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Abstract: In 2022, the result that the sum of the lengths of any two edges of a triangle is greater than the length of the third
edge in Euclidean geometry, is applied to labeling graph theory, a new concept-the vertex Euclidean graph is introduced.
A simple graph G = (V, E) is said to be vertex Euclidean if there exists a bijection f from V to {1, 2, . . . , |V |} such that
f (u)+ f (v) > f (w) for each C3 subgraph with vertex set {u, v, w}, where f (u) < f (v) < f (w). The vertex Euclidean
deficiency of a graph G, denoted µvEuclid(G), is the smallest positive integer m such that G∪Nm is vertex Euclidean. In
this paper, the sufficient condition that the disjoint union of G and H is vertex Euclidean is given, meanwhile, the vertex
Euclidean properties of four classes graphs are discussed, the vertex Euclidean deficiency of these graphs are obtained.
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1. Introduction
In Euclidean geometry, there is a famous triangle Theorem.
Triangle Theorem: the sum of the lengths of any two edges of a triangle is greater than the length of the third edge.
If we don’t consider the physical distance in Theorem and apply the idea of Theorem to the topological network

graph, this suggests a similar graph labeling problem.
Since Rosa [1] introduced the concept of graceful graph labeling, which attracts the attention of the field. The graph

labeling is: for a graph G with q edges and p vertices, defining a rule about edges (or vertices) such that the vertices (or
edges) have some properties. For example, for a graph G with q edges, it is graceful that there is an injection f from the
vertices of G to the set {0, 1, . . . , q} such that every possible difference of the vertex labels of all the edges is the set
{1, 2, . . . , q}. Some graph labeling concepts and methods have been introduced [2]. These results serve as useful models
for a broad range of applications.

Now, we apply the triangle Theorem to graph labeling. Given a simple graph G(V, E), we label the edges with
{1, 2, . . . , |E|} such that, in anyC3 subgraph, the sum of any two edge labels is greater than that of the third edge. If such
an edge labeling exists, it can be inferred that the graph is edge Euclidean. For a simple graph G, it is not edge Euclidean,
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but if adding some P2, the new graph may be an edge Euclidean graph, and the smallest number of some P2 is called edge
Euclidean deficiency, denoted by µedgeEuclid(G). Thus, triangle Theorem is applied to graph labeling.

In 2022, we applied the triangle Theorem in graph labeling [3], introducing that the dual problem of edge Euclidean
graph-vertex Euclidean graph, and defining the concept of vertex Euclidean deficiency.

Definition 1.1 Vertex Euclidean graph: Let f be a vertex labeling of a simple graph G. AC3 subgraph with vertices
u, v and w such that f (u) < f (v) < f (w) is said to be vertex Euclidean if f (u)+ f (v) > f (w), and we also mention that
label set { f (u), f (v), f (w)} is vertex Euclidean. A simple graph G = (V, E) is called vertex Euclidean graph if there
exists a bijection f : V →{1, 2, . . . , |V |} such that every C3 subgraph in G is vertex Euclidean.

A simple graph G is not vertex Euclidean graph, but if Nn is added, where Nn = Kn is the null graph with n vertices,
the graph G∪Nn may be a vertex Euclidean graph.

Example 1.1 C3 is not vertex Euclidean. But an isolated vertex is added, the new graph is vertex Euclidean.
Definition 1.2 Vertex Euclidean deficiency: If a simple graph G is not vertex Euclidean, define its vertex Euclidean

deficiency, denoted µvEuclid(G), as the smallest positive integer n such that G∪Nn, where Nn = Kn is the null graph with
n vertices, is vertex Euclidean.

Example 1.2 For C3, µvEuclid(C3) = 1.
First, some general results are presented here.
Theorem 1.1 [3] For a simple graph G, if any vertex u(u ∈V (G)) is on some subgraphC3 of G, then µvEuclid(G)≥ 1.
For C3, the graph nC3 denotes the disjoint union of n copies of C3.
Theorem 1.2 For n > 1 is positive integer, µvEuclid(nC3) = 1.
Proof. Let the vertices labels on the i-th C3 (1 ≤ i ≤ n) be {2+ 3(i− 1), 3+ 3(i− 1), 4+ 3(i− 1)}. It is easy that

the conclusion is correct.
Theorem 1.3 Suppose that G is vertex Euclidean, then any graph H obtained from G by adding any arbitrary edges

without creating new C3 subgraph is vertex Euclidean.
Notation 1.1 Suppose that a, b are two positive integers, and a < b, then for brevity, the set {a, a+1, . . . , b} will be

denoted by [a, b].
For graphs G and H, G+H is the disjoint union of G and H.
Theorem 1.4 Suppose that G is a simple graph and µvEuclid(G) = k > 0, H does not have induced C3 subgraph. If

|V (H)| ≥ k, then G+H is vertex Euclidean.
Proof. Note that µvEuclid(G) = k > 0 means there exists a vertex labeling f such that the vertex set is [k+ 1, k+

|V (G)|]. Suppose |V (H)| ≥ k, then the label(s) assigned to the k extra vertice(s) of G can be assigned to any k vertice(s)
of H. The remaining vertice(s) of H, if any, can be assigned arbitrarily by integers in [|V (G|+ k+ 1, |V (G)|+ |V (H)|].
Thus, G+H is vertex Euclidean.

Although there are infinitely many graphs G such as 2C3, µvEuclid(2C3) = µedgeEuclid(2C3), the vertex label set and
the edge set are the same, however the two labeling theories are different.

In the following discussions, we will discuss the vertex Euclidean properties of some graphs, the labels of the vertices
on these graphs are not unique, we just provide a vertex labeling rule for each class graphs.

2. The vertex Euclidean properties of generality triangular snakes
In this section, we study generality triangular snake. On triangular snake, Moulton [4] proved that all triangular

snakes are graceful. Xi et al. [5] proved that all double triangular snakes are harmonious. In this section, we defined
generality triangular snake, and study the vertex Euclidean properties of all generality triangular snakes.

Definition 2.1 [6] Triangular snake: Given a path Pn (n ≥ 2), the vertices on Pn are successively denoted by v1, v2, . . .,
vn. A triangular snake is obtained from Pn by joining vi and vi+1 to a new vertex ui for 1 ≤ i ≤ n−1.

Definition 2.2 Generality triangular snake: For a path Pn (n ≥ 2), the vertices on Pn are successively denoted by
v1, v2, . . ., vn. A generality triangular snake is obtained from Pn by joining vi and vi+1 to ki (ki ≥ 1) new vertices ui, j

respectively for 1 ≤ i ≤ n−1, 1 ≤ j ≤ ki. It is denoted by GT S(k1, k2, . . . , kn−1; n).
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Example 2.1 GT S(2, 1, 2, 3; 5) is shown in Figure 1.

Figure 1. GT S(2, 1, 2, 3; 5)

Any vertex on GT S(k1, k2, . . . , kn−1; n) is on C3, by Theorem 1.1, µvEuclid(GT S(k1, k2, . . . , kn−1; n))≥ 1.
Now, we will prove that for any GT S(k1, k2, . . . , kn−1; n), the vertex Euclidean deficiency is always 1.
Theorem 2.1 For any integers ki ≥ 1, n > 1, µvEuclid(GT S(k1, k2, . . . , kn−1; n)) = 1.
Proof.
Case 1 k1 ≥ ki for 1 < i ≤ n−1.
We find a vertex labeling such as µvEuclid(GT S(k1, k2, . . . , kn−1; n)) = 1.
Label the vertices as follows.

f (u1, j) = j+1 for 1 ≤ j ≤ k1, f (v1) = k1 +2, f (v2) = k1 +3.

f (u2, j) = j+ f (v2) for 1 ≤ j ≤ k2, f (v3) =
2

∑
i=1

ki +4.

f (u3, j) = j+ f (v3) for 1 ≤ j ≤ k3, f (v4) = f (v3)+ k3 +1.

...
...

...

f (un−1, j) = j+ f (vn−1) for 1 ≤ j ≤ kn−1, f (vn) = f (vn−1)+ kn−1 +1.

By the above rules, the labels of all vertices on GT S(k1, k2, . . . , kn−1; n) are obtained, and these vertex labels
are different one another. The minimum value is 2, while the maximum value is f (vn). f (vn) = f (vn−1)+ kn−1 + 1 =

f (vn−2)+
n−1
∑

i=n−2
ki + 2 = · · · = f (v3)+

n−1
∑

i=3
ki + n− 3 =

n−1
∑

i=1
ki + n+ 1. In GT S(k1, k2, . . . , kn−1; n), there are

n−1
∑

i=1
ki + n

vertices.
Thus, the vertex label set is

[
2,

n−1
∑

i=1
ki +n+1

]
.

For the subgraph C3, the vertex set is {v1, v2, u1, j} for 1 ≤ j ≤ k1, f (u1, j) ≥ 2, f (v1)+ f (u1, j) ≥ k1 + 2+ 2 >

k1 +3 = f (v2), these vertex labels satisfy the vertex Euclidean condition.
For the subgraph C3, the vertex set is {vi, vi+1, ui, j} for 2 ≤ i ≤ n−1, 1 ≤ j ≤ ki, in the vertex label set, f (ui, j) =

f (vi)+ j > f (v2) = k1 +3 > k1 +1, f (vi)+ f (ui, j)> f (vi)+ ki +1+(k1 − ki)≥ f (vi+1).
Case 2 kn−1 ≥ ki for 1 ≤ i < n−1.
After the manner of the discussions in case 1, we can know that the conclusion is correct.
Case 3 ka ≥ ki for a ̸= 1, n−1, 1 ≤ i ≤ n−1 and i ̸= a.
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First, label the vertices ua, 1, ua, 2, . . ., ua, ka , va, va+1 are successively 2, 3, . . ., ka +1, ka +2, ka +3.
Next, for i < a, label the vertices as follows.

f (ua−1, j) = j+ f (va+1) for 1 ≤ j ≤ ka−1, f (va−1) = f (va+1)+ ka−1 +1 =
a

∑
i=a−1

ki +4.

f (ua−2, j) = j+ f (va−1) for 1 ≤ j ≤ ka−2, f (va−2) = f (va−1)+ ka−2 +1.

...
...

...

f (u1, j) = j+ f (v2) for 1 ≤ j ≤ k1, f (v1) = f (v2)+ k1 +1.

Finally, for i > a, label the vertices as follows:

f (ua+1, j) = j+ f (v1) for 1 ≤ j ≤ ka+1, f (va+2) = f (v1)+ ka+1 +1.

f (ua+2, j) = j+ f (va+2) for 1 ≤ j ≤ ka+2, f (va+3) = f (va+2)+ ka+2 +1.

...
...

...

f (un−1, j) = j+ f (vn−1) for 1 ≤ j ≤ kn−1, f (vn) = f (vn−1)+ kn−1 +1.

By the above rules, the labels of all vertices on GT S(k1, k2, . . . , kn−1; n) are obtained, and these vertex labels are
different one another. The minimum value is 2, while the maximum value is f (vn).

f (vn) = f (vn−1)+ kn−1 +1 = f (vn−2)+
n−1

∑
i=n−2

ki +2 = · · ·= f (v1)+
n−1

∑
i=a+1

ki +n−a−1

= f (v2)+ k1 +
n−1

∑
i=a+1

ki +n−a = f (v3)+
3

∑
i=1

ki +
n−1

∑
i=a+1

ki +n−a+2 = · · ·

= f (va+1)+
a−1

∑
i=1

ki +
n−1

∑
i=a+1

ki +n−a−1+a−1 = ka +3+
a−1

∑
i=1

ki +
n−1

∑
i=a+1

ki +n−2 =
n−1

∑
i=1

ki +n+1.

So the vertex label set is
[

2,
n−1
∑

i=1
ki +n+1

]
.

For the subgraphC3, the vertex set is {va, va+1, ua, j} for 1≤ j ≤ ka, f (ua, j)≥ 2, f (va)+ f (ua, j)≥ ( f (va)+1)+1>
f (va+1), these vertex labels satisfy the vertex Euclidean condition.
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For the subgraph C3, the vertex set is {va−1, va, ua−1, j} for 1 ≤ j ≤ ka−1, f (va) + f (ua−1, j) > f (va) + ka−1 +

2 f (va−1), these vertex labels satisfy the vertex Euclidean condition.
For the subgraphC3, the vertex set is {vi, vi+1, ui, j} for i < a−1, 1 ≤ j ≤ ki, f (ui, j) = f (vi+1)+ j > f (va) = ka+2,

f (vi+1)+ f (ui, j)> f (vi+1)+ ka +2 > f (vi).
For the subgraph C3, the vertex set is {va+1, va+2, ua+1, j} for 1 ≤ j ≤ ka+1, f (va+1) = ka + 3 > ka+1, f (va+1)+

f (ua+1, j) = f (va+1)+ ka +3 > f (va+1)+ ka+1 ≥ f (va+2), these vertex labels satisfy the vertex Euclidean condition.
For the subgraph C3 that the vertex set is {vi, vi+1, ui, j} for i > a+ 1, 1 ≤ j ≤ ki, f (ui, j) = f (vi) + j > ka + 2,

f (vi)+ f (ui, j)> ( f (vi)+ ka +1)+1 > f (vi+1), so f (vi)+ f (ui, j)> f (vi+1).
This completes the proof.
Specially, when k1 = k2 = · · · = kn−1 = 1 and 2 respectively, GT S(k1, k2, . . . , kn−1; n) is a triangular snake and a

double triangular snake.
Corollary 2.2 The vertex Euclidean deficiencies of all triangular snakes are 1.
Corollary 2.3 The vertex Euclidean deficiencies of all double triangular snakes are 1.

3. The vertex Euclidean properties of k-level X-grids
In this section, we introduced k-level X-grids for k ≥ 1 graph, and investigated the vertex Euclidean properties of

k-level X-grids for k ≥ 1.
Definition 3.1 The (m−1)-level X-grid, denoted by (m−1)−XG(m, n), where m, n ≥ 2, is the graph with

V ((m−1)−XG(m, n)) = {vi, j: 1 ≤ i ≤ m, 1 ≤ j ≤ n},

E((m−1)−XG(m, n)) = {(vi, j, vi, j+1): 1 ≤ i ≤ m, 1 ≤ j ≤ n−1},

∪{(vi, j, vi+1, j): 1 ≤ i ≤ m−1, 1 ≤ j ≤ n},

∪{(vi, j, vi+1, j+1): 1 ≤ i ≤ m−1, 1 ≤ j ≤ n−1},

∪{(vi, j, vi+1, j−1): 1 < i ≤ m, 1 < j ≤ n}.

Example 3.1 3−XG(4, 5) is shown in Figure 2.

Figure 2. 3−XG(4, 5)
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Due to symmetry, we shall assume m ≤ n. The (m−1)-level X-grid is obtained from the rectangular grid Pm ×Pn by
adding two diagonals in each of its mn squares.

For graph (m−1)−XG(m, n) where m ≥ 2.
Theorem 3.1 For m ≥ 2, µvEuclid((m−1)−XG(m, n))> 1.
Proof. Since any vertex on (m−1)−XG(m, n) is on C3, by Theorem 1.1, µvEuclid((m−1)−XG(m, n))≥ 1.
Assume µvEuclid((m − 1)− XG(m, n)) = 1. Then the vertex label set is [2, |V |+ 1], and V is the vertex set of

(m−1)−XG(m, n).
Let the label of vi, j be 2, vi1, j1 , vi2, j2 , vi3, j3 and vi, j are adjacent each other, and vi, j and vi1, j1 on a diagonal, let

the label of vi1, j1 be a, then the label set of vi2, j2 , vi3, j3 can only be {a−1, a+1}. But vi, j, vi2, j2 , vi3, j3 are on a C3 too,
2+a−1 = a+1, contradiction.

This completes the proof.
To obtain µvEuclid((m−1)−XG(m, n)) for m > 1, first, we investigate the case of m = n.
Lemma 3.2 µvEuclid(1−XG(2, 2)) = 2.
Proof. Define a vertex labeling f as follows.

f (v1, 1) = 3, f (v2, 1) = 4, f (v2, 2) = 5, f (v1, 2) = 6.

The vertex label set is [3, 6].
On C3 where the vertex set is {v1, 1, v2, 1, v2, 2}, f (v1, 1)+ f (v2, 1) = 3+4 = 7 > 5 = f (v2, 2).
On C3 where the vertex set is {v1, 1, v2, 1, v1, 2}, f (v1, 1)+ f (v2, 1) = 3+4 = 7 > 6 = f (v1, 2).
On C3 where the vertex set is {v1, 1, v2, 2, v1, 2}, f (v1, 1)+ f (v2, 2) = 3+5 = 8 > 6 = f (v1, 2).
On C3 where the vertex set is {v2, 1, v2, 2, v1, 2}, f (v2, 1)+ f (v2, 2) = 4+5 = 9 > 6 = f (v1, 2).
This completes the proof.
Lemma 3.3 µvEuclid(2−XG(3, 3)) = 2.
Proof. Define a vertex labeling f as follows.
The labels of v1, 1, v2, 1, v2, 2, v1, 2 are the same as thats in Lemma 3.2.
Label v3, 1, v3, 2, v1, 3, v2, 3, v3, 3 consecutively with 7, 8, 9, 10, 11.
The label set of the v1, 1, v2, 1, v2, 2, v1, 2, v3, 1, v3, 2, v1, 3, v2, 3, v3, 3 is [3, 11].
Clearly, for those subgraphs C3 that their vertex sets V , V ⊂ {v1, 1, v2, 1, v1, 2, v2, 2}, the discussions are the same as

thats in Lemma 3.2. For the vertex labels on other subgraphs C3, have

f (v2, 1)+ f (v2, 2) = 4+5 = 9 > 7 = f (v3, 1); f (v2, 1)+ f (v2, 2) = 4+5 = 9 > 8 = f (v3, 2);

f (v2, 1)+ f (v3, 1) = 4+7 = 12 > 8 = f (v3, 2); f (v2, 2)+ f (v3, 1) = 5+7 = 9 > 8 = f (v3, 2);

f (v2, 2)+ f (v1, 2) = 5+6 = 11 > 9 = f (v1, 3); f (v2, 2)+ f (v1, 2) = 5+6 = 11 > 10 = f (v2, 3);

f (v1, 2)+ f (v1, 3) = 6+9 = 15 > 10 = f (v2, 3); f (v2, 2)+ f (v1, 3) = 5+9 = 14 > 10 = f (v2, 3);

f (v2, 2)+ f (v3, 2) = 5+8 = 13 > 10 = f (v2, 3); f (v2, 2)+ f (v3, 2) = 5+8 = 13 > 11 = f (v3, 3);

f (v2, 2)+ f (v2, 3) = 5+10 = 15 > 11 = f (v3, 3); f (v3, 2)+ f (v2, 3) = 8+10 = 18 > 11 = f (v3, 3).
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This completes the proof.
Lemma 3.4 For m > 3, µvEuclid((m−1)−XG(m, m)) = 2.
Proof. m = 4.
For the vertices on the subgraph 2−XG(3, 3) containing v1, 1, the vertex labels are the same as those defined in

Lemma 3.3, then these vertex labels satisfy the vertex Euclidean condition.
For the remaining vertices, label the labels as follows.
Label the vertices v4, 1, v4, 2, v4, 3, v1, 4, v2, 4, v3, 4, v4, 4 consecutively with 12, 13, . . . , 18.
Thus, the label set of v4, 1, v4, 2, v4, 3, v1, 4, v2, 4, v3, 4, v4, 4 is [3, 18].
InC3 that the vertices are three of v3, j1 , v4, j2 , vi1, 3, vi2, 4 for 1 ≤ j1, j2, i1, i2 ≤ 4, the vertex label sets are {7, 8, 12},

{7, 8, 13}, {7, 12, 13}, {8, 12, 13}, {8, 13, 14}, {8, 11, 13}, {11, 13, 14}, {8, 11, 14}, {11, 14, 18}, {11, 14, 17},
{11, 17, 18}, {14, 17, 18}, {9, 10, 15}, {9, 10, 16}, {9, 15, 16}, {10, 15, 16}, {10, 11, 17}, {10, 11, 16}, {10, 16, 17},
{11, 16, 17}.

In each set of {7, 8, 12}, {7, 8, 13}, {7, 12, 13}, {8, 12, 13}, {8, 13, 14}, {8, 11, 13}, the maximum value and
the minimum value of the vertex labels are denoted by a, b respectively, then a−b ≤ 6, the minimum value of the vertex
labels is 7, so the vertex labels in these vertex label sets satisfy the vertex Euclidean condition.

In each set of {11, 14, 18}, {11, 14, 17}, {11, 17, 18}, {14, 17, 18}, {9, 10, 15}, {9, 10, 16}, {9, 15, 16}, {10, 15, 16},
{10, 11, 17}, {10, 11, 16}, {10, 16, 17}, {11, 16, 17}, in each set, the maximum value and the minimum value of the
vertex labels are denoted by c, d respectively, then c−d ≤ 7, the minimum value of the vertex labels is 9, so the vertex
labels in these vertex label sets satisfy the vertex Euclidean condition.

Now, we study µvEuclid((m−1)−XG(m, m)) by mathematical induction.
Assume m = k, µvEuclid((k−1)−XG(k, k)) = 2. And the labels of vk, 1, vk, 2, . . ., vk, k−1, v1, k, v2, k, . . ., vk−1, k, vk, k

are successively k2 −2k+4, k2 −2k+5, . . ., k2 +2.
Now, we investigate the case of m = k+1.
First, for the subgraph (k − 1)−XG(k, k) that the vertex set is {vi, j|1 ≤ i, j ≤ k}, the vertex labels defined are

the same as those m = k, and the labels of vk, 1, vk, 2, . . ., vk, k−1, v1, k, v2, k, . . ., vk−1, k, vk, k are successively k2 − 2k+ 4,
k2 −2k+5, . . ., k2 +2.

Next, define the labels of remaining vertices as follows.
Label the vertices vk+1, 1, vk+1, 2, . . . , vk+1, k, v1, k+1, v2, k+1, . . . , vk+1, k+1 consecutively with [k2 + 3, k2 + 2k+ 3].

Since k2 +2k+3 = (k+1)2 +2, the vertex label set is [3, (k+1)2 +2].
Finally, we only study the subgraphsC3 that the vertices are three of vk, j1 , vk+1, j2 , vi1, k, vi2, k+1 for 1 ≤ j1, j2, i1, i2 ≤

k+1. Their vertex label sets are
(1) {k2 − 2k+ 4, k2 − 2k+ 5, k2 + 3}, {k2 − 2k+ 4, k2 − 2k+ 5, k2 + 4}, {k2 − 2k+ 4, k2 + 3, k2 + 4}, {k2 − 2k+

5, k2 + 3, k2 + 4}, {k2 − 2k+ 5, k2 − 2k+ 6, k2 + 4}, {k2 − 2k+ 5, k2 − 2k+ 6, k2 + 5}, {k2 − 2k+ 5, k2 + 4, k2 + 5},
{k2 − 2k+ 6, k2 + 3, k2 + 4}, . . ., {k2 − k+ 1, k2 − k+ 2, k2 + k}, {k2 − k+ 1, k2 − k+ 2, k2 + k+ 1}, {k2 − k+ 1, k2 +

k, k2 + k + 1}, {k2 − k + 2, k2 + k, k2 + k + 1}, {k2 − k + 2, k2 + k + 1, k2 + k + 2}, {k2 − k + 2, k2 + 2, k2 + k + 1},
{k2 − k+2, k2 +2, k2 + k+2}, {k2 +2, k2 + k+1, k2 + k+2} respectively.

(2) {k2 − k + 3, k2 − k + 4, k2 + k + 3}, {k2 − k + 3, k2 − k + 4, k2 + k + 4}, {k2 − k + 3, k2 + k + 3, k2 + k + 4},
{k2 − k+ 4, k2 + k+ 3, k2 + k+ 4}, {k2 − k+ 4, k2 − k+ 5, k2 + k+ 4}, {k2 − k+ 4, k2 − k+ 5, k2 + k+ 5}, {k2 − k+
4, k2+k+4, k2+k+5}, {k2−k+5, k2+k+4, k2+k+5}, . . ., {k2+1, k2+2, k2+2k+1}, {k2+1, k2+2, k2+2k+2},
{k2 +1, k2 +2k+1, k2 +2k+2}, {k2 +2, k2 +2k+1, k2 +2k+2}, {k2 +2, k2 +2k+2, k2 +2k+3}, {k2 +2, k2 + k+
2, k2 +2k+2}, {k2 + k+2, k2 +2k+2, k2 +2k+3} respectively.

For each set in (1), the maximum value and the minimum value of the vertex labels are denoted by a, b respectively,
then a−b ≤ 2k, the minimum value of the vertex labels is k2 −2k+4, k2 −2k+4−2k = (k−2)2 for k > 3, so the vertex
labels in these vertex label sets satisfy the vertex Euclidean condition.

For each set in (2), the maximum value and the minimum value of the vertex labels are denoted by c, d respectively,
then c−d ≤ 2k+1, the minimum value of the vertex labels is k2 − k+3, k2 − k+3−2k−1 = (k−2)(k−1) for k > 3,
so the vertex labels in these vertex label sets satisfy the vertex Euclidean condition too.

This completes the proof.
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Now, we obtained that µvEuclid((m−1)−XG(m, m)) = 2. Next, with the help of the rules in Lemmas 3.2, 3.3 and
3.4, we study µvEuclid((m−1)−XG(m, n)).

Theorem 3.5 For any m, n ≥ 2 and m ≤ n, µvEuclid((m−1)−XG(m, n)) = 2.
Proof. 1. From Lemmas 3.2, 3.3 and 3.4, the conclusion holds when m = n.
2. m < n.
In (m−1)−XG(m, n), first, for the subgraph (m−1)−XG(m, m) that the vertex set is {vi, j|1 ≤ i, j ≤ m}, define

the vertex labels according to the rules in Lemmas 3.2, 3.3 and 3.4.
For the remaining vertices vs, t (1 ≤ s ≤ m, m+1 ≤ t ≤ n), define the vertices labels as follows.

f (vs, t) = f (vs, t−1)+m, 1 ≤ s ≤ m, m+1 ≤ t ≤ n.

Thus, in each C3 that the vertices are three of vs, t (1 ≤ s ≤ m, m ≤ t ≤ n), let the maximum value and the minimum
value of the vertex labels be a, b respectively, then a−b ≤ 2m−1, the minimum value of the vertex labels is m2 −m+3,
m2 −m+ 3− 2m+ 1 = (m− 1)(m− 3) + 2 > 0, so the labels of the vertices on each C3 satisfy the vertex Euclidean
condition.

Theorem holds.

4. The vertex Euclidean properties of Circ(n, 2)
Laison et al. introduced circulant graphs when they study prime distance graphs in [7]. In this section, we study the

vertex Euclidean properties of a class of the circulant graphs.
Definition 4.1 Circulant graph: For a positive integer n ≥ 3 and set S ⊆ {1, 2, . . . , n}, the circulant graph, denoted

by Circ(n, S), is the graph with vertex set{v1, v2, . . . , vn} and an edge between vertices vi and v j if and only if |i− j|
(mod n) ∈ S.

If S = {1, k} for 1 < k ≤ n−1, which, for simplicity, the circulant graph is written as Circ(n, k).
Example 4.1 If k = 2, Circ(5, 2) and Circ(6, 2) are shown in Figure 3.

Figure 3. Circ(5, 2) and Circ(6, 2)

When k = 2, there existsC3 inCirc(n, 2), which is under studyCirc(n, 2). Because all vertices on some subgraphC3

ofCirc(n, 2) (n≥ 4), by Theorem 1.1, µvEuclid(Circ(n, 2))≥ 1. In order to obtain µvEuclid(Circ(n, 2)), first, we investigate
several special cases of n.

Theorem 4.1 µvEuclid(Circ(4, 2)) = 2.
Proof. Assume µvEuclid(Circ(4, 2)) = 1, then 2 is the label of some vertex, which is denoted by u. InCirc(4, 2), each

vertex is adjacent to the other vertices, so the two vertices labeled by 2 and 3 respectively, must with the vertex labeled
by 5 are a C3, contradiction. Hence, µvEuclid(Circ(4, 2))≥ 2.
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Now, we need to describe a vertex Euclidean labeling f with [3, 6]. Label the vertices in {v1, v2, v3, v4} consecutively
with [3, 6], then the minimum value of the sums of the labels of any two adjacent vertices is 3+4 = 7, thus, for any three
vertices vi, v j and vk that are on aC3, the sum of any two vertex labels is greater than the label of the third vertex. Hence,
µvEuclid(Circ(4, 2)) = 2.

Theorem 4.2 µvEuclid(Circ(5, 2)) = 3.
Proof. Assume µvEuclid(Circ(5, 2)) = 1, then 2 is the label of some vertex, which is denoted by u. InCirc(5, 2), each

vertex is adjacent to the other vertices, so the two vertices labeled by 2 and 3 respectively, must with the vertex labeled
by 6 are a C3, contradiction. Hence, µvEuclid(Circ(5, 2))≥ 2.

Similarly, if µvEuclid(Circ(5, 2)) = 2, then 3 is the label of some vertex, which is denoted by u. In Circ(5, 2), each
vertex is adjacent with the other vertices, so the two vertices labeled by 3 and 4 respectively, must with the vertex labeled
by 7 are a C3, contradiction. Hence, µvEuclid(Circ(5, 2))≥ 3.

Label the vertices in {v1, v2, . . . , v5} consecutively with [4, 8], then the minimum value of the sums of the labels of
any two adjacent vertices is 4+5 = 9, thus, for any three vertices vi, v j and vk that are on aC3, the sum of any two vertex
labels is greater than the label of the third vertex. Hence, µvEuclid(Circ(5, 2)) = 3.

Theorem 4.3 µvEuclid(Circ(6, 2)) = 2.
Proof. Assume µvEuclid(Circ(6, 2)) = 1. Without loss of generality, let the label of v1 be 2, then the labels of the

remaining vertices are 3, 4, 5, 6, 7 respectively.
Assume the vertex u labeled by 3 is adjacent to v1, then v1 and u are on two C3, thus, on some C3, the label of the

third vertex is at least 5, 2+ 3 = 5, contradiction. Hence, the vertex labeled by 3 is not adjacent to v1. i.e. v4 is labeled
by 3. So the vertex w labeled by 4 is must adjacent to v1, and v1, w are on twoC3, thus, on someC3, the label of the third
vertex is at least 6, 2+4 = 6, contradiction. Thus, we obtain that µvEuclid(Circ(6, 2))≥ 2.

Now, we need to describe a vertex Euclidean labeling f with [3, 8]. Specifically, let

f (v2i−1) = 2+ i, 1 ≤ i ≤ 3,

f (v2) = 6, f (v4) = 8, f (v6) = 7.

OnCirc(6, 2), there are eightC3, their vertex sets are {v1, v2, v3}, {v2, v3, v4}, {v3, v4, v5}, {v4, v5, v6}, {v5, v6, v1},
{v6, v1, v2}, {v1, v3, v5}, {v4, v2, v6} respectively, the corresponding vertex label sets are {3, 4, 6}, {4, 6, 8}, {4, 5, 8},
{5, 7, 8}, {3, 5, 7}, {3, 6, 7}, {3, 4, 5}, {6, 7, 8}. By these vertex label sets, we can see that the sum of the labels of any
two vertex labels is greater than the third vertex on each C3, so µvEuclid(Circ(6, 2)) = 2.

Theorem 4.4 µvEuclid(Circ(7, 2)) = 2.
Proof. Assume µvEuclid(Circ(7, 2)) = 1. Without loss of generality, let the label of v1 be 2, then the labels of the

remaining vertices are 3, 4, 5, 6, 7, 8 respectively. From the discussions in Theorem 4.3, we can know that the vertex
labeled by 3 is not adjacent to v1, so the vertex labeled by 3 can only be v4 or v5. Without loss of generality, let the label
of v5 be 3.

1. If the label of v2 is 4, then the two vertices labeled by 2 and 4 respectively are on two C3, 2+4 = 6, but among
the remaining numbers, only 5 is smaller than 6, contradiction. Thus, 4 can only be a vertex label for one of v3, v4 and v6.

2. If 4 is a label of v3 or v6, then the vertex labeled by 4 is adjacent to v1 and v5. Thus, in C3 on which there are the
vertices labeled by 2, 4, the third vertex is only labeled by 5, inC3 on which there are the vertices labeled by 3, 4, the third
vertex is only labeled by 6, so then, the vertex labeled by 5 is adjacent to v1, inC3 on which there are the vertices labeled
by 2, 5, the label of the third vertex is 7 or 8, contradiction.

3. If the label of v4 is 4, then the two vertices labeled by 3, 4 are on twoC3, 3+4 = 7. in the vertex labels, only 8 is
greater than 7, contradiction.

Overall, µvEuclid(Circ(7, 2))> 1.
Now, define a vertex labeling f as follows.

Contemporary Mathematics 338 | Zhen-Bin Gao, et al.



Specifically, let f (v1) = 3, f (v2) = 6, f (v3) = 5, f (v4) = 4, f (v5) = 8, f (v6) = 9, f (v7) = 7.
OnCirc(7, 2), there are sevenC3, their vertex sets are {v1, v2, v3}, {v2, v3, v4}, {v3, v4, v5}, {v4, v5, v6}, {v5, v6, v7},

{v6, v7, v1}, {v7, v1, v2} respectively, the corresponding vertex label sets are {3, 5, 6}, {4, 5, 6}, {4, 5, 8}, {4, 8, 9},
{7, 8, 9}, {3, 7, 9}, {3, 6, 7}. On theseC3, have 3+5 > 6, 4+5 > 6, 4+5 > 8, 4+8 > 9, 7+8 > 9, 3+7 > 9, 3+6 > 7.
Hence, µvEuclid(Circ(7, 2)) = 2.

Now, the results for n = 4, 5, 6 and 7 are obtained, next, we study µvEuclid(Circ(n, 2)) when n > 7.
Theorem 4.5 For n > 7, µvEuclid(Circ(n, 2)) = 1.
Proof. By Theorem 1.1, we know that µvEuclid(Circ(n, 2)) ≥ 1. Now, we prove that µvEuclid(Circ(n, 2)) = 1 for

n > 7 according to the parity of n.
1. n ≥ 8 is even.
1.1 n = 8.
Define a vertex labeling f as follows.

f (v1) = 2, f (v2) = 5, f (v3) = 4, f (v4) = 8, f (v5) = 9, f (v6) = 3, f (v7) = 7, f (v8) = 6.

On Circ(8, 2), there are eight C3. By these vertex labels, we obtain that the vertex label sets on these eight C3 are
{2, 5, 4}, {5, 4, 8}, {4, 8, 9}, {3, 8, 9}, {3, 7, 9}, {3, 6, 7}, {2, 6, 7}, {2, 5, 6} respectively.

Since 2+ 4 > 5, 5+ 4 > 8, 4+ 8 > 9, 3+ 8 > 9, 3+ 7 > 9, 3+ 6 > 7, 2+ 6 > 7, 2+ 5 > 6, thus, we obtain that
µvEuclid(Circ(8, 2)) = 1.

1.2 n > 8.
Now, we find a vertex labeling f such that the vertex labels set is [2, n+1] and µvEuclid(Circ(n, 2)) = 1. First, divide

the vertices on Circ(n, 2) into two parts, and then label them separately. Next, we prove that these vertex labels satisfy
the vertex Euclidean condition. Specifically, let

1. f (v1) = 2, f (v2) = 5, f (v3) = 4, f (v4) = 8, f (vn−3) = 3, f (vn−2) = 9, f (vn−1) = 7, f (vn) = 6.
2. f (vi) = 2i, 5 ≤ i ≤ n

2
.

3. f (vn+1−i) = 2i+1, 5 ≤ i ≤ n
2
.

Thus, we obtain that the vertex labels set is [2, n+1].
For thoseC3 onwhich the vertex sets are {v1, v2, v3}, {v2, v3, v4}, {vn−3, vn−2, vn−1}, {vn−2, vn−1, vn}, {vn−1, vn, v1},

{vn, v1, v2} respectively, have

f (v1)+ f (v3) = 2+4 = 6 > 5 = f (v2), f (v2)+ f (v3) = 5+4 = 9 > 8 = f (v4),

f (vn−3)+ f (vn−1) = 3+7 = 10 > 9 = f (vn−2), f (vn−1)+ f (vn) = 7+6 = 13 > 9 = f (vn−2),

f (v1)+ f (vn) = 2+6 = 8 > 7 = f (vn−1), f (v1)+ f (v2) = 2+5 = 7 > 6 = f (vn).

So the vertex labels on these C3 satisfy the vertex Euclidean condition.
For those four C3 on which the vertex sets are {v3, v4, v5}, {v4, v5, v6}, {vn−5, vn−4, vn−3}, {vn−4, vn−3, vn−2}

respectively, have
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f (v3)+ f (v4) = 4+8 = 12 > 10 = f (v5), f (v4)+ f (v5) = 8+10 = 18 > 12 = f (v6),

f (vn−3)+ f (vn−4) = 3+11 = 14 > 13 = f (vn−5), f (vn−2)+ f (vn−3) = 9+3 = 12 > 11 = f (vn−4).

So the vertex labels on these four C3 satisfy the vertex Euclidean condition.
For thoseC3 on which the vertex sets {vi, vi+1, vi+2} for 5 ≤ i ≤ n−6, the minimum value of f (vi) (5 ≤ i ≤ n−4) is

10, on eachC3, the difference between any two labels is less than or equal to 4, thereby, the sum of any two vertex labels
is greater than the third vertex label in each C3.

Hence, µvEuclid(Circ(n, 2)) = 1 for n is even.
2. n > 8 is odd.
First, we define a vertex labeling f as follows.
1. f (v1) = 2, f (v2) = 5, f (v3) = 4, f (v4) = 8, f (vn−3) = 9, f (vn−2) = 3, f (vn−1) = 7, f (vn) = 6.

2. f (vi) = 2i, 5 ≤ i ≤ n−1
2

, f
(

v n+1
2

)
= n+1.

3. f (vn+1−i) = 2i+1, 5 ≤ i ≤ n−1
2

.
The vertex labels set is [2, n+1].
For the those C3 on which the vertex sets are {v1, v2, v3}, {v2, v3, v4}, {vn−3, vn−2, vn−1}, {vn−2, vn−1, vn},

{vn−1, vn, v1}, {vn, v1, v2} respectively, the discussions about the vertex labels are the same as thats in 1.2. For the
labeling of other vertices, we will discuss in four cases.

2.1 n = 9.
There are twoC3 on which the vertex labels are not discussed yet, their vertex label sets are {3, 9, 10} and {4, 8, 10}

respectively. Because 3+9 > 10, 4+8 > 10, thus, µvEuclid(Circ(9, 2)) = 1.
2.2 n = 11.
There are fourC3 on which the vertex labels are not discussed yet, their vertex label sets are {3, 9, 11}, {9, 11, 12},

{4, 8, 10}, {8, 10, 12} respectively. Because 3+9> 11, 9+11> 12, 4+8> 10, 8+10> 12, thus, µvEuclid(Circ(11, 2))=
1.

2.3 n = 13.
There are seven C3 on which the vertex labels are not discussed yet, their vertex label sets are {4, 8, 10},

{8, 10, 12},{10, 12, 14}, {12, 13, 14}, {3, 9, 11}, {9, 11, 13}, {11, 13, 14} respectively. Because 4+8> 10, 8+10> 12,
10+12 > 14, 12+13 > 14, 3+9 > 11, 9+11 > 12, 11+13 > 14, thus, µvEuclid(Circ(13, 2)) = 1.

2.4 n > 13.
First, we discuss the vertex labels are on four C3 where the vertex label sets are {4, 8, 10}, {8, 10, 12}, {3, 9, 11},

{9, 11, 13}.
Because 4+8 > 10, 8+10 = 18 > 12, 3+9 > 11, 9+11 = 20 > 13, these vertex labels satisfy the vertex Euclidean

condition.
For the vertex labels on the other C3, in each C3, the maximum value and the minimum value of the vertex labels

are denoted by a, b respectively, then a−b ≤ 4, the minimum value in these vertex labels is 10, so in eachC3, the vertex
labels satisfy the vertex Euclidean condition.

This completes the proof.
Overall,
Theorem 4.6 For n > 3 is integer,
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µvEuclid(Circ(n, 2)) =


2, n = 4, 6, 7

3, n = 5

1, n > 7

5. The vertex Euclidean properties of the zykov sums of a cycle and an m null
graph
In this section, we study the vertex Euclidean properties of the Zykov sums of a cycle and a m null graph.
Definition 5.1 [8] Zykov sum of two simple graphs G1 and G2, denoted G1 ⊕G2, is defined as the graph with

V (G1 ⊕G2) =V (G1)∪V (G2),

E(G1 ⊕G2) = E(G1)∪E(G2)∪{(u, v): u ∈V (G1), v ∈V (G2)}.

Consequently, the Zykov sum of G1 and G2 is formed by adding edges that connect every vertex of G1 to every
vertex of G2.

In this section, Cn ⊕Nm (n ≥ 3, m ≥ 1) is investigated, Cn ⊕Nm is also called m-cone graph [9]. In Cn ⊕Nm, the
vertices on Cn are successively denoted by u1, u2, . . ., un, the vertices on Nm are denoted by v1, v2, . . ., vm.

Example 5.1 C5 ⊕N2 is shown in Figure 4.

Figure 4. C5 ⊕N2

Since all vertices are on some subgraph C3 of Cn ⊕Nm, by Theorem 1.1, µvEuclid(Cn ⊕Nm) ≥ 1. Now, we discuss
µvEuclid(Cn ⊕Nm) based on different values of m, n.

Theorem 5.1 For Cn ⊕N1,

µvEuclid(Cn ⊕N1) =

{
2, n = 3
1, n > 3

.
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Proof. 1. n = 3.
On C3 ⊕N1, there are four C3. Since any vertex on C3 ⊕N1 is adjacent to other vertices, and any vertex on two C3,

thus, if µvEuclid(C3 ⊕N1) = 1, the vertex labeled by 2 and the vertex labeled by 3 are adjacent and they are on two C3,
2+ 3 = 5 > 4, there must a C3 on which the vertex labels do not satisfy the vertex Euclidean condition, contradiction.
Hence, µvEuclid(C3 ⊕N1)> 1.

Now, define a vertex labeling f as follows: The labels of v1, u1, u2, u3 are successively 3, 4, 5, 6. Thus, the vertex
label sets of four C3 are {3, 4, 5}, {3, 5, 6}, {3, 4, 6}, {4, 5, 6} respectively. Because 3+ 4 > 5, 3+ 4 > 6, 3+ 5 > 6,
4+5 > 6, thereby, these vertex labels satisfy the vertex Euclidean condition.

2. n > 3.
We find a vertex labeling f such that µvEuclid(Cn ⊕N1) = 1.
First, we define the labels of v1, u1, u2, u3, u4.
Let f (v1) = 5, f (u1) = 2, f (u2) = 6, f (u3) = 3, f (u4) = 4.
Next, after the labels of v1, u1, u2, u3, u4 are determined, for other vertices, we define their labels according to the

parity of n.
2.1 n is even. Let

f (ui) = 2i−1, 4 ≤ i ≤ n+2
2

.

f (un−i) = 2i+6, 1 ≤ i ≤ n−4
2

.

Thus, we obtain a vertex label set [2, n+2]. Now, we investigate the vertex labels on each C3.
On C3 which vertex set is {v1, u1, u2}, has f (v1)+ f (u1) = 5+2 = 7 > 6 = f (u2).
On C3 which vertex set is {v1, u2, u3}, has f (v1)+ f (u2) = 5+3 = 8 > 6 = f (u2).
On C3 which vertex set is {v1, u3, u4}, has f (v1)+ f (u3) = 5+3 = 8 > 7 = f (u4).
On C3 which vertex set is {v1, un−1, un}, has f (v1)+ f (un) = 5+4 = 9 > 8 = f (un−1).
On C3 which vertex set is {v1, un, u1}, has f (u1)+ f (un) = 2+4 = 6 > 5 = f (v1).
For otherC3, in eachC3, the difference of the vertex labels between ui and ui+1 is less than or equal to 2, the minimum

value of the vertex labels is f (v1) = 5, so, the conclusion is correct for n > 4 is even.
2.2 n is odd. Let

f (ui) = 2i−1, 4 ≤ i ≤ n+3
2

.

f (un−i) = 2i+6, 1 ≤ i ≤ n−5
2

.

The discussions are the same as thats in 2.1, we can to know that the conclusion holds for n > 4 is odd.
This completes the proof.
Theorem 5.2When m > 1, then µvEuclid(Cn ⊕Nm)> 1.
Proof. Assume µvEuclid(Cn ⊕Nm) = 1. Then there exist a vertex labeling f such that the vertex label set is [2, m+

n+1].
1. Let f (w1) = 2, w1 ∈ V (Cn ⊕Nm), the vertex w2 is adjacent with w1 labeled by a (a < n+m+ 1). Since w1 and

w2 are at least on two C3, but on the vertex label set of the third on these C3 is only {a−1, a+1}.
1.1 Let w1 ∈ {vi|1 ≤ i ≤ m}, w2 ∈ {u j|1 ≤ j ≤ n}. Without loss of generality, let w1 = v1, w2 = u1.
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At this time, for u2, u3, . . ., un, no matter how their labels are defined, in u1, u2, . . ., un, there must be two vertex labels
with a difference greater than or equal to 2, resulting in a situation where the vertex Euclidean condition is not satisfied.

1.2 Let w1 ∈ {u j|1 ≤ j ≤ n}, w2 ∈ {vi|1 ≤ i ≤ m}. Without loss of generality, let w1 = u1, w2 = v1.
Since u1 is labeled by 2, v1 is labeled by a, then the vertex label set is {a−1, a+1}. Thus, the vertex vi (i ≥ 2) has

no label that satisfies the vertex Euclidean condition.
1.3 w1, w2 ∈ {ui|1 ≤ i ≤ n}. Without loss of generality, let w1 = u1, w2 = u2.
At this time, in v1, v2, . . ., vm, there must exist two vertices labeled by a−1 and a+1 respectively. Thus, there is not

a a positive integer is the label of un so that the vertex Euclidean condition holds.
2. a = m+n+1.
Sincew1 andw2 are in twoC3, but there only a positive integerm+n so that 2+m+n>m+n+1 holds, contradiction.
Overall, µvEuclid(Cn ⊕Nm)> 1 when m > 1.
Theorem 5.3 For m > 1, n > 2, µvEuclid(Cn ⊕Nm) = 2.
Proof. 1. n = 3.
Define a vertex labeling f as follows.

f (vi) = 2+ i, 1 ≤ i ≤ m.

f (ui) = m+2+ i, i = 1, 2, 3.

Because | f (ui)− f (u j)| ≤ 2 for 1 ≤ i, j ≤ 3 and i ̸= j, the minimum value of the vertex labels is 3, so these vertex
labels satisfy the vertex Euclidean condition.

2. n > 3.
We find a vertex labeling f such that µvEuclid(Cn ⊕Nm) = 2.
First, define the labels of v1, v2, . . . , vm, u1, u2, u3. Let

f (vi) = 2+ i, 1 ≤ i ≤ m.

f (u1) = m+3, f (u2) = m+4, f (u3) = m+5.

From the discussions on the case of n = 3, we can to know that these vertex labels satisfy the vertex Euclidean
condition.

Next, define the remaining vertex labels according to the parity of n.
2.1 n is odd.
Define the labels of the remaining vertices as follows.

f (ui) = m+2i, 3 ≤ i ≤ n+1
2

.

f (un−i) = m+5+2i, 1 ≤ i ≤ n−3
2

.

Thus, for any two adjacent vertices onCn, the difference of their labels is less than or equal to 2, the minimum value
in [3, m+2] is 3, so these vertex labels satisfy the vertex Euclidean condition.

2.2 n is even.
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Defining the labels of the remaining vertices as follows.

f (ui) = m+2i, 3 ≤ i ≤ n+2
2

.

f (un−i) = m+5+2i, 1 ≤ i ≤ n−4
2

.

The discussions are the same as thats in 2.1, we can to know that the conclusion is correct.
This completes the proof.
When m = 1,Cn ⊕N1 is also called wheel graph in [10], denoted byWn; when m = 2,Cn ⊕N2 is also called a double

cone graph in [11], denoted by DC(n). By Theorems 5.1 and 5.3, have
Corollary 5.4 For n ≥ 3,

µvEuclid(Wn) =

{
2, n = 3
1, n > 3

.

Corollary 5.5 For n ≥ 3, µvEuclid(DC(n)) = 2.

6. Conclusions
In this paper, we have studied four classes of graphs, they areGT S(k1, k2, . . . , kn−1; n), (m−1)−XG(m, n),Circ(n, 2)

and Cn ⊕Nm respectively. On GT S(k1, k2, . . . , kn−1; n), the vertex Euclidean deficiency is 1 for any ki ≥ 1, n > 1, at
the same time, besides these results, we have also obtained the vertex Euclidean deficiencies on triangular snakes, double
triangular snakes. On (m−1)−XG(m, n), the vertex Euclidean deficiency is 2 for any m, n ≥ 2 and m ≤ n. OnCirc(n, 2),
the vertex Euclidean deficiency is different in n equal to different values. OnCn ⊕Nm, the vertex Euclidean deficiency is
2 for m > 1, n > 2, and the vertex Euclidean deficiencies of Wn and DC(n) are obtained too.

7. Closing remarks
The vertex Euclidean labeling is an new area of graph labeling problems, there haven’t been many results yet on

vertex Euclidean labeling of graphs. Hence, in the future, we will conduct research on the vertex Euclidean properties of
graphs, and like to invite the readers to join us.
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