notation) is
the sum of lengths of all the members of antecedent and succedent of S.

Remark 2 We need to have λ (Cϕ) > λ (Kiϕ) in, e.g., the proof of Proposition 2, concerning k-premises of (⇒ C).
Therefore, the definition of formula length is somewhat non-standard.

Definition 2 Given a proof-search tree, an upward path in the tree from some sequent S to S′ inclusive is called a
derivation loop ([S◦S′] in notation) iff 1) the length of the path is greater than 0 and 2) S′ and S coincide. The sequents S
and S′ are called the base and terminal sequents of [S◦S′], respectively.

Example 1 Let consider the following backward proof-search tree, assuming that µ = 1 for simplicity (read the tree
from bottom):

p, K1 p, K1Cp ⇒ K1q
0′ : p, Cp ⇒Cq

p, K1 p, K1Cp ⇒ K1Cq
p, K1 p, K1Cp ⇒Cq

0 : p, Cp ⇒Cq
(C ⇒)

(K1)

Here ‘0:’ and ‘0′:’ are used as sequent labels. One can see that [0◦0′] is a derivation loop, consisting of the sequence
of sequents

p, Cp ⇒Cq p, K1 p, K1Cp ⇒Cq p, K1 p, K1Cp ⇒ K1Cq p, Cp ⇒Cq.

Formulas of the shape Cϕ are called universality formulas.
Definition 3 A derivation loop [S◦S′] is called a derivation loop with the universality formulaCϕ , iff: (1) S = (Γ ⇒

ηCϕ , ∆), where η ∈ {ε, Ki}, (2) succedent of premise of any (Ki) application in [S ◦ S′] consists of Cϕ , and (3) [S ◦ S′]
contains a kc-premise and does not contain k-premises of (⇒Cϕ).

If there is no formula Cϕ in a derivation loop satisfying (1), (2), and (3), then the derivation loop is called α-void.
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In Example 1, [0◦0′] is a derivation loop with the universality formula Cq.
Proposition 2 Any derivation loop [S ◦ S′] has at least one application of (C ⇒) or kc-premise of an application of

(⇒C).
Proof. The proof follows from the facts that λ (S) = λ (S′) and the lengths of premises are less than the lengths of

corresponding conclusions of rules other than (C ⇒) and (⇒C); in the case of (⇒C), the lengths of k-premises are less
than the length of conclusion.

Proposition 3 Any derivation loop [S◦S′] has at least one application of (Ki).
Proof. Let n(Cϕ) be the number of occurrences of the formula Cϕ that are not within the scope of ‘Ki’ in a sequent.

It is true that n(Cϕ) for S′ is not less than for S with respect to any formula Cϕ .
Let us call an application of (⇒C) in [S◦S′] essential, if a kc-premise of that application is in [S◦S′]. It follows from

Proposition 2 that [S◦S′] has an application of (C ⇒) or (and) an essential application of (⇒C). Let {Cϕ1, . . . , Cϕm} be
the set of all principal formulas of such applications. There is ι ∈ {1, . . . , m} such that λ (Cϕι)≥ λ (Cϕi), for 1 ≤ i ≤ n.
It is true that n(Cϕι) for the conclusion is strictly greater than for a premise of (C ⇒) or any kc-premise of (⇒C) if the
principal formula is Cϕι . One can see that only (Ki) can increase n(Cϕι). Hence if (Ki) was not applied in [S ◦ S′], then
n(Cϕι) for S is strictly greater than for S′.

Proposition 4 In any derivation loop with a universality formulaCϕ , there is an application of (⇒Cϕ) between any
two applications of (Ki).

Proof. The proof follows from Definition 3 and from the shape of (Ki).
Definition 4 A maximal connected graph ϒ in V all edges of which belong to derivation loops with universality

formulas, is called a connected component. ϒ is said to have a universality formula, iff all derivation loops in it have a
common universality formula. Such a formula is called the universality formula of ϒ. If ϒ does not have a universality
formula, then each derivation loop in it is called β -void.

Definition 5 A derivation loop is called void, iff it is α-void or β -void.
Sequents of the shape Σ1, ΓK ⇒ Σ2, where Σi, Σ2 consist of atomic formulas and ΓK consists of formulas of the

shape KiΓ, are called atomic-like. No derivation rule is backwards applicable to atomic-like sequents.
Definition 6A leaf L of a backward proof-search tree is called strongly-closing, iff it is an axiom or a terminal sequent

of a derivation loop with a universality formula; L is called weakly-closing, iff it is a non-axiom atomic-like sequent or a
terminal sequent of a void derivation loop; L is called closing, iff it is weakly-closing or strongly-closing.

It is assumed in the sequel that derivation rules are not applied backward to closing leaves of any V .
Proposition 5 If S is a terminal sequent of a derivation loop, then S is closing.
Proof. Any derivation loop is a derivation loop with a universality formula or, otherwise, an α- or β -void derivation

loop. It is true that S is closing in all these cases.
Lemma 1 Any backward proof-search tree V (|S|) is finite.
Proof. Each sequent in V (|S|) consists of the subformulas of formulas of the finite sequent |S|, including Kiϕ and

KiCϕ (1 ≤ i ≤ µ) if Cϕ occurs in |S|. Some of these formulas occur in the antecedent and the others in succedent of
sequents. Let us denote the sets of such formulas A and S, respectively. For example, if S = (Cp ⇒ K1q), then

A= {p, K1 p, . . . , Kµ p, K1Cp, . . . , KµCp, Cp} and S= {q, K1q}.

The antecedents and succedents of sequents in V (|S|) are the subsets of A and S, respectively. Hence we can have
no more than 2n(A) different antecedents and 2n(S) different succedents, where n(A) and n(S) denote the numbers of
elements of A and S, correspondingly. It follows that the number of different sequents in V (|S|) is not greater than
2n(A)× 2n(S) = 2n(A)+n(S). We get that there are at least two equal sequents on any branch l of V (|S|), where the length
of l is at least 2n(A)+n(S). Hence the length of l cannot be greater than 2n(A)+n(S) because, if not closed earlier, a terminal
sequent of a derivation loop will close l in no more than 2n(A)+n(S) rule applications counting from the root.

Definition 7 A sequent S is called provable in GLCK (` S in notation), iff there exists a backward proof-search tree
V with |S| at the root such that (1) each leaf ofV is an axiom or a terminal sequent of a derivation loop with a universality
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formula and (2) each connected component in V has a universality formula. V is called a proof of |S| or a proof tree. If
all leaves of V are axioms, then S is called axiomatically provable in GLCK. The notation `V |S| means that V is a proof
of |S|.

A formula ϕ is provable, iff the sequent `⇒ ϕ is provable.
Example 2 The following formulas are provable in GLCK:
F1. Ki(p → q)→ (Ki p → Kiq)
F2. C(p → q)→ (Cp →Cq)
F1 is axiomatically proved in GLCK as follows:

q, p ⇒ q p ⇒ p, q
(p → q), p ⇒ q

(→⇒)

Ki(p → q), Ki p ⇒ Kiq
(Ki)

Ki(p → q)⇒ Ki p → Kiq
(⇒→)

⇒ Ki(p → q)→ (Ki p → Kiq)
(⇒→)

The formula F2 is proved in GLCK as follows (we assume that µ = 1 for simplicity):

C(p → q), p, Cp ⇒Cq, p 0′ : q, C(p → q), p, Cp ⇒Cq
p → q, C(p → q), p, Cp ⇒Cq

(→⇒)

S K1(p → q), K1C(p → q), K1 p, K1Cp ⇒ K1Cq
(K1)

K1(p → q), K1C(p → q), K1 p, K1Cp ⇒Cq
(⇒C)

K1(p → q), K1C(p → q), Cp ⇒Cq
0 : C(p → q), Cp ⇒Cq

C(p → q)⇒Cp →Cq
⇒C(p → q)→ (Cp →Cq)

(⇒→)

(⇒→)

(C ⇒)

(C ⇒)

Here S =
(
K1(p → q), K1C(p → q), K1 p, K1Cp ⇒ K1q

)
is axiomatically provable, applying backward (K1) and

(→⇒); [0◦0′] is a derivation loop with the universality formula Cq.

5. Soundness of GLCK
Lemma 2 Let

|S1| (|S2|, . . . , |Sn|)
S

(r)

(n ∈ {2, 2µ}) be an application of any GLCK rule, except (Ki). If (M, s) |= |S1| (and (M, s) |= |Si|, 2 ≤ i ≤ n,
respectively), then (M, s) |= |S|.

Proof. The lemma is proved by considering cases of (r):
(r) = (C ⇒):

|S1| : |(Kiϕ)1≤i≤µ , (KiCϕ)1≤i≤µ , Γ ⇒ ∆|
Cϕ , Γ ⇒ ∆

(C ⇒).
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We have that (M, s) |= |S1|. If there is ϕ ′ ∈ Γ or ψ ′ ∈ ∆ such that (M, s) 6|= ϕ ′ or (M, s) |= ψ ′, respectively, then
(M, s) |= S. Otherwise, (M, s) 6|= Kiϕ or (M, s) 6|= KiCϕ (i ∈ {1, . . . , µ}), i.e., there is t reachable from s such that
(M, t) 6|= ϕ . Hence (M, s) 6|=Cϕ . We get (M, s) |= S, according to the definition of |=.

(r) = (→⇒):

|S1| : |Γ ⇒ ϕ , ∆| |S2| : |ψ, Γ ⇒ ∆|
S : ϕ → ψ, Γ ⇒ ∆

(→⇒).

If there is ϕ ′ ∈ Γ or ψ ′ ∈ ∆ such that (M, s) 6|= ϕ ′ or (M, s) |= ψ ′, respectively, then (M, s) |= S. Otherwise,
(M, s) |= |Si| (1 ≤ i ≤ 2) imply (M, s) |= ϕ and (M, s) 6|= ψ . Hence (M, s) 6|= ϕ → ψ . This fact yields (M, s) |= S.

The remaining cases when the principal formula of (r) is in antecedent, i.e., (r) ∈ {(∧⇒), (∨⇒), (¬⇒)}, are
considered in the same way as the previous case.

(r) = (⇒C):

(|Si| : |Γ ⇒ ∆, Kiϕ |)1≤i≤µ (|Sµ+i| : |Γ ⇒ ∆, KiCϕ |)1≤i≤µ

Γ ⇒ ∆, Cϕ
(⇒C).

If there is ϕ ′ ∈ Γ or ψ ′ ∈ ∆ such that (M, s) 6|= ϕ ′ or (M, s) |= ψ ′, respectively, then (M, s) |= S. Otherwise,
(M, s) |= |Si| (1 ≤ i ≤ 2µ) imply (M, s) |= Kiϕ and (M, s) |= KiCϕ (1 ≤ i ≤ µ). We have that (M, t) |= ϕ for each t that
is reachable from s, i.e., (M, s) |=Cϕ . Hence (M, s) |= S.

(r) = (⇒→):

|S1| : |Γ, ϕ ⇒ ψ, ∆|
S : Γ ⇒ ϕ → ψ, ∆

(⇒→).

If there is ϕ ′ ∈ Γ or ψ ′ ∈ ∆ such that (M, s) 6|= ϕ ′ or (M, s) |= ψ ′, respectively, then (M, s) |= S. Otherwise,
(M, s) |= |S1| implies (M, s) 6|= ϕ or (M, s) |= ψ , i.e., (M, s) |= ϕ → ψ . Hence (M, s) |= S.

The remaining cases when the principal formula of (r) is in succedent, i.e., (r) ∈ {(⇒∧), (⇒∨), (⇒¬)}, are
considered in the same way as the previous case.

Corollary 1 If (M, s) 6|= S, then there is j ∈ {1, . . . , n} such that (M, s) 6|= |S j|.
Lemma 3 Let

|S1| : |Γ ⇒ ϕ |
S : Σ1, ΩKi , KiΓ ⇒ Kiϕ , ∆K , Σ2

(Ki),

be an application of rule (Ki), i ∈ {1, . . . , µ}. If (M, t) |= |S1| for each t such that (s, t) ∈ Ri, then (M, s) |= S.
Proof. If there is ψ ∈ Γ such that (M, t) 6|= ψ , where (s, t)∈ Ri, then (M, s) 6|= Kiψ . Hence (M, s) |= S. If there is no

such formula ψ in Γ, then the condition of lemma implies (M, t) |= ϕ for all t such that (s, t) ∈ Ri. Hence (M, s) |= Kiϕ .
It follows that (M, s) |= S.

Corollary 2 If (M, s) 6|= S, then there is t such that (s, t) ∈ Ri and (M, t) 6|= |S1|.
Let Γ = ϕ1, . . . , ϕn. If n > 1, then θΓ = ϕ1θ . . .θϕn, where θ ∈ {∧, ∨}. If n = 1 or no formula occur in Γ, then

θΓ = Γ.
Lemma 4 Let
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|S1| : |Γ ⇒Cϕ |
S : Σ1, ΩKi , KiΓ ⇒ KiCϕ , ∆K , Σ2

(Ki)

be an application of rule (Ki). If (M, s) 6|= S and (M, s) |= Kiϕ , then there is t 6= s such that (s, t) ∈ Ri and (M, t) 6|= |S1|.
Proof. (M, s) |= Kiϕ (a), according to the condition of lemma. (M, s) 6|= S implies (M, s) |= ∧KiΓ (b) and (M, s) 6|=

KiCϕ (c). There is t 6= s such that (s, t) ∈ Ri and (M, t) 6|=Cϕ , based on (a) and (c). It is true that (M, t) |= ∧Γ, according
to (s, t) ∈ Ri and (b). Hence (M, t) 6|= |S1|.

In the proofs of Theorems 1 and 2, we use the method of strong mathematical induction that is described as follows:
An induction parameter ip for a considered proposition (lemma, theorem) P is fixed. Base case: it is proved that P holds
for the minimal value of ip, e.g., ip = 0. Step case: it is assumed that P holds for all values of ip that are less than some
fixed number n > 0. Based on this assumption, it is proved that P holds also for n. That implies that P holds for all values
of ip.

Theorem 1 The calculus GLCK is sound: if ` S, then |= S, where S is an arbitrary sequent.
Proof. The theorem is proved by induction on the number d of the leaves of V (|S|) that are terminal sequents of

derivation loops.
Assume that there is a sequent S such that `V |S| and 6|= S. Hence 6|= |S|, according to Proposition 1. We have that

there is (M, s) such that (M, s) 6|= |S|.
It follows from Corollaries 1, 2 that V has a branch l such that for each sequent Ŝ on the branch it is true that

(M, ti) 6|= Ŝi. (1)

Let S′1 be the topmost sequent on l.
If d = 0, then S′i is a logical axiom. Hence (M, t) |= S′ for any pair (M, t), which contradicts (1) and the initial

assumption that `V |S| and 6|= S.
Let d > 0 and S′1 be a terminal sequent of a derivation loop [S1 ◦S′1]. It is true that l = ππ̄ , where π is a possibly empty

path, and π̄ = [S1 ◦ S′1]. Let the formula Cϕ be a universality formula of the connected component ϒ to which [S1 ◦ S′1]
belongs, and

(|Γ ⇒ Kiϕ , ∆|)1≤i≤µ (|Γ ⇒ KiCϕ , ∆|)1≤i≤µ

|Γ ⇒Cϕ , ∆|
(⇒C) (2)

be the first from the bottom application of (⇒Cϕ) in [S1 ◦S′1]. We have:

(M, s0) 6|= |Γ ⇒Cϕ , ∆| (3)

and

(M, s0) |= |Γ ⇒ Kiϕ , ∆| (1 ≤ i ≤ µ) (4)

for some pair (M, s0). (4) holds according to the inductive hypothesis because any derivation loop l p that contains the
considered occurrence of |Γ ⇒Cϕ , ∆|, is in ϒ and must have the universality formulaCϕ . Hence the path corresponding
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to l p cannot go via a k-premise of (⇒ Cϕ). It follows that the maximal sub-tree of V with any such a k-premise at the
root is a proof tree with the inductive parameter d′ < d.

It follows from (3) that: (a) (M, s0) |= ∧Γ and (b) (M, s0) 6|= ∨Cϕ , ∆; the latter fact yields (M, s0) 6|=Cϕ , i. e., there
is sn reachable from s0 such that

(M, sn) 6|= ϕ . (5)

We call such states sn critical. It is true that

(M, s0) |= Kiϕ , 1 ≤ i ≤ µ, (6)

based on (4), (a), and (b). Hence s0 is not critical.
It follows from (3) and 6 that there is j ∈ {1, . . . , µ} in (2) such that

(M, s0) 6|= |S j|= |Γ ⇒ K jCϕ , ∆|.

Let us consider the following fragment of V , including the semantical analysis:

. . .

(
(M,s1) |= |Γ2 ⇒ Kiϕ ,∆2|

)
1≤i≤µ

. . .(
|Γ2 ⇒ KiCϕ ,∆2|

)
1≤i≤µ

(⇒C)
(M,s1) 6|= |Γ2 ⇒Cϕ ,∆2|

π1

(M,s1) 6|= |Γ1 ⇒Cϕ |
(Ki)

(M,s0) 6|= |S′j|
π

(M,s0) 6|= |S j|
(⇒C)

(M,s0) 6|= |Γ ⇒Cϕ ,∆|

Here:
1. π is a path that does not have applications of (Ki);
2. (M, s0) 6|= |S′j|, based on Corollary 1;
3. (M, s1) 6|= |Γ1 ⇒Cϕ |, where s0 7→ s1, based on Corollary 2. We choose s1 6= s0, such a choice is legitimate, based

on Lemma 4;
4. π1 is a path that has no applications of (⇒Cϕ). It follows that there are no applications of (Ki) in π1, according

to Proposition 4. Hence (M, s1) 6|= |Γ2 ⇒Cϕ , ∆2|, according to item 3 and Corollary 1;
5. (M, s1) |= |Γ2 ⇒ Kiϕ , ∆2| (1 ≤ i ≤ µ) is obtained in the same way as (4).
6. Hence (M, s1) 6|=Cϕ and (M, s1) |= Kiϕ (1 ≤ i ≤ µ), based on items 4 and 5.
We have (M, s0) |= Kiϕ ∧¬Cϕ and (M, s1) |= Kiϕ ∧¬Cϕ , where s0 7→ s1 and 1 ≤ i ≤ µ . The process of generation

of such states is continued above (M, s1) 6|= |Γ2 ⇒Cϕ , ∆2|, making use also of Proposition 3. Each leaf L′ of V reached
during the process is a terminal sequent of a derivation loop [L◦L′] with the universality formulaCϕ . It is true that L = L′.
When L′ is reached, we go down to L and continue the process, traversing through derivation loops in ϒ and obtaining

(M, s0) |= Kiϕ ∧¬Cϕ , (M, s1) |= Kiϕ ∧¬Cϕ , . . . , (M, sk) |= Kiϕ ∧¬Cϕ
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(1 ≤ i ≤ µ) for any k ∈ N, where s0 7→ s1 7→ . . . 7→ sk and the states si in the sequence are unequal in pairs. (M, sk) |= Kiϕ
implies (M, t) |= ϕ for each t such that (sk, t) ∈ Ri (1 ≤ i ≤ µ). It is clear that we will eventually get k such that t |= ϕ ,
(sk, t) ∈ Ri (i ∈ {1, . . . , µ}), and t is a critical state. That contradicts the existence of critical states. Hence we get a
contradiction to the initial assumption that ` S and 6|= S.

6. Completeness of GLCK
Definition 8 A non-proof tree V is called a complete-refutation tree, iff all its leaves are closing sequents.
The Ki-resolvent set of S, where 1 ≤ i ≤ µ , is defined as follows:

{
S′ : S′ is a premise of backward application of (Ki) (1 ≤ i ≤ µ) to S

}
.

We introduce the following rule:

SKi

S
(ST EP),

where S is not an axiom, and SKi is Ki-resolvent set of S. The calculusGLCK* is obtained fromGLCK by replacing (Ki)

with rule (ST EP). EachGLCK* treeV can be transformed into aGLCK tree by leaving only a premise of an application
of (Ki) in each application of (ST EP). We call such trees GLCK-sub-trees of V . In the proof of Theorem 2, we do not
consider connected components that are not contained in an GLCK-sub-tree of the corresponding GLCK* tree.

AGLCK* backward proof-search treeV (|S|) is called fully-extended if the branches of itsGLCK-sub-treesVsub(|S|)
cannot be extended by backward rule applications.

A GLCK* backward proof-search tree V (|S|) is called a proof tree if it has a GLCK-sub-tree Vsub(|S|) that is a
proof-tree.

Definition 9 A GLCK* backward proof-search tree is called (ST EP)-free, iff there is no application of (ST EP) in
it.

Theorem 2 The calculus GLCK is complete: if |= S, then ` S, where S is an arbitrary sequent.
Proof. We prove that 6` S implies 6|= S. The proof uses a variant of Schütte’s method of reduction trees [19]. Assume

that 6` S. A fully-extended GLCK* backward proof-search tree V ∗(|S|) is obtained as follows. First, a fully-extended
(ST EP)-free tree is generated. If the obtained tree is fully-extended, then the construction ofV ∗(|S|) is stopped. Otherwise,
the construction ofV ∗(|S|) is continued by: (1) applying backward (ST EP) to each non-closing leaf, (2) generating fully-
extended (ST EP)-free trees for the obtained premises of (ST EP), and (3) applying backward (ST EP) again to the non-
closing leaves of V ∗(|S|). The procedure is continued until we obtain a fully-extended tree V ∗(|S|). This tree consists of
GLCK-sub-trees Vsub(|S|). Each such Vsub(|S|) is finite, according to Lemma 1. Hence V ∗(|S|) is finite. No Vsub(|S|) is
a proof tree because 6` S.

In each Vsub(|S|), we mark a leaf that is a terminal sequent of an α-void derivation loop or a non-axiom atomic-like
sequent; if Vsub(|S|) does not have such leaves, then we mark every leaf that is a terminal sequent of a β -void derivation
loop. The tree Ṽ (|S|) is obtained from V ∗(|S|) by dropping each sequent that is not on the path from |S| to a marked
sequent.

Making use of Ṽ (|S|), the interpretation M = 〈S, R1, . . . , Rµ , π〉 is obtained as follows:
1. If there is no application of (ST EP) in Ṽ (|S|), then Ṽ (|S|) has only one leaf Σ1, ΓK ⇒ Σ2. We choose S = {s0},

R1 = . . .= Rµ = /0, and π(s0) = {Σ1}. The path from S to Σ1, ΓK ⇒ Σ2 is denoted by p(s0).
2. Otherwise, we include a unique state s in S for each path p(s) from Sbp to Sec of the shape
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Sec : Σ1, ΓK ⇒ Σ2

Ki

Sec : Σ1, Γ ⇒ ∆, Σ2
... and

...
Sbp Sbp

in Ṽ (|S|), where (1) Γ and ∆ do not have atomic members and (2) Sbp = S or Sbp is a premise of an application of (ST EP),
and (ST EP) is not applied between Sbp and Sec. A path from a premise Sbp of (ST EP) to a terminal sequent St 6= Sec of
a derivation loop dl is reckoned to be contained in p(s), where the base sequent of dl belongs to p(s) and (ST EP) is not
applied between Sbp and St . That is to say, if the considered part of the branch is

p(s)p(s1) · · · p(sn)Sbp · · ·St ,

then the path Sbp · · ·St is reckoned to be contained in p(s), where there is no (Ki) between Sbp and St .
We set π(s) = Σ1. Two states s1 and s2 in S are called connected, iff the corresponding paths, denoted by p(s1) and

p(s2), are adjacent and on the same branch of Ṽ (|S|).
For each connected states s1, s2, we add (s1, s2) in Ri, iff p(s2) is above p(s1), and p(s2) starts with a premise of

(Ki) (i ∈ {1, . . . , µ}).
Finally, loops of reachable states are formed. For each s1, s2 ∈ S, which can coincide, we include (s2, s1) in θ , where:

(1) there is no s3 ∈ S such that p(s3) is above p(s2) in Ṽ (|S|), (2) the path p(s1) contains the base sequent of derivation
loop that contains p(s2), and (3) θ = Ri if the uppermost Sbp in that derivation loop is a premise of (Ki).

Using induction on the formula length λ , we prove that (M, s) |= ϕ ((M, s) 6|= ϕ ), for any member formula ϕ in the
antecedent (succedent, respectively) of any sequent in p(s) in Ṽ (|S|).

If λ = 1 and ϕ is a member of the antecedent (succedent) of some sequent in p(s), then ϕ is a member of Σ1 (Σ2,
respectively) in the end sequent Sec of p(s), and the proof is obtained.

Suppose that λ > 1 and ϕ = ϕ1 ∧ϕ2 is a member of the succedent of some sequent S1 in p(s). It follows from the
construction of p(s) that there is a sequent S2 in the path from S1 to Sec such that ϕ1 or ϕ2 is a member of the succedent of
S2. We have (M, s) 6|= ϕi, where i ∈ {1, 2}, based on the inductive hypothesis. Hence (M, s) 6|= ϕ1 ∧ϕ2.

Let ϕ = ϕ1 ∧ϕ2 be a member of the antecedent of some sequent S1 in p(s). It follows from the construction of p(s)
that there is a sequent S2 in the path from S1 to Sec such that ϕ1 and ϕ2 are members of the antecedent of S2. We have
(M, s) |= ϕi, where 1 ≤ i ≤ 2, based on the inductive hypothesis. Hence (M, s) |= ϕ1 ∧ϕ2.

We skip the remaining cases when the outermost connective of ϕ is a propositional one because they are considered
in the same way as the two previous cases.

Suppose that ϕ = Kiψ is a member of the antecedent of some sequent S1 in p(s). It follows from the construction of
Ṽ (|S|) and M that each path p(s1), where (s, s1) ∈ Ri, starts with a sequent that has the member ψ in antecedent. Hence
(M, s1) |= ψ , according to the inductive hypothesis, and (M, s) |= Kiψ , based on the definition of semantics of Ki.

Assume that ϕ = Kiψ is a member of the succedent of some sequent S1 in p(s). It follows from the construction
of Ṽ (|S|) and M that there is a path p(s1), where (s, s1) ∈ Ri, that starts with a sequent the succedent of which has the
member ψ . We obtain (M, s1) 6|= ψ , according to the inductive hypothesis. Hence (M, s) 6|= Kiψ , based on the definition
of semantics of Ki.

Let ϕ =Cψ be a member in the succedent of some sequent S1 in p(s). It follows from the construction of Ṽ (|S|) and
M that there is s1 ∈ S such that s1 is coincident with or reachable from s and p(s1) starts with a sequent the succedent of
which has the member Kiψ (i ∈ {1, . . . , µ}). We have (M, s′1) 6|= ψ , where s1 7→ s′1, according to the inductive hypothesis.
Hence (M, s) 6|=Cψ , based on the definition of semantics of the operator C.
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Let ϕ = Cψ be a member in the antecedent of some sequent S1 in p(s). It follows from the construction of Ṽ (|S|)
and M that, for each s1 ∈ S reachable from s, the path p(s1) contains a sequent the antecedent of which has the members
Kiψ (1 ≤ i ≤ µ). This fact yields (M, s′1) |= ψ for each s′1 such that s1 7→ s′1, according to the inductive hypothesis. We
have (M, s) |=Cψ , based on the definition of semantics of C.

The proved fact yields (M, s) 6|= S′ for any sequent S′ in any p(s) in Ṽ (|S|). Hence 6|= |S|. This fact yields 6|= S by
Proposition 1.

A derivation rule is called invertible inGLCK, iff derivability of its conclusion implies derivability of its premise(s)
in GLCK.

Lemma 5 If the conclusion of anyGLCK derivation rule, except (Ki), is valid, then each premise of this rule is valid,
as well

Proof. The lemma is proved similarly as Lemma 2, by showing for each of the considered rules that (M, s) |= Sc

implies (M, s) |= Sp, where Sc is the conclusion and Sp is any premise of a rule.
Theorem 3 All derivation rules of GLCK, except (Ki), are invertible.
Proof. If a conclusion of aGLCK rule is derivable, then it is valid, according to Theorem 1. Hence each premise of

the rule is valid, based on Lemma 5. This fact implies that the premise(s) is (are) derivable, according to Theorem 2.

7. Validity check
Making use of the calculus GLCK and obtained from it calculus GLCK*, we construct a method that allows us to

verify if a given sequent is valid in LCK.
Definition 10 AGLCK backward proof-search treeV is called a refutation tree, iff it contains a weakly-closing leaf.
Proposition 6Any refutation treeV r(|S|) can be extended to a complete-refutation tree by backward rule applications.
Proof. The tree V r(|S|) has a weakly-closing leaf. We apply backward derivation rules to the leaves of V r(|S|) that

are non-closing until each leaf is closing. The obtained tree is finite, according to Lemma 1. One can see that it is a
complete-refutation tree.

A GLCK* proof-search tree V (|S|) is called a refutation tree if all itsGLCK-sub-trees Vsub(|S|) are refutation-trees.
The decision tree (DT) for an arbitrary sequent S is described similarly as the fully-extended treeV ∗(|S|) in the proof

of Theorem 2. First, a fully-extended (ST EP)-free proof-search tree V (|S|) is generated. If V (|S|) is a refutation or proof
tree, then DT is obtained. Otherwise, the construction of DT is continued by: (1) applying backward (ST EP) to each non-
closing leaf of V (|S|), (2) generating a fully-extended (ST EP)-free tree for each premise of (ST EP), and (3) applying
backward (ST EP) again to the non-closing leaves. DT is obtained as soon as a refutation or proof tree is obtained. DT
consists of GLCK-sub-trees Vsub(|S|). Each such Vsub(|S|) is finite, according to Lemma 1. Hence DT is finite.

The validity-check procedure for LCK is defined as follows: given an arbitrary sequent S, generate DT for |S|. In
some finite number of steps, we get that DT is a refutation or proof tree. In the former case, there is a complete-refutation
tree, based on Proposition 6. Hence 6|= S, as it is shown in the proof of Theorem 2. In the latter case, ` S; hence |= S,
according to Theorem 1.

Example 3 Let us consider the sequent at root of proof-search tree in Example 1. We construct DT for S = (p, Cp ⇒
Cq). The fully-extended (ST EP)-free proof-search tree is generated first:

(
p, (Ki p)

i , (KiCp)i ⇒ K jq
) j (

p, (Ki p)
i , (KiCp)i ⇒ K jCq

) j

p, (Ki p)
i , (KiCp)i ⇒Cq

p, Cp ⇒Cq
(C ⇒)

(⇒C)

(We assume that µ = 2 and, e.g., (Ki p)i is understood as (Ki p)1≤i≤2). None of the leaves is closing. We apply backward
(ST EP) to the k-premise j = 1 of (⇒Cq) and construct the fully-extended (ST EP)-free proof-search tree for the obtained
sequent:
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p, (Ki p)
i, (KiCp)i ⇒ q

p, Cp ⇒ q
(C ⇒)

p, (Ki p)
i, (KiCp)i ⇒ K1q

(STEP)

. . .

(STEP) is (K1) in our case. The leaf of this tree is a non-axiom atomic-like, i.e., weakly closing, sequent. We obtained
a refutation tree because no other GLCK-sub-tree Vsub(S) is left to consider. According to the validity-check procedure,
the root sequent of V is not valid in LCK. We construct an interpretation M = 〈S, R1, R2, π〉 in the same way as we did
in the proof of Theorem 2. We mark the weakly closing leaf and obtain Ṽ (S):

p, (Ki p)
i, (KiCp)i ⇒ q

p, Cp ⇒ q
p, (Ki p)

i, (KiCp)i ⇒ K1q

p, (Ki p)
i, (KiCp)i ⇒Cq

p, Cp ⇒Cq

(K1)

S = {s1, s2}, where p(s1) is the path from root to conclusion of (K1), and p(s2) is the path from premise of (K1) to
the leaf. π(s1) = π(s2) = {p} and R1 = {(s1, s2)}. R2 is the empty set. We have that (M, si) |= p and (M, si) 6|= q for
1 ≤ i ≤ 2. Hence (M, s1) 6|= (p, Cp ⇒Cq).

Example 4 Let S = (p, Cϕ ⇒ K1¬p, K2¬p), where ϕ = ¬K1¬p. We assume that µ = 2 for simplicity. A decision
tree for this sequent is as follows:

7 : p,Cϕ ⇒ K1¬p
(⇒¬)

6 : Cϕ ⇒ K1¬p,¬p
(¬⇒)

5 : ¬K1¬p,Cϕ ⇒¬p
(K1)

4 : p,(Ki p)i,(KiCp)i ⇒ K1¬p
(C ⇒)

3 : p,Cϕ ⇒ K1¬p
(⇒¬)

Cϕ ⇒ K1¬p,¬p
(¬⇒)

2 : ¬K1¬p,Cϕ ⇒¬p

7′ : p,Cϕ ⇒ K1¬p
(⇒¬)

6′ : Cϕ ⇒ K1¬p,¬p
(¬⇒)

5′ : ¬K1¬p,Cϕ ⇒¬p
(K1)

4′ : p,(Ki p)i,(KiCp)i ⇒ K1¬p
(C ⇒)

3′ : p,Cϕ ⇒ K1¬p
(⇒¬)

Cϕ ⇒ K1¬p,¬p
(¬⇒)

2′ : ¬K1¬p,Cϕ ⇒¬p
(K1) | (K2)

1 : p,(Kiϕ)i,(KiCϕ)i ⇒ K1¬p,K2¬p
(C ⇒)

S : p,Cϕ ⇒ K1¬p,K2¬p

Instead of (STEP), we use here the names of rules that are actually applied. (K1) | (K2) denotes the fact that the left
premise 2 is obtained by applying (K1), and the right one 2′ is obtained by applying (K2) backwards to 1.

It is true that [3◦7] and [3′◦7′] areα-void derivation loops. As in the previous example, we construct an interpretation
M = 〈S, R1, R2, π〉. The obtained decision tree is, at the same time, the tree Ṽ (S) in this case. p(t1) = p(S, 1), where
p(S, 1) denotes the path from S to 1 inclusive. p(t2) is the path from the premise 2 to conclusion 4 of (K1) plus the
sequents 5, 6, 7, i.e., p(t2) = p(2, 7). Also p(t3) = p(2′, 7′). We have S = {t1, t2, t3}; π(t1) = π(t2) = π(t3) = {p};
R1 = {(t1, t2), (t2, t2), (t3, t3)}; R2 = {(t1, t3)}:
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t1{p}

t2{p} t3{p}

R1 R2

R1 R1

One can see that (M, t1) 6|= S.

8. Conclusion
The finitary loop-type sequent calculus GLCK for LCK has been introduced in the present paper. We have proved

that GLCK is sound and complete, and used it to obtain the validity-check procedure for LCK. The proof of Theorem 6.
allows us to construct a pair (M, t) for any non-provable sequent S such that (M, t) 6|= S. Two-sided sequents and the
non-minimal set of propositional connectives have been used to make the meaning of formulas, sequents, and derivation
rules more evident in comparison to one-sided sequents and formulas kept in negation normal form.

The calculus GLCK has the subformula-like property: any backward proof-search tree contains only formulas that
are subformulas of formulas in the root |S|, including also Kiϕ and KiCϕ if Cϕ occurs in |S|.

Cut-free sequent calculus SCK , containing annotated derivation rules, is considered for LCK in [20]. Since the
calculus is Tait-style, formulas are kept in negation normal form. Annotated formulas make the subformula property less
evident. In these aspects, SCK proof analysis is harder in comparison to GLCK. A proof system with annotated sequents
and analytical cut-rule for the logic of common knowledge over S5 is presented in [21].

An infinitary Tait style proof system S for LCK is presented in [6], where infinite branches of proof-search trees are
axiomatically closed by so-called C-treads. Validity-check using the proof system is not dealt with in that work. A similar
approach is used for an infinitary Tait style proof system for the linear time µ-calculus in [22], where two validity-check
procedures based on the proof system are presented. Infinite branches of proof-search trees are axiomatically closed here
by so-called ν-treads. The fact that there is a derivation loop in a branch does not imply that the branch can be closed by
a ν-thread because the derivation loop can be β -void. It follows that larger proof-search trees must be generated by the
decision procedures in the general case in comparison to DT in the present paper.

Two finitary cut-free Tait style sequent calculi for the modal µ-calculus are introduced in [23]. One of the calculi has
the rule indS in the premise of which there is the formula Γ, where Γ is the context of conclusion; the other operates with
annotated sequents. Modal µ-calculi extend LCK, though one can conjecture that translation of LCK to the standard µ-
calculi is not straightforward [24], based on the fact thatLCK captures the induction principle of LTL. The subformula-like
property for deductive systems of modal µ-calculi is less apparent in comparison with GLCK because of more intricate
fixed points.

Backward proof-search of sequents using GLCK involves loop-check i.e., comparison of sequents. In some cases,
the loop-check can be simplified or avoided. For example, any derivation loop has an application of (Ki), according to
Proposition 3. Hence the fact that a path has no applications of (Ki) is enough to conclude that there are no derivation
loops on the path. A possible future work is the specification of loop-check for the sake of more efficient backward
proof-search. Also, one can consider how the derivation loop method works with other logics that capture the induction
principle, such as propositional dynamic logic. Traditional sequent calculi of such logics usually contain a cut rule that
essentially violates the subformula property, which makes them unsuitable for decision procedures of the logics.
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