
Contemporary Mathematics
http://ojs.wiserpub.com/index.php/CM/

Research Article

Fekete-Szegö Functional Problem for Analytic and Bi-Univalent
Functions Subordinate to Gegenbauer Polynomials

Omar Alnajar1 , Ala Amourah2,3 , Jamal Salah4* , Maslina Darus1

1Department of Mathematical Sciences, Faculty of Science and Technology, University of Kebangsaan Malaysia, Bangi, Malaysia
2Mathematics Education Program, Faculty of Education and Arts, Sohar University, Sohar, Oman
3Applied Science Research Center, Applied Science Private University, Amman, Jordan
4College of Applied and Health Sciences, A’Sharqiyah University, Ibra, Sultanate of Oman
E-mail: damous73@yahoo.com

Received: 3 September 2024; Revised: 21 November 2024; Accepted: 21 November 2024

Abstract: This article aims to introduce a new qualitative subclass of bi-univalent and analytic functions that are intricately
linked to Gegenbauer polynomials. These polynomials, known for their significant role in various areas of mathematics,
provide a robust framework for exploring the properties of analytic functions. In our exploration, we will address the
Fekete-Szego problem, which is pivotal in the field of complex analysis. By doing so, wewill derive the coefficient bounds
|h2| and |h3| for functions within this newly defined subclass, thereby enhancing our understanding of their behavior.
Furthermore, by concentrating on the specific parameters that were utilized to achieve our primary results, we expect to
generate a variety of additional outcomes. These results will not only deepen our insight into the characteristics of these
functions but also contribute to the broader discourse on analytic function theory. We anticipate that the findings presented
in this article will pave the way for future research and applications, particularly in the realms of mathematical analysis
and applied mathematics.

Keywords: univalent function, bell distribution (BD), starlike functions, convex functions, (n, t)-neighborhood, inclusion
relations
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1. Introduction
Since Legendre discovered orthogonal polynomials in 1784 [1], extensive research has been conducted on their

properties and applications. Orthogonal polynomials play a crucial role in various fields of mathematics and physics,
particularly in the mathematical analysis of model problems. They frequently arise in the context of solving ordinary
differential equations, especially when specific model-related constraints are imposed. These polynomials not only
provide a systematic approach to approximating functions but also facilitate the solution of boundary value problems and
spectral analysis. Their applications extend beyond pure mathematics into areas such as quantum mechanics, numerical
analysis, and approximation theory, highlighting their importance in both theoretical and practical frameworks. The study
of orthogonal polynomials continues to evolve, with ongoing research exploring new properties, relationships with other
mathematical constructs, and their computational implications.
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In contemporary mathematics, orthogonal polynomials hold a significant and multifaceted role, extending their
influence far beyond pure mathematical theory into various applied disciplines, particularly in engineering and physics.
There is a broad consensus among researchers and practitioners that the utility of these polynomials is undeniable. They are
integral to solving approximation theory problems, where they facilitate the representation of complex functions in simpler
forms. Moreover, orthogonal polynomials find critical applications in both the theory of differential and integral equations,
enhancing our understanding of mathematical models that describe real-world phenomena. Their versatility extends into
fields such as mathematical statistics, where they are utilized for constructing estimators and testing hypotheses. In the
realm of quantum mechanics, orthogonal polynomials are employed in various applications, including scattering theory,
where they helpmodel interactions between particles. They are also vital in automated control systems, where they assist in
optimizing system responses. Additionally, in signal analysis, these polynomials contribute to the effective processing and
interpretation of signals, while in axisymmetric potential theory, they aid in solving problems related to gravitational and
electromagnetic fields. The breadth of their applications underscores the profound impact orthogonal polynomials have
across multiple scientific domains [2, 3]. Technically speaking, polynomials PL and Pm of orders L and m are considered
to be orthogonal if and only if they fulfill the requirement that is shown below:

∫ a

b
w(ρ)PL(ρ)Pm(ρ)dρ = 0 for L ̸= m

where w(ρ) is a function that can never be negative anywhere in the range (a, b). Because of this, the integral is well-
defined for any polynomial of finite order PL(ρ).

TheGegenbauer polynomials could be an example in the category of orthogonal polynomials. They are representatively
related to the usual real functions TR, as can be seen in [4, 5]. Notably, the integral representation of typical real
functions and the generating function of Gegenbauer polynomials share algebraic formulas because of their similarity.
This demonstrates that they are coupled in a manner typical of the TR functions that exist. This led to the discovery of
several inequalities within the realm of Gegenbauer polynomials, which proved useful.

In the field of geometric function theory, real functions commonly find themselves playing an important role. This is
mostly due to the fact that the relationship TR = coSR and their significance in the process of determining the boundaries
of the coefficients bring them to the forefront. SR is a representation of the class of single-valued functions that have
real coefficients in the unit disk G, and coSR is a representation of the closed convex hull of SR. This is the reason for
its existence. Within the context of the overall comprehension of geometric function theory, real functions are typically
considered to play a significant role.

He combination of bi-univalent functions and orthogonal polynomials can be particularly useful in the field of
mathematical physics, where both conceptsmay be utilized to solve complex problems involving boundary value problems
and in the study of special functions that arise in various physical contexts. By exploring these applications, researchers
can deepen their understanding of both theoretical and practical implications in mathematics and related fields.

Gegenbauer polynomials simplify and improve the analysis of bivalent functions. These polynomials facilitate
the estimation of functions’ coefficients, the simplification of their representation, and a clearer and more accurate
understanding of their geometric characteristics.WeakBoundaryAdherence: Gegenbauer polynomials are less appropriate
for applications needing strong boundary alignment because of their mathematical characteristics, whichmight cause them
to not align well with boundary requirements in specific circumstances.

Several bi-univalent functions are related to Gegenbauer polynomials in this work. Following this, the study analyzes
several properties of the described class. As a result, we have the opportunity to study the links between different
subclasses of functions and polynomials. In other words, our key findings are a generalization of earlier findings given in
an earlier study, to which we will refer when presenting our findings here.
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2. Preliminaries to basic concepts
LetA denote the class of all analytic functions f defined in the open unit disk G = {ϑ ∈C : |ϑ |< 1} and normalized

by the conditions f (0) = f ′(0)−1 = 0. Thus each f ∈ A has a Taylor-Maclaurin series expansion of the form:

f (ϑ) = ϑ +h2ϑ 2 +h3ϑ 3 + · · · (1)

Further, assume that S stands for the sub-collection of the set A containing of functions f in ϑ satisfying (1) which
are univalent in ϑ .

Consider the possibility that the functions f and g are analytical in G. When there is a Schwarz function that is
analytic in G, it is conceivable for a function f to be subordinate to another function g, which is represented by the
notation f ≺ g. This is the case if there is a Schwarz function as well.

ϖ(0) = 0 and |ϖ(ϑ)|< 1 (ϑ ∈ G)

such that

f (ϑ) = g(ϖ(ϑ))

Additional considerations to take into account include the fact that if the function g is univalent in G, then the
equivalence that follows is valid:

f (ϑ)≺ g(ϑ) if and only if f (0) = g(0)

and

f (G)⊂ g(G)

Everyone is aware of the fact that every function f that belongs to the set S has an inverse function f−1, which is
represented by

f
(

f−1(ϑ)
)
= ϑ (ϑ ∈ G)

and

f
(

f−1(w)
)
= w

(
|w|< r0( f ); r0( f )≥ 1

4

)

where
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f−1(w) = w−h2w2 +
(
2h2

2 −h3
)

w3 −
(
5h3

2 −5h2h3 +h4
)

w4 + · · ·= g(w) (2)

A simple example of bi-univalent functions f (ϑ) =
√

ϑ −1. Also, a function f ∈ A is said to be bi-univalent in U
if both f (ϑ) and f−1(ϑ) are univalent in U. Let Σ stands for the class of bi-univalent functions in U given by (1). For a
brief history and interesting examples of functions in the class Σ, see the pioneering work done by Srivastava et al. [6, 7].

Recently published a study on this topic. Over the past few years, a multitude of scholars have rekindled their interest
in the study of analytic and bi-univalent functions. For other instances, please refer to the citations [8–11].

Amourah et al. [12, 13] took into account the Gegenbauer polynomials Ψα(ρ, ϑ), which are given by

Ψα(ρ, ϑ) =
1

(1−2ρϑ +ϑ 2)α (3)

All of the variables ρ ∈ [−1, 1], α ∈ R\{0}, and ϑ ∈ G come into play at this point. In light of the fact that the
function Ψα is analytic in G, taking into account the fact that ρ is held constant, it is possible to expand it by employing
a Taylor series in the manner that is described below:

Ψα(ρ, ϑ) =
∞

∑
L=0

Cα
L (ρ)ϑ L (4)

where the degree-L Gegenbauer polynomial is denoted byCα
L (ρ). Furthermore, the Gegenbauer polynomials are provided

by their generating function (3), which may be stated when α = 0.

Ψ0(ρ, ϑ) =
∞

∑
L=0

C0
L(ρ)ϑ n = 1− log

(
1−2ρϑ +ϑ 2) (5)

for α = 0. Additionally, it is important to point out that it is preferable to normalize α to a value that is greater than
−0.5 [14]. It is not difficult to observe that the Gegenbauer polynomials are consistent with the recursive relation that is
presented below:

Cα
L (ρ) =

1
L

[
2ρ(L+α −1)Cα

L−1(ρ)− (L+2α −2)Cα
L−2(ρ)

]
(6)

The first three Gegenbauer polynomials are given as follows:

Cα
0 (ρ) = 1, Cα

1 (ρ) = 2αρ and Cα
2 (ρ) = 2α(1+α)ρ2 −α (7)

When we apply these equations (6), we can quickly acquire Legendre polynomials PL(ρ) =C0.5
L (ρ) and Chebyshev

polynomials of the second kind GL(ρ) =C1
L(ρ). It is important to note that by putting α = 0.5 and α = 1, we can achieve

this equation.
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At the present time, a great number of academics are concentrating their attention on bi-univalent functions that are
connected to orthogonal polynomials, see [15–18]. It is essential to highlight the fact that, as far as we are aware, very
scant information is available concerning Gegenbauer polynomials in the setting of bi-univalent functions.

The study of some new subclasses of bi-univalent functions that are subordinate to the Gegenbauer polynomial and
Jacobi Polynomials is motivated by Amourah et al. [19–23]. Our objective is to get constraints for the coefficients of
the functions |h2| and |h3|, as well as solution to FeketeSzegö functional problems for functions that belong to these new
classes.

3. Definition and special cases
We begin this section by defining the family GΣ(α, λ , δ , ρ) as follows:
Definition 1 Let λ ≥ 0 and 0 < δ ≤ 1, a function f ∈ Σ is said to be in the family GΣ(α, λ , δ , ρ) if it satisfies the

subordinations:

1
2

ϑ 1−λ f ′(ϑ)

( f (ϑ))1−λ +

(
ϑ 1−λ f ′(ϑ)

( f (ϑ))1−λ

) 1
δ
≺ Ψα(ρ, ϑ)

and

1
2

w1−λ g′(w)
(g(w))1−λ +

(
w1−λ g′(w)
(g(w))1−λ

) 1
δ
≺ Ψα(ρ, w)

where ρ ∈
(

1
2
, 1
]
, g(w) = f−1(w), which is determined by the equation (2), and Ψα represents the generating function

of the Gegenbauer polynomial, which is given by the equation (3).
Special cases:
i) Assume that λ = 0 and δ = 1, a function f ∈ Σ is said to be in the family GΣ(α, 0, 1, ρ) if it satisfies the

subordination:

ϑ f ′(ϑ)

f (ϑ)
≺ Ψα(ρ, ϑ)

and

wg′(w)
g(w)

≺ Ψα(ρ, w)

where ρ ∈
(

1
2
, 1
]
, g(w) = f−1(w), which is determined by the equation (2), and Ψα represents the generating function

of the Gegenbauer polynomial, which is given by the equation (3).
ii) Assume that λ = δ = 1 a function f ∈ Σ is said to be in the familyGΣ(α, 1, 1, ρ) if it satisfies the subordination:
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f ′(ϑ)≺ Ψα(ρ, ϑ)

and

g′(w)≺ Ψα(ρ, w)

where ρ ∈
(

1
2
, 1
]
, g(w) = f−1(w), which is determined by the equation (2), and Ψα represents the generating function

of the Gegenbauer polynomial, which is given by the equation (3).

First, we’ll give some estimates for the coefficients for class GΣ(α, λ , δ , ρ) that were given in Definition 1.
Theorem 1 For (1) be in the class, let f ∈ A be in the family GΣ(α, λ , δ , ρ)

4. Coefficient bounds of the class GΣ(α, λ , δ , ρ)

. Then

|h2| ≤
2(2αρ)

√
2αρδ√

(2αρ)2(λ +1)[δ (λ +2)(δ +1)+(λ +1)(1−δ )]−(
2α(1+α)ρ2 −α

)
(λ +1)2(δ +1)2

and

|h3| ≤
2(2αρ)δ

(λ +2)(δ +1)
+

4(2αρ)2δ
(λ +1)2(δ +1)2

Proof. Let f ∈GΣ(α, λ , δ , ρ). Then there are two analytic functions ϕ , ϱ given by

ϕ(z) = k1ϑ + k2ϑ 2 + k3ϑ 3 + · · · (ϑ ∈ G) (8)

and

ϱ(w) = j1w+ j2w2 + j3w3 + · · · (w ∈ G), (9)

with ϕ(0) = ϱ(0) = 0, |ϕ(ϑ)|< 1, |ϱ(w)|< 1, ϑ , w ∈ G such that

1
2

ϑ 1−λ f ′(ϑ)

( f (ϑ))1−λ +

(
ϑ 1−λ f ′(ϑ)

( f (ϑ))1−λ

) 1
δ
= Ψα(ρ, ϕ(ϑ)) (10)

and
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1
2

w1−λ g′(w)
(g(w))1−λ +

(
w1−λ g′(w)
(g(w))1−λ

) 1
δ
= Ψα(ρ, ϱ(w)). (11)

Combining (8), (9) and (10) yields

1
2

ϑ 1−λ f ′(ϑ)

( f (ϑ))1−λ +

(
ϑ 1−λ f ′(ϑ)

( f (ϑ))1−λ

) 1
δ
= 1+Cα

1 (ρ)k1ϑ +
[
Cα

1 (ρ)k2 +Cα
2 (ρ)k

2
1
]

ϑ 2 + · · · (12)

and

1
2

w1−λ g′(w)
(g(w))1−λ +

(
w1−λ g′(w)
(g(w))1−λ

) 1
δ
= 1+Cα

1 (ρ) j1w+
[
Cα

1 (ρ) j2 +Cα
2 (ρ) j2

1
]

w2 + · · · (13)

It is quite well-known that if |ϕ(ϑ)|< 1 and |ϱ(w)|< 1, ϑ , w ∈ G, then

|ki| ≤ 1 and | ji| ≤ 1 for all i ∈ N (14)

After simplification, we can compare the coefficients in (12) and (13) and obtain

(λ +1)(δ +1)
2δ

h2 =Cα
1 (ρ)k1 (15)

(λ +2)(δ +1)
4δ

(
2h3 +(λ −1)h2

2
)
+

(λ +1)2(1−δ )
4δ 2 h2

2 =Cα
1 (ρ)k2 +Cα

2 (ρ)k
2
1 (16)

− (λ +1)(δ +1)
2δ

h2 =Cα
1 (ρ) j1 (17)

and

(λ +2)(δ +1)
4δ

(
(λ +3)h2

2 −2h3
)
+

(λ +1)2(1−δ )
4δ 2 h2

2 =Cα
1 (ρ) j2 +Cα

2 (ρ) j2
1 (18)

It follows from (15) and (17) that

k1 =− j1 (19)

and
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[
(λ +1)2(1+δ )2

2δ 2

]
h2

2 = [Cα
1 (ρ)]

2 (k2
1 + j2

1
)
. (20)

If we add (16) to (18), we find that

[
(λ +2)(δ +1)(λ +1)

2δ
+

(λ +1)2(1−δ )
2δ 2

]
h2

2 =Cα
1 (ρ)(k2 + j2)+Cα

2 (ρ)
(
k2

1 + j2
1
)
. (21)

Since we have the value of k2
1 + j2

1 from (20), we can plug that value into the right-hand side of (21) to get the
following conclusion:

h2
2 =

2(Cα
1 (ρ))

3 δ 2 (k2 + j2)(
Cα

1 (ρ)
)2
(λ +1)[δ (λ +2)(δ +1)+(λ +1)(1−δ )]−Cα

2 (ρ)(λ +1)2(δ +1)2
. (22)

Further computations using (7), (14) and (22), we obtain

|h2| ≤
2(2αρ)

√
2αρδ√

(2αρ)2(λ +1)[δ (λ +2)(δ +1)+(λ +1)(1−δ )]−(
2α(1+α)ρ2 −α

)
(λ +1)2(δ +1)2 ...

Next, if we subtract (18) from (16), we can easily see that

(λ +2)(δ +1)
δ

(
h3 −h2

2
)
=Cα

1 (ρ)(k2 − j2)+Cα
2 (ρ)

(
k2

1 − j2
1
)

(23)

In view of (19) and (20), we get from (23)

h3 =
Cα

1 (ρ)(k2 − j2)δ
(λ +2)(δ +1)

+
2 [Cα

1 (ρ)]
2 (k2

1 + j2
1
)

δ 2

(λ +1)2(δ +1)2

Thus applying (7), we obtain

|h3| ≤
2(2αρ)δ

(λ +2)(δ +1)
+

4(2αρ)2δ 2

(λ +1)2(δ +1)2

We have thus proved the Theorem 1.
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In this section, we prove the following Fekete-Szegö (see also [24]) inequality for functions f in the class GΣ(α, λ ,
δ , ρ), using the values of h3 and h2

2

5. Fekete-Szegö inequality for the class GΣ(α, λ , δ , ρ)

.
Theorem 2 For (1) in the class and η ∈ R, let f ∈ A, let be in the family GΣ(α, λ , δ , ρ). Then

∣∣h3 −ηh2
2
∣∣≤


4|αρ |δ
(λ +2)(δ +1)

, |η −1| ≤ K

4|2αρ |3δ 2(1−η)

(2αρ)2(λ +1)[δ (λ +2)(δ +1)+(λ +1)(1−δ )]
, |η −1| ≥ K,

−
(
2α(1+α)ρ2 −α

)
(λ +1)2(δ +1)2

where

K =
(2αρ)2(λ +1)[δ (λ +2)(δ +1)+(λ +1)(1−δ )]−

(
2α(1+α)ρ2 −α

)
(λ +1)2(δ +1)2

2(2αρ)2δ (λ +2)(δ +1)
.

Proof. It follows from (22) and (23) that

h3 −ηh2
2

=
Cα

1 (ρ)(k2 − j2)δ
(λ +2)(δ +1)

+(1−η)h2
2

=
Cα

1 (ρ)(k2 − j2)δ
(λ +2)(δ +1)

+
2(Cα

1 (ρ))
3 δ 2 (k2 + j2)(1−η)(

Cα
1 (ρ)

)2
(λ +1)[δ (λ +2)(δ +1)+(λ +1)(1−δ )]−Cα

2 (ρ)(λ +1)2(δ +1)2

= Cα
1 (ρ)

[(
Ω(H)+

δ
(λ +2)(δ +1)

)
k2 +

(
Ω(H)− δ

(λ +2)(δ +1)

)
j2

]

where

Ω(H) =
2(Cα

1 (ρ))
2 δ (1−η)(

Cα
1 (ρ)

)2
(λ +1)[δ (λ +2)(δ +1)+(λ +1)(1−δ )]−Cα

2 (ρ)(λ +1)2(δ +1)2

According to (7), we find that
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∣∣h3 −ηh2
2
∣∣≤


2
∣∣Cα

1 (ρ)
∣∣δ

(λ +2)(δ +1)
, 0 ≤ |Ω(H)| ≤ 1

(λ +2)(δ +1)

2
∣∣Cα

1 (ρ)
∣∣ |Ω(H)|δ , |Ω(H)| ≥ 1

(λ +2)(δ +1)

We have thus proved the Theorem 2.

6. Corollaries and consequences
Here we find two corollaries where λ = 0, δ = 1 and λ = δ = 1, respectively.
Corollary 1 For (1) in the class, let f ∈ A be in the family GΣ(α, 0, 1, ρ). Then

|h2| ≤
2|2αρ |

√
2αρ√

4 |(2αρ)2 −2α(1+α)ρ2 +α|

|h3| ≤ αρ +4(αρ)2

and

∣∣h3 −ηh2
2
∣∣≤


|αρ |, |η −1| ≤ |GΣ(α, 0, 1)|

|2αρ |3(1−η)

(2αρ)2 −2α(1+α)ρ2 +α
, |η −1| ≥ |GΣ(α, 0, 1)|

where

GΣ(α, 0, 1) =
(2αρ)2 −2α(1+α)ρ2 +α

2(2αρ)2

Corollary 2 For (1) in the class, let f ∈ A be in the family GΣ(α, 1, 1, ρ). Then

|h2| ≤
2|αρ |√αρ√

2 |3(2αρ)2 −4(2α(1+α)ρ2 −α)|

|h3| ≤
2|αρ |

3
+(αρ)2

and
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∣∣h3 −ηh2
2
∣∣≤


2|αρ |
3

, |η −1| ≤ |GΣ(α, 1, 1)|

8|αρ |3(1−η)

3(2αρ)2 −4(2α(1+α)ρ2 −α)
, |η −1| ≥ |GΣ(α, 1, 1)|

where

GΣ(α, 1, 1) =
3(2αρ)2 −4

(
2α(1+α)ρ2 −α

)
12(αρ)2

Remark 1 The results obtained from this study have the potential to result in novel discoveries about the classes
GΣ(1, λ , δ , ρ) with respect to Chebyshev polynomials and GΣ(0.5, λ , δ , ρ) with regard to Legendre polynomials.

Concluding Remark The primary purpose of this study is to derive some estimations of the Taylor-Maclaurin
coefficients, denoted as |h2| and |h3|, as well as the inequality of Fekete-Szego, denoted as

∣∣h3 −ηh2
2

∣∣, for functions
that belong to a novel class GΣ(α, λ , δ , ρ) of analytic and bi-univalent functions f (ϑ) in the open unit disk G.
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