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Abstract: In this article, we study regularity of weak solutions to a class of nonlinear parabolic equations in divergence
form. The main purpose is to present a regularity estimate with more general conditions on coefficients, N-functions and
non-homogeneous terms in the fractional Sobolev spaces. By deriving a higher integrability estimate of weak solutions,
we obtain the desired regularity estimate. In addition, the results of this article expand the regularity theory of parabolic
equations in fractional Sobolev spaces and Besov spaces.
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1. Introduction

In this article, we aim to study regularity of weak solutions to a class of nonlinear parabolic equation in divergence
form

@(|F])
P2

uy —divA(Vu, x, t) = div { F} inQr:=Qx (1, to+7T], (1)

where Q C R” is a bounded open domain, 79 € R, T > 0, u € C (19, 1o+ T]; L*(Q)) NLE ((to, 10+ T]; WP (),

and ®(¢) is an N-function which will be explained in Section 2. In (1), F(x, t) = (fi(x, 1), ---, fu(x, 1)) is a given
vector-valued function. Moreover, we assume that A(Vu, x, t) satisfies the following parabolic conditions

1
@ | (w2 +[E7+nP)?

Al r
T Ee

& —n* < (DA, x, 1)(E—n), (E—1)),
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@[ +izn)’]

(u>+1[87)2

(A2) JA(E, x, 0)] + (42 + 1E[2)  [DA(E, x, 1) < A

where 0 < i < 1, r, and A are constants, &, n € R", (-, -) means inner product, and DgA(&, x, t) is the derivative of the
first variable to A(&, x, 7). Based on (A1) and (A2), we calculate that

1
@ | (u2+EP+ )

)
EEC R @

[A(S, x, ) —A(n, x, )] (§—n) =T

where 7 is a positive constant. Meanwhile, given 0 < @ < 1, we assume there are non-negative measurable functions

nt2
gr(x, 1) € L, ® (Qr) such that

loc

2 o0
;Ilgk(x, Ol w2 g, <+ (3)

and

®|(22+12P)!

(W2 +EP)?

@
2

(A3) JACE, x, )= A&, y, )| < [x =3P+ e —sl] > (gxlx, 1)+ 8k, 9))

for any & € R”" and almost every (x, 1), (v, s) € Qr satisfying 2 *diam(Q7) < (Jx —y|* + |t — s|)% < 27*ldiam(Qr)
with k € N.
We denote that the equation (1) has some special examples. The most typical example is

u; — div(|Du|P~2Du) = div(|F|P~2F). 4)

Misawa [1] and Acerbi [2] obtained the Calderén-Zygmund estimates of weak solutions to (4), respectively. If

O(|F
|§l|2)F = f, then (1) becomes

u; — div a(Du, x, t) =div f. ®))

Byun [3] analyzed the global Calderon-Zygmund estimates for the weak solutions to (5). Many authors presented
various kinds of regularity estimates for weak solutions to

1

uy — div [a ((,Q%Du -Du)f) szDu} — div f (6)
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in [4, 5] and [6]. It should be mentioned that Yao [7] obtained the regularity of weak solution to (6) in Besov spaces.

Moreover, Kuusi and Mingione [8] dealed with non-homogeneous, measure data and possible degenerate parabolic
equations. For the research of parabolic systems, Bogelein, Foss and Mingione [9] studied a class of quasilinear parabolic
systems with p-growth

diu=div a(z, u, Du),

where z = (x, t). They filled a gap in the partial regularity theory of quasilinear parabolic systems. Mingione presents a
great number of regularity theories of parabolic equations and systems in [ 10—13]. In recent works [ 14—16], the regularities
of weak solutions to parabolic equations are presented. These conclusions and methods enrich the research perspectives.
Based on [17], it is proposed that the nonlinear function of the spatial gradient of the weak solutions possesses higher
differentiability.

In [18-20], the authors studied regularity theories in fractional Sobolev spaces. Ambrosio [18] investigated the
regularity properties of weak solutions to the strongly degenerate equation

p—1 Du

u, — div [(Dm —1)8 |DMJ = finQr=Qx (0, T),

where p > 2 and (-); stands for the positive part. In [19], the authors dealed with the Dirichlet problem for the elliptic
p-Laplace equation

(7

—div (|Vu[P2Vu) = fin Q,
u=0o0ndQ,

where Q C R” is a convex polyhedral domain and p > 2. The authors proved global regularity results for weak solutions
u under suitable assumptions in fractional order Sobolev spaces. In [20], one has higher-order fractional regularity for the
viscosity solutions of uniformly elliptic equations of the form

F(D*u) = f in By.

The assumption of the Carathéodory vector field in this article is inspired by the research [21]. The authors obtained
Besov regularity of the weak solution to

u —diva(Du, x, t) =divF, (x, 1) € Qr.
They assumed that a(&, x, t) is a Carathéodory function, and there are constants r;, r, > 0 such that

ril&lP*nl* < (Dga(€, x, 1)n, M)

and

Volume 5 Issue 4/2024| 5701 Contemporary Mathematics



(€, x, 1)+ [E][Dza(&, x, 1)| < rafE [P

hold forany &, n € R", (x, 1) e R" x Rand p > 2.
The N-function in this article was studied by many authors. For instance, Behn and Diening [22] studied global
regularity of solutions to nonlinear elliptic systems

—div ((5+|u|)p_2u> —fin Q,
u=0o0n JdQ,

1
where du = E(VM + (Vu)T) denotes the symmetric part of Vu. Barletta [23] gained the existence and regularity of

solutions to nonlinear elliptic problem

—div(B(x, u, Vu)) = f(x, u, Vu) in Q, g
u=0o0n JQ. ®)

The author considered the growth conditions on the terms appearing in (8) require to replace the customary Sobolev
space with an Orlicz space. In [24], the authors studied properties of the local weak solution u € W' ?(Q) and & € L? (Q)
of the generalized Stokes problem

—div#(Du)+Vu=—divG inQ

for given G : Q — R2)2, where u stands for the velocity of a fluid and 7 for its pressure.

Inspired by the above insight, this article aims to obtain a fractional regularity of solutions to (1). By introducing

®|(22+12P)}] é

HolS)= | e

: )

we present the main result of this article.
Theorem 1 Let 0 < o < 1. Assume that (A1)-(A3) hold. @ is an N-function satisfying (G1) and (G2). If u is a weak

O(|F
Slp')F € L ((to, 10+T]); W *(Q)), then Ho (Vi) € W *(Qr) locally.

The classical Orlicz-Sobolev spaces W' ®(Q7) and fractional Sobolev spaces W* 2(Qr) appeared in Theorem 1 are
introduced in Section 2. We expect to acquire the fractional Sobolev regularity of weak solutions and expand the theory of
parabolic equation in divergence form. Meanwhile, we study the weak solutions in W' ®(Q7) with variable index ®(z).
In addition, we obtain the followings.

Corollary 2 Let 0 < o < 1. Assume that (A1)-(A3) hold. @ is an N-function satisfying (G1) and (G2). If u is a

d(|F
|§L|2)F c 2 ((;0, to+T; BY 2(9)), then Ha(Vu) € BY ,(Qr) locally.

solution to the equation (1) with

weak solution to the equation (1) with
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Corollary 3 Let 0 < o < 1. Assume that (A1)-(A3) hold. & is an N-function satisfying (G1) and (G2). If u is a

o(|F
IEV||2) F e 12 (0. 10+ T): Ff'5(Q)). then Ho (V) € Fy'5(Qr) locally

In these corollaries, BS ,(Q) and F,*, (L) represent Besov spaces and Triebel-Lizorkin spaces, respectively.

weak solution to the equation (1) with

2. Preliminaries
2.1 N-Function

In this article, the relation & ~ 8 denotes that there are two positive constants C' and C” such that

C'B<a<C'B. (10)

Definition 4 [24] We say that a convex function ®(r): [0, o) — [0, o) is an N-function, if it has the following
properties:

(1) There are derivatives ®'(r) and ®"(¢) of ®(¢) satisfying ®(0) =0, ®(1) =1, ®'(¢) > 0 for ¢ > 0.

(2) (Az-condition) There exists C; > 0 such that for all ¢ > 0 it holds ®(2¢7) < C;®(¢). By Ay(P) we denote the
smallest constant C;.

Let @ be an N-function. We note that since ®(z) < ®(2¢), the Ap-condition implies that ®(2¢) ~ &(z). In this article,
we assume that ®(¢) satisfies the following assumptions.

o}
(G1) Let ®(¢) be an N-function with ®(st) = C;®(s) - ®(¢) and ®(z) € C>((0, +0))NC' ([0, +o0)) such that #
is almost monotone increasing on (0, o).
(G2) There is a positive constant C such that
2 2 21 2 2 21
L @LW PP jpg(e) - momp P[0+ ISP +InP)! "
e L (| i e Ul
forany £, € R" and | — 1| # 0.
We note the complementary function & of ® by
d(s) = sup{st — P()}. (12)
>0
By [24], we get that
- (P
®(t) ~ & (1)f and ® (t(t)) ~ (1), (13)
uniformly in # > 0. For every € > 0, there is constant C(&, Ay (®P)) such that
tu<e ®(t)+C3 (8, Az(&))) (i)(l/t) (14)

for all 1, u > 0, which is a Young type inequality [24]. In particular,
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ab < ga® +Cy(g) b, (15)

with a, b > 0. Similarly, we present a modified version of Holder inequality as

[ lrwelars csa ( / ci>(f<x>|>dx) s ( / @(g(xmdx), (16)

where ®~!(®(¢)) =t and ®(¢) defined by (12).

2.2 Function spaces

We need several function spaces in this article. We first recall the Orlicz spaces L?(R") and its norm ([25]) by

L*(R") = {u € L'(R")

[ @uar <=},

and

[o(52)ocr)

Then the dual space of L®(R") is the Orlicz space L&)(R"), where @ is defined by (12). Next we introduce the
classical Orlicz-Sobolev spaces W' ®(R") and its norm as [26]

WhP(R") = {u e L*(R")||Vu| € L*(R")}

and

ullwr. @ ray = [laell o gon) + 1Vl 0 () -

We say that Q) is compactly contained in Q, denoted Q € Q, if Qg is a compact subset of Q, where Q is an open
subset of Q. A function u € Wb, ®(Q), if u € W' ®(Qy) for every Qo € Q [27].
We recall the definition of the fractional Sobolev spaces by

1

% |Ahu|2 2
s = [ )+ ( [ [ dxdh) , )

where 0 < & < 1 and Ayu = u(x+h, t) —u(x, t). The Besov spaces B, ,(R") with its norm are defined via [28]
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l[ullpg  (ry = llual| o (me) + [”]Bgﬁ (B O<a<l, 1<p<eo),

1
. 1
\Apul?  \? dh \°
n n ———dx —_— s 1 < 0]
(fR (Je i 2s) i) <19

1 (18)
|Apul? -\ 7
SupheRn (IR" |h|ap dx 3 q — oo,

[u] BY ,(R") =

If [|u]| 1 (mr) < oo and l[ullpa  (rn) < oo, thenu € By ,(R"). By [29], we define Triebel-Lizorkin spaces F,* ,(R") with
its norm via '

lull g ey = lletll o) + U] po oy (0 <@ <1, 1< p<eo),

1

P
_ A N\
e oo = ( [ ([, k)" o) 19)

If || Lo () < oo and [[u| F  (n) < o, then u is said to belong to the Triebel-Lizorkin spaces F ,(R"). Furthermore,
we note that the C*(R") is comprised of a set of all functions that are infinitely continuously differentiable on R”, and the
space C; (R") represents the space of infinitely differentiable functions with compact support.

The next lemma is a classical embedding theory.

Lemma 5 [30] Assuming 0 < o < 1. There is a continuous embedding W% 2(Q) L% (Q).

2.3 Definitions of weak solution and functions of vanishing mean oscillations

In view of [31], we introduce the definition of the weak solutions to the equation (1).

d(|F
|§:2|)F € W% 2(Qr) with 0 < & < 1. If for any ¢ € CJ(Qr), there holds

Definition 6 Supposing

/u(pdx
Q

where [t1, 1] C (to, o+ T]. The function u € C ((to, 10+ T]; L2(Q)) NLE (1o, 10+ T]; W, *(Q)) is called a weak
solution to (1). Here the function ¢ is a test function.
Definition 7 Let

N > [ 2(F])
+/ /{—u<p,+A(vu, X, t)~V(p}dxdt:f/ / S-F -Vodxdr (20)
n n JQ o JQ |F|

A&, x, 1) —Ag, ) (6]
sup ]
sew\fo) @ (12 +[EP)]
(2 +E12)2

Vix, t, Qp(2)): =

@n

and
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AQp(Z)(é) ::]i (Z)A(é, x, t)dx dr

Assuming that A(Vu, x, ) satisfies

lim sup  sup ][ V(x, t, Qp(z))dxdr =0,
R200<p<rop(:)cQr /0, (2)

then we say that A(Vu, x, t) has locally uniformly vanishing mean oscillations (abbreviated to VMO), where z = (,

R, Qp(2) = Bp(y) x (s—p2, s+ p?).
Lemma 8 Assume 0 < o < 1 and A(&, x, 1) satisfying (A1)-(A3), then A(&, x, 7) has locally uniformly VMO.

(22)

(23)

s) €

Proof. Let (x, £), (y, s) € Q7 and A (x, 1) := {(y, s) € Qr 1 2 *diam(Q7) < (Jx—y[2 +]r —s])? <2~ k+1d1am(QT)}

According to (21) and assumption (A3), we easily get that

[IR4d) 14 _Z s
][ Vi(x, 1, Qp(y, 5))dxdr = ][ sup A, x, 1) Qp(%l )(é)‘ deds
209 00 9 Gk} D (24162

(2 + E[2)?

_ ;o W
1 /' sup ‘/ A(E, x, 1) A@’x7fﬂdxdfdx¢
|Qp(y, )2 J 0y, 5) germ\f0}  0p (3 5) cp[(“2+|§|2)z}

(u2 + |E2)?

! A&, x, 1) —A(E, ¥, ') dx' dr’
| ox] QI
|QP()’a )‘ Op(y,5) &k 4 Qp(y, )N Ag(x, 1) o [(u2+|§|2)2}

(u2 + |E2)?
< LZ|Q (y S) ﬂAk(x t)| gk(x t)dxdt
=0 (y, s) P &P o
10,0, 9 & 0ol ) N Ao )

In view of Holder inequality, one gets that

_o_

2 n+2 )
“ dxdt < "
& < | Zlslz g,

1
2

K A
< G0 1 2100 s ”‘VQ

P (y# S)

According to Holder inequality again, we obtain that

24

(25)
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K < P z/ & 4y dr ﬂz\g( JnAe 0] < | Y lal? % (26)
) < T &:” t Y, §)NAg(x, t)| "2 < &kl n .
|Qp(ya S)‘ k Op(y, 8) N A(x, 1) k P ¢ k ¢ L%(Qp()% 5))

By combining (25) and (26), we have

1
2

Vix, t, . s))dxdt <C 2 . 27
][Qp(y,s) b Gp: ) ;”gle&z(Qp(y,s»] @7

By the assumption (A3) and Dominated Convergence Theorem, we acquire that

lim sup sup ][ V(x, t, Qp(y, s))dxdr = 0. (28)
R=00<p<R 0, (y, s)cQr / Qp (v, 5)

This completes the proof of Lemma 8. O

3. Higher integrability

In this section, Q.(R*, R) = (t—R? t+R?) x Bg(x) represents a cylinder in Q7 with the center z = (x, 7).
Sometimes, we write Q(R?, R) in short. Sometimes we write Qg instead of Q(R%, R). We let B(R) denotes a domain
in Q C R” with x as the center and R as the radius. Inspired by the conclusion of high integrability in [2], one gets the
following conclusion.

Proposition 9 For any g € (1, 40), we assume that ®(|F|) € L7(Qr), and A(&, x, 1) satisfies (A1)-(A3). D is
an N-function satisfying (G1) and (G2). If u € W' ®(Qr) is a weak solution to (1) and u = 0 for (x, t) € dQr, then
®(|Vu|) € L1(Qr) and

1

/Q P [(”2+|Vu|2)%}dxdt < cq>{{</g q;{(“2+|vu|2)%}dxd,>q+/g cI)q(F|)dxdt+lr}, (29)

T

where dQ7r denotes the boundary of Q7.
In order to give a proof of Proposition 9, we present the following lemma.
Lemma 10 [32] Let 0 < pu < 1, there exists a constant ¢; such that if &, n € R”, then

1
¢[(u2+|n|2+|é|2)2
ur+n2+ &2

o150} <o +mp)!] +a = (30)

We are in a position to give a proof.
Proof of Proposition 9.
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Step 1. In this step, we shall approximate the solution u to (1). We let Qo = (fo — (2R)?, 19+ (2R)?) x By, (2R) €
Qr, (xo, to) € Qr, Oy € Qr, and R > R. In addition, 0,5 and Qg have the same center. We assume that ¢ : R” — R

and ¢, : R — R have compact support in B;(0) and (—1, 1), respectively. We define

Fe(x, t) = /Q] F(x+ey, t+&€s)01(y)92(s)dyds
and
Ae(8 %)= [ A xten, 1 e)n)s)dvas,
where Q1 = By x (—1, 1). Itis clear that F; € C*(Q,z, R"), and A¢(&, ) € C*(Q,z). Moreover, there hold
B(|Fe]) - D(F]) strongly in L9(Qy, R"),
Ae(E, ) —~ A(E, ) strongly in L'(Qpz, R") (1 < ).

We should mention that A, satisfies conditions of A. We let ue be the unique solution to

@(|Fy|)
|Fp|?

(up), —divA;(Vuy, x, t)—div[ F/} in Q,z,

ur=1u on 8Q2R.

Since u, and u are weak solutions, we get

(ue —u); —div[A¢ (Vug, x, 1) —A(Vu, x, t)] = div <q)|S!«|*j£2|)F€ _ q)|%’;|)F> .

We choose ue — u as a test function to (36), and hence obtain

sup / ue (x, 1) —u(x, t)|2dx+/ [Ae(Vug, x, 1) —Ae(Vu, x, 1)] (Vue — Vu) dxdt
t07(21§)2§t<t0+(2R5)2 on (2ﬁ) Q21§

<C +C

/ [Ae(Vu, x, t) —A(Vu, x, )] (Vug — Vu) dxdt
Oor

(ED . FD N o v
/2R< T F) (Vite = Vur)dxd

It follows that

(31)

(32)

(33)

34

(35)

(36)

37
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/ e (Vite, x, 1) — Ae(Vit, x, 1)] (Vite — Vie)
0)

2R

|
o

By applying (2) and (14) to handle each term of (38), and using (31), (32), and the relationship between u and u,,

D(|Fel)
|Fel?

_2(F)
F[?

|Ae(Vu, x, t) —A(Vu, x, t)| |Vue —Vu|dxdt—|—C/_
2R

Fe F‘ \Vue — Vu|dxdr.  (38)

2R
we derive
2 2v4 2 2\%
/ <1>[(u + V| )Z}ddeSC/ <I>[(u 4 IVul)] + @(|F|) dxdr < C. (39)
Ori Qr
From (37) and (14), we have

1
P {(“2 + |Vue|* + |Vul?) 2}

/Qm 12+ [Vug > + [ Vul?

|Vue — Vu|? dxdr

gc<5)/ ®[|Ae(Vu, x, 1) —A(Vu, x, t)|]dxdt+5/ ®(|Vie|) + (| Vu|) drde
02R O2R

= [|P(|F; O(|F
+ C(8) ch ( 82|)Fg— ( 2|)FH dxdr. (40)
Q2R |Fs| |F‘
Let € — 0, and then 6 — 0, we acquire that
Vue — Vu strongly in L?(Q,z, R"). (41)

By considering u, defined in (35), and applying the regularity theory for the parabolic p-Laplacian equations in [33]
together with Fatou lemma, we get
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1

{][Qchq [(u2+ |Vu|2)%} dxdt}q

<1iminf{][ CID[([.L2+|Vu82);}dxdt}
Or

e—0

172
<Clim® ][ cb{(u2+|vue|2)%}dxdr+v <I>q(|Fg|)dxdt+1r
€20 Oor Oor
173
q
—Co ][ @[(u2+|vu|2)i}dxdt+b[ CDq(|F|)dxdt+1} 42)
Oor Oar

Step 2. A stopping-time argument. We let S(¢) be an N-function satisfying that both So®~!(¢) and ®¢ 0 S~!(¢) are
also N-functions. We define Ag > 1 such that

cpl(ag):qﬂ{][Q @{(u2+|vu|2)%}dxdt}+sl M) S(M)S(|F|)dxdt| 41, (43)

2R
where M > 1 and R will be chosen later. We choose v and A such that

R R — —1(7)~100n+2)

2

Since Q;, (qul)yz, y) C Qar, We use (44) to obtain that

][ i S(M)S(F|)dxdt]<Cg7L. (45)
0 (537 7)

o! {][on( o y)(b [(u2+ \Vu\z)ﬂ dxdt} +5°!

YRR

We select z9 = (xo, t9) € Qg such that (u? + |Vu(zo) |2)% > CyA. According to Lebesgue Differentiation Theorem,
we get

SM)S(IF|)dxdr| > GA. (46)

. 1 2 231 -1
lim @ {][onwpap)q{(u + |V )Z}dxdt}—l—S

D)

][on (ﬁpz, p)

)

. _r . R
Via a contradiction argument, there exist some p such that 0 < p < w and
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S(M)S(|F|)dxdt| > CA.

P! {]ézo(“pz, ) ® [(u2+ \W\Z)%} dxdt} +5!

()

-7[on(qf(i>p2, p)

R R
Combining (44) and (45), we have p < <I>87(2) It is possible to select p;, < @ such that

][ i S(M)S(|F|)dxdt]C27L. 47)
e

B0 P2 P20

c1>—1{][ @ | (W2 +|Vu?)? dxdt}+S_1
Oz, (%pzzo ~,on) |: i|

R .
In fact, one has p,; < ———. It is easy to show that

D5(2)
A? , y )
QZ() (¢()L) ((bj(z)pZ()) ) (191(2)on> C Q((zR) 5 2R), jE {(_')7 s 5} (48)
From the choice of p,, for every j € {0, ---, 5}, we get that

CiA -1 ][ 2 2v4
- <®d D [ (u”+|Vul7)2 | dxdr
¥(2) { 0co (77 (@1 (2)pey 2, @1 (2)py) [( Vel }

)

+ 57! [][ . _ S(M)S(|F|)dxdt| <CaA. (49)
0z (77 (@122, @ (2)psy )
We construct a set E(1) by
2 2\3
E(),): {ZGQR: ([,L +|Vu| )2 >C2)~}.
)LZ
For almost every zo € E(A), there is a cube O (q)(“pzzo, pZ()) C O»r as constructed in (47). In addition, the

estimate (49) holds for j € {0, .., 5}. Then we are able to find a family of disjoint cubes Q? satisfying that

2

2
0! =0, (@(MPZ, pz,-) C Oak.

We refer to Figure 1 for the construction of Q. Then we construct

2

0 =0 ( qfw (@*(2)p)?, <I>3<2>le-> :

Volume 5 Issue 4]2024| 5711 Contemporary Mathematics



By Vitali Covering Theorem, one has E(4) C .UN Q! UN, where N is a set with measure zero. We also introduce
IS

2
sz = in (qil)(qf‘(z)pzj)z, q)4(2)pzi> )

2
0 =0, (qul) (@(2)p,)%, ¢5(2)pzi> ,

and see Figure 2 for the relationship among those cubes.

Figure 1. The relationship between E(1) and {0V}

Figure 2. The relationship among E(A), {Q%}, {0}}, {Q?} and {Q}}

Step 3. A comparison argument. We define v; as a weak solution to

(vi), —divA;(Vv;, x, 1) =01in Q%,
vi =uon dQ?,

Co iporary Math tics
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where A; = ][ A(Vu, x, t)dxds. We choose a test function u — v;, we acquire that
Q2

i

/ A0, 3, 1) = Ai(Va, x, 0] (Vu— V) dedr
o

dD(|F
gc/ IAi(Vit, x, 1) — A(Va, x, 1)| \Vu—Vvi\dde-C/ (1£1)
0? o |F|

Adopting a similar method as in step 1, we get

_/qu) [(N2+Wf|2)ﬂ dxdr <C/ch1> [(NZHV”\Z)%} +®(|F|)dxdr.

i i

It follows from Holder inequality and (49) that

][ P [(u2+|Vv,»|2)5] dxdr
Q2

i

gc][ cI>[(u2+|vu|2)%]dxdr+c(c1>os—1)][ S(M)S(|F|)dxdr < CD(A).
0? 0

According to (53) and the classical L*-estimate, there is a constant 77 > 1 such that

1
sup P |:(‘L12 + |VV,'|2) 2:| < Cleq)(}L).
o7

Based on (21) and (14), we have

® (42 1V + 7

N
Vu—Vvi|?dxdr
/Q,z PR s

<CCs (5, bo() /Q BV 1, 01)] @ (1 +|Vu?)3 | dvar

+ C G5 (8, A(ﬁ)))/QZCDUF)dde-C S/qu>[(u2+|Vu|2)i]dxdz.

Applying Holder inequality, one obtains

|V — Vv;| dxdt.

C2))

(52)

(53)

(34

(35)
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/chi) [Vix, 1, 07)] @ {(uﬁ |Vu2)%] dxdr

i

< (SZEQ)*I {][Qizsf@/l od[V(x, t, Q?)]dxdt} (Pos™) {][Qz

i

S +1vu)}] dxdr} 07|

< (Sfa?p:l) T veRr) (@os ) {]éz S|+ 1vu) 3] dxdt} 2. (56)

i

With the help of (49), we derive that

(CIDOS1){7225{(/,12+|Vu|2)5}dxdt}SC][ @{(y2+|vu|2)%}dxdt+c(c1>os4) V (1+S(M)S(|F|))dxdt | .

,- o; o}
By (21), we also define
V2R)= sup  sup ][ V (x, 1, OF) dxdr. (57)
0<r(Q?)<2RQ?CQr 7 Q;

Combining (55) and (56), we have

1

o} {(‘uz + |Vu|2 + |Vvi|2)7

/Qg 12+ |Vul? 4 |Vv |2

|Vu — Vv;|? dxdr

SC{Ca (8, Ao (®)) (Sod-1)  [V(2R)] +5} /Q} ® [(u2+ |vu|2)%] dxd

i

-1

+CC (8, M) (Sod 1) [V(2R)] (Pos") [][Q3U+S(M)S(|F|))dxdt1 107

i

+ CC3 (8, M(P)) /Q3¢>(|F|)dxdt. (58)

i

Step 4. In this step, we present an estimate of the left side of inequality (60). By Lemma 10, we have

1
O | (U2 + |Vu> + |Vvi?)?

1

@ [(u2+ \VMV)%} < ¢d {(u% |vVi2)2] +a

Vu—Vv|?, 59
e e
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where ¢; is a constant. We define T = (1 + 2¢;)Tj, here ¢; and T; are given in (59) and (54), respectively. By (59) and
(54) again, we have

{ze 0@ [(p?ﬂvuv)ﬂ > C2T<I>(7L)H

® | (u2+ 1V + 9

IN

1]
)2
z€Q): |Vu—Vvi> > C;Tid(A)

WAV [P

o |fecotafwe e mp!] > amen))

® (42 1V + 9

1
N
={z€Q}: |Vu—Vvi> > CTid(A) 3| (60)

W2+ [Vul?> + |V [?
Here | - | denotes the Lebesgue measure. Based on (58) and (60), we get
Hz cQl:® [(uz + |Vu|2)%] > CQTCD(A)H

1
1 CID{(LL2+|VM|2+|VVI-2)2}
<
_C2T1CI)(),) /Qll [.L2 + |Vu|2 + |Vv,-|2

|Vu — Vv;|? dxdr

< {c3 (8, Ay(®)) (s?q?l)_l

SToM) [V(2R)]+5}/Q3cp[(u2+|vu2)%}dxdt

i

C

T

C3 (8, M (D)) (s?éfl)*l [V(2R)] (®oS™ 1) [723(1 +S(M)S(|F|))dxdz] |Q?|

i

c .
+ W(A)Q (8, AZ(CIJ))/Q?CI)(|F|)dxdt. (61)
With the help of (47), we obtain

D(A) < L/ CID{(MZHVMZ)%]dxdt (62)
QO

i

and
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C

sy < S / S()s(|F) . 63)
Combining (62) and (63), we acquire

0 C 2 4 |Vuf?)? .
1< 505 ?cb[(u v axars s | SONS(r) e (64

By splitting the region of integral, we have

1
S(M/Q?S(M)S(FDdxdt

1 1
:S(M/Q%{FWMS(M)SUF)dxdt—i— S /Q?O{F<M}S(M)S(|F|)dxdt

1 0
S50 gy SIS dd - CSOS( ] (65)

By choosing a proper value for y, we move the last term of (65) to the left side of (64), and obtain
1901 < gz [, @+ vy axar s o5 [ S(M)S(|F|)dxa. (66)
(1) Jo S(A) Jopatir=ny

We split the integral again with T > 0, and get

<I>(1/1)/Qg>cp [(u2+|Vu|2)ﬂ dxdr

! !
ZCD(M/Q?Q{(M+VMZ)%>M} ® [(u2+ |V14|2) :| dedt

1 3
* cI:o(A)/ng{(“erWz);qA}q) [(NZ‘F Vi) } dede

! 1
D) L @ (1 |V Z}dxd (1) |0Y]. 67
< ()«)/Q?m{(“2+vu2)j>rl} [(H +|Vul?) t+C@(7) |0 (67)

By combining (66) and (67) and selecting an appropriate value for 7, we acquire
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q)(lm/g?cp {(;ﬂﬂwﬁ)é] dxdr

2
<

C
(1) /Q?ﬂ{(u2+Vu2);>m}

® [(y% |vu|2)5] dxdt+S(M/Qom{lFbM}S(M)S(|F|)dxdt. (68)

Using (49) and (66) consecutively, one gets

q)(lM/Q?cb[(u%IWZ)%]dxdt = q,(,'t)][Q ® (1 + |Vu)?| drar < c|Q]|

c ] c
&0 @ |(u?+|Vul*)2 dxdz+—/ S(M)S(|F|) dxd. 69
(1) /Q?ﬁ{(HZ+IVu|2)£>M} {(“ IVul) } S(A) Joon{F>a) (M)S(IF]) (69)

Applying Holder inequality and adopting a similar method as in (69), we derive that

1 C 1
o) /Q P e = g o) /(2?0{(u2+Vu2)5>M} @[5+ [VuP)? | dear

C
_— dxdr. 0
+ S /Q ey SODSUFD s (70)

Because of A > 1, (49) and (66), it follows that

o -1 0
(1) (PoS )(J[Q31+S(M)S(|F|)dxdt> < C|Q}|

i

¢ / 2 2y} ¢ /
S | (U +|Vu|?)?2 | dedt + —~ S(M)S(|F|)dxdz. (71)
(A) Jopn{ e siwup)b>ea (w9’ S(A) Jovrqri=ny (AOSFD

By putting (69), (70), (71), and (61) together, we obtain an estimate by
Hze 0! 1@ [(u? +|Vul)}| > czrcp(x)}]

C 2 2,1
< \Y%
<G(3, M, V(2R)) { T®(A) /Q?ﬁ{(ﬂz+|Vu|2)é>rk} ® {(“ +|Vul")? | ddr
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CS(M)
S(IF|) dxd, 72
* TS(A) /Q?m{lF|>m (=D t}’ "

where

-1 C3 (8, M (D))

G(8, M, V(2R)) = C3 (8, Ay(®)) (Sod-1)  [V(2R)]+ +8. (73)

Step 5. Considering Vitali Covering Theorem, we aim to obtain an estimate of the left side of (74). We let R < Ry.
By Step 4, we get

{ee 0r: @2 +[vuP)? > o' (1)2}|
SZHZG 0!+ ®[(u? +|VuP)!] >c2Tc1>(;L)H
<G(8, M, V(2R))

¢ 2 o) Cs(M)
® Vul")? | dxd. S(|F|)dxdr § . 74
{T‘I’(M/Q?ﬂ{(uuvm%m} [(“ +Vul) } TS /Q?ﬂ{bm (IF]) f} (74)

We integrate the above expression, and get

/BZ) (bq?(f) HZ € Or: (2 +[Vu)? > qfl(T)/l}’dk

©° q
T Bl /’LCD(A) QZRM{(;L2+|VM|2)7>M}

CG(8, M, V(2R))S(M) [~ ®9(A)
S(|F|)dxdrdA. 75
" T By AS(A) /Qmmmm} (Jl) o 7

According to (10) and (13) and using Fubini Theorem, we obtain

/Eqa(lf(x)l)dxw/E/olf(X)lq);Mdldx ~ /qu);m/{ﬂ:lf(x)w}dxdx

N/mw\{er:|f(x)|>l}|dl.
0
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Applying a similar approach, we also derive that

R

Splitting the integral and using (76), we acquire

(| f(x)]) dxdA. (76)

En{lf(x)|>1}

/ P [(u2+ |Vu|2)%} dxds
Or

SCB)L{)qu’qéZ ) 0x |+CT”/I;q)lI)EMHz€QR (W2 + |[Vul?): > @ }‘d)L. (77)

Based on (75) and (77), we deduce that
/ P [(uz + \Vu\z)%} dxdr
Or

<CTY®7(BAo) |Qr|

+ 11 CG(o, M, V2R)) (= qﬂw/ ¢[(ﬂ2+|Vu|2)% dxdrdA
T By AP(A) Qsz{<u2+\vu|2)%>m}

CG (8, M, V(2R))S(M) [~ ®I(A)

+ T / S(|F|)dxdtdA
T Bl AD(A) O N{|F|>7A} (l |)

<CT9®%(BAo) |Qr|

+ 71

CG(8, M, V(2R))®(7) /°° (1)
B

® (U2 4+ |Vu*)? | dxdrd(ch
P4(7) 7o TAD(TA) /QzRﬁ{(u2+vu2)5>m} [(# [Vul?) } (TA)

+ 71

CG(8, M, V(2R))S(M)S(y) [~ ®I(yA)
P(7) /BM YAS(YA) /QZRMFM}S(Fl)dxdtd(yk).

Applying (76), we obtain that
/ @ [(uz + |Vu|2)%} dxdr
Or

<CT®%(BAo) |Qr|+CG (3, M, V(2R)) Tq{/ @1 [(Mﬂvu\z)ﬂdxdwcpqw)/
Oor

<I>q(|F|)dxdt}. (78)
Oar
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We choose & and 6 > 0 such that
Cé < ———. (79)

By (43), we select M > 1 large enough satisfying that

CCs (5, Az(&))) < 1 &

o) =331 (80)
By the fact of (57) and (23), let R small enough such that
Cs (8, Aa(®)) (Sod 1) [V(R) < L0 1)
’ ~32T4

Substituting (79), (80), (81) into (78), we obtain

1 1 1

{][QRcbq [(,u2+|Vu2)5}dxdt}qSCCID(AQH—C[][Q c1>q(|F|)dxdt]q+{30][szd>{(u2+|vu|2)5rdxdt}q. (82)

R

According to (43), one acquires

d(Ao) :cq>{ UQZ o {(uz n |vu|2)%} dxdr + (®oS™!) ][ S(M)S(|F|)dxdr + 1} é}

Oor

1

1 2

<Co @ [(u2 + | Vul?)? dxdt+{ 9(|F dxdt]q—H 83
| @l vty asa | £ anr) (83)

By joining the last estimate and (82), and reabsorbing into the left-hand side of the last integral in (82) via an iteration
argument ([34]), one obtains

/QCID"[(,uz—I—Vuz)%}dxdtSCCD{K/Q q:[(u2+|vu|2)5}dxdt>q+/g <I>"(|F)dxdt+1]5} (84)

Then via a covering method, we obtain (29) and complete the proof of Proposition 9. O

4. Proof of theorem 1

Proof. We divide the proof of Theorem 1 in four steps.
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Step 1. Assuming Q3g C Q7 and choosing ¢ = A_,(n?Aju) as a test function, where 1 € C7(Qr) is a cut-off
function satisfying that

0<n <1, m=1(x1)€ Qs 1=0(x 1) €Q\Cr, [Vn] < . and 0] <C. (85)

By the definition of weak solutions to (1), we get

4R?
nz(Ahu)zdx‘ 4R2+/ —u(ptdxdt—k/ AWA(Vu, x, 1) (20 VN Ayu+n? Ay Vu) dxdr
- O2r (0]

Bog 2R

:—/ Ay |:¢(|i|)F:| . (27] Vn Ahu+n2AhVu) dxdr. (86)
O2r |F|

The preceding equality (86) is equivalent to

n*(Ayu)* dx

’ 4R?
B

o +/ [A(Vu(x+h, t), x+h, 1) —A(Vu(x, t), x+h, 1)]-n> A, Vudxdr
- Oor
= nn (Ahu)zdxdt—l—/ [A(Vu(x, t), x+h, t) —A(Vu(x+h, t), x+h, t)]- 21 V1 Ayudxds
Oor O

+/ [A(Vu(x, 1), x, t) —A(Vu(x, t), x+h, t)] - 21 VN Ayudxds
Oar

+ / A(Vulx, 1), x, 1) — A(Va(x, 1), x-+h, )] n2A,Vaededs
Oar

—/ Ay {q)sz)F]-ZnVnAhudxdt—/ Ay [CD(FZDF}nzAhVudxdt. (87)
|F| O |F|

We write each term of (87) as
My 4+ My = M3+ My + Ms + Mg + M7 + Msg.

Step 2. By the assumptions and fundamental inequalities, we shall estimate M; in a proper form. By a simple
calculation, we find that

4R?
=0. (88)

M, = 2(Apu)?dx =
] /Ban ( hu) —4R>

According to (2), we easily get
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C

1
P [(,UZ—F |Vu(x, 1)> + |Vu(x+h, t)z)z}
M, >F ApVul* n*dxdr. 89
e A [ e AL 5
By letting || < 6 < R, we estimate M3 as
Ms < C|h|2/ |Vul*dxdr < C|h|2/ [@(|Vul) + 1] dxdr. (90)
Qar+|h] Oar+|h]

To estimate the integral M4, we consider Lagrange Mean Value Theorem and the assumption (A2). Ones get that

M4/ A(Vax, 1), x+h, 1) — A(Vu(x+h, 1), x+h, £)] 7 |Agu| dxds
Oar

/ DAV, 1), x+h, )] |8Vl 1 [Agu dedr
Oar

/ o} [(u2—|—|Vu(x, t)|2—|—|Vu(x—|—h, t)\z)]
Oor

ARV Apu|dxdr.
W VaGe, O T Valet i, D v 1

Using (15) and Lagrange Mean Value Theorem again, we obtain

@ [(u?+ |Vu(x, t)|* +|Vu(x+h, t)?
M, §s/ (2 + [Vulx, )]+ [Vu(x )1?)] AVl 2 dvds
Or

12+ |Vu(x, 0)]> +[Vu(x +h, 1)]?

| Apu|* dxdr

+c / @ (W2 +|Vulx, 1) +|Vu(x+h, 1)])]
o W+ [Vule, )P+ [Vulx+h, 1)

@ [(u?+ |Vu(x, t)> + 1|V h, 1)|?
<£/ [+ Vulr, DF + [Vulet b OF)] G2 0240,
Oor

= W2 [Vulx, )P+ [Va(r+ i, 1)

|Vu|? dxdr.

N C|h|2/ CID[(/.;Z-i-\Vu(x, t)2\2+\vu(x+h, t)2|2)]
M7 Vulx, 1) >+ [Vu(x+h, 1))

Obviously, My is estimated by

My < 8/ b [(H2+|Vu(x, t)|2+|Vu(x_’_h7 f)|2)]
Oor

12+ [Vu(x, )2+ |Vu(x+h, 1)]? |4, Vul* n* dvds +C|h|2/ @ (u+[Vul)dxdr. (91

Oop+|h|

Based on the (A3), we gain that
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Ms < c/ A(Vu(x, 1), x, 1) — A(Va(x, 1), x-+h, )| 1 [Ap| dxds
Oor

1) |:(”2 + |Vu|2) 2:|
1 |Apu| dxds.

<l / (g, 1)+ gelx +1, 1)) -
Ou (12 + Va2

Via (15) and Lagrange Mean Value Theorem, we have

@ [(u2+ |Vu|2)ﬂ

1
Ms §C|h\2°‘/ (gr(x, 1)+ gr(x+h, t))2q>[(u2+vu|2)2}dxdt+c/ - = |Apu|* dxdr
O2r Oor p*+ |Vl
20 2 2 2\3 2
< Clh| (g(x, 1) +ge(x+h, 1))” @ | (u”+|Vul*)* | dxds +Clh| ® (U + |Vu|)dxdr. (92)
O2r Q2r+(n|

In view of (A3), the term Mg is estimated as

Mg < C/ |A(Vu(x, 1), x, 1) —A(Vu(x, t), x+h, t)| n° |AyVu|dxdr
O

b |:(”2 4 Vu|2)2:|
n? |A,Vu|dxdr.

< cw/ (ge(x, 1)+ gk (x+h, 1))
0 (42 + Vap)?

According to (15), we acquire

) {(u2+ |Vu|2)ﬂ

2,2
PERE |AnVu|? 0% dxdr.

1
Mg < Clhl“/ (8k(x, 1)+ gr(x+h, 1)) @ [(u2+ IVulz)ﬂ dxdr+e/
(053

Oar

We finally obtain an estimate of Mg as

Mg §C|h|2°‘/

(& D aeth 0y e {(uﬁ IVulz);] dxds

1

® (2 1Vul + Va4, )

] AVul® n* dxdr. 93
’ E/sz U2+ |Vul? +|Vu(x +h, t)? A Vul 1 t (93)

Using the fact of (15), it is obvious that
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C

o(F|) 1
il
M, §C|h\2°‘/ — dxdt+C/ |Ahu\2dxdt
Qor |A| Qor
@(|F)) ]|
i ;
<l a/ LR ] dxdt+C/ Va2 dxd
Oor || QR+
o(F]) [
w45
< Cl|h| "‘/ — dxdt+C/ [®(|Vu|)+ 1] dxdt
O |h| QoR+ i
We use a similar argument as in estimating M7, and get
2
|20
F|2
Mg|h|2°‘/ |7(|x dxdt+£/ |AVul* n?dxdr.
Oor i Oor

With the help of 0 < pt < 1 and (G1), we obtain

2
@
e/ A Vul? 2 dedr < SH— (é‘) Ap Va2 2 deds
Oor (I)(IJ‘) o H

- euz/ @ [(w> + [Vul* + [Vu(x + h, 1)]*)]
S W) Jo  HZHIVUP A [Vulr by 1)

Based on the estimates of M; above, we evidently acquire that

& [(u2+|Vul>+|v h, )]
,/ [+ [VuP+ Vule+ b OF)] ) 02
O

W2 VuP £ Vulx+h, D

2 d 24 \Vul2+ |V h, )2
<(28+ el >/ [(02 + |Vul* + [Vu(x +h, 1)?)] 8,V 1 dedr
Oar

D(u) w2+ |Vul> +|Vu(x+h, t)?

iporary Math tics

|AVul* n?dxdr.

94)

95)

(96)
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2
[
+ Clh\z/ [CID(u—i—\Vu\)—i—l]dxdt—i—CWw/ L
Qor-+(n| Oor |7
+ Clh\m/ (gr(x, 1)+ gr(x+h, 1))* ® (U +|Vu|)dxdr. ©7)
Oor

We choose € small enough to obtain

@ [(u?+|Vul> +|V h, t)?
/ (24| Vul + [Vulbet b OF)] ) 0o 20
Oor

121 [VuP+ [Vu(x+h, 1)]2

2
[ ]
SCIh\z/ [<I>(u+\Vu\)+1]dxdt+C|h\2“/ — 1) dxde
QoR-+[n| Oor |
+ C\hlz‘x/ (gi(x, 1)+ g(x+h, 1))* @ (4 |Vu|) dxdr. (98)
O2r

Step 3. Combining inequalities (98) and (G2), we acquire

/ |ApHe (Vu)|* dxdr §C|h|2/ [@ (u+ |Vu|) + 1] dxdr
Qg Qop+/h|

T Clh / (gaes 1)+ gelx -+, 1)) @ + |Vl dedl
Oor

2
[t
+C|h\2°‘/ —————| dxdr. (99)
Oor |h|

Dividing by |4|*>*, one obtains that
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C

AhHCI)(Vu)
||

/QR
2

2
dxdt gqm”“/ (@ (u+ |Vul) + 1] dxdt
O2r+h|

e / (gue, 1)+ e+, 1)) @ (1 + |Vl dedl
Oor

@(F1)

2
w7
+ C/ ——— = | dxdr. (100)
Oar |h|a

Raising (100) to the power of 1/2, it gives that

/QR
2

1
> 1

2 1
ApHo(Vu)|? ’
Ao (V) | <C|h|'~® / [® (14 |Vu|) + 1] dxds

Oar+|h|

[

1

* C(/QZR (8 (x, 1)+ gr(x+1, t))2¢(u+|Vu|)dxdt>2

1
2

@(|F])

|: 2

h P :l

+ C / 7|F| dxdrt . (101)
Oor |h‘a

dh
Considering the ball Bs and taking the L?> norm with the measure

/Bé /QR
2
1

||
2(1-a) dh \?
<c|( [ | [ (1 + |Vul) + 1] dxdr |
Bs Qor+|h| |h|
1

) dn \’
+ C</Bﬁ </Qm (gx(x, 1)+ gu(x+h, 1)) <I>(/.L+|Vu|)dxdt> Ihl">

in (101), we obtain

2

Ath>(Vu) deds

[

[
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P(|F|) 2

Ah[ 7 F} dh
+C / LI I avdr | o | = Si485+5s. (102)
Bs \ /O Al ||

Step 4. In the last step, we prove that S; is bounded. By the fact of u € W' ®(Q7), we have

1 1

2 2
S |h[2(1=®)=7 4 (/ (@ (1 +|Vul) + l]dxdt>
Bs Q3

1

(/05p2<1°‘>1dp> 2 (/Qm (@ (1 +|Vul) + 1]dxdt>

1

</ [CI>(,LL+|Vu|)+1]dxdt>2 < oo, (103)
O3r

O(|F P(|V _2n_
Since ( DF € L*((0, T); W% 2(Q)) and Lemma 5, we have |(V|ML;|)VM € Ly **(Qr). We further obtain

|F[?
O(|Vul) € LI 2 (Qr). We set r, = 27¥KyR, then we get

loc

1

dh \*
S, =C </Ba (/QZR (8k(x, 1) +gelx+h, 1)) q’(.‘iHV“Dd’Cdt) |h|">

1

</02kOKOR /93, </QQR (8k(x, 1) +gk(x+h, 1)* @ (u+ |Vu|)dth) s dr) |

2

(kgo /kk /aB, (/QZR (8 (x, 1)+ grlx+h, 1))> D (u+ |Vu|)dxdt> ds(h) dr>

Using Young inequality, we obtain

Volume 5 Issue 4|2024| 5727 Contemporary Mathematics



/Q (8(x, 1) +gx(x+nh, t))2 D (u+ |Vu|)dxds

2a n—2o

<C [/ (8 (x, 1)+ gx(x+h, 1)) 2 dxdt] ’ [ O (1 +|Vu|) 7% dxdr "
O2r Oor

~Cllgul, DI g g0 10+ VD o

Based on assumption (A3), we easily acquire

é
/ / lge(x, 1)1, )dS(h)dr
k= ko Tir1 J OBy “(Q3r)

o 13 )| <+ (104)

1
82 [|@(|Vul) IIEM

1
®(|Vul)|?
1 (VuDl”

@(IF])

F?

According to F € L*((to, to+T]; W% 2(Q)) and Fubini Theorem, we get an estimation of S3 as

Bl—

@(|F])

|: 2
F? } dh
Bs J —4R? Qor |h‘ |h‘

=

®(IF])

2
Ah[ P F} i
~C LT e | de
e toy | Jowe | T ]

= ClIF 2 ((are, arys wa 2(Byg)) <+ (105)

From the estimates of S;, we finally acquire

=

AvHo (V) | dh
/ / fo”) dedr | o | < oo (106)
Bs Or |h‘ |h|
2
which means He(Vu) € W% 2(Qr). This completes the proof of Theorem 1 C.
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Remark According to the proof of Theorem 1, we derive the results of Corollary 2 and 3, immediately. By the norms
of fractional Sobolev spaces, Besov spaces and Triebel-Lizorkin spaces, see (17), (18) and (19), one obtains an obvious
conclusion that W% 2 = BY , = F*, with 0 < o < 1. At this point, the Corollary 2 and 3 are clearly valid.
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