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Abstract: This article examines the effectiveness of the multistage differential transform method (MsDTM) in solving
equations with a very strong nonlinear term. It introduces MsDTM as a method for solving the generalized nonlinear Van
der Pol equation, which features strong nonlinearity. The generalized nonlinear Van der Pol equation arises in plasma and
describes the propagation of various nonlinear phenomena, such as wave propagation in astrophysical plasma. MsDTM
demonstrates greater accuracy compared to other analytical and numerical methods, such as the 4th-order Runge-Kutta
Method (4thRKM), due to its ability to enhance accuracy through two factors: the number of iterations and the time
step size. Most numerical methods rely solely on reducing the time step size to improve accuracy, but for some types of
equations, this requires an impractically small time step size, causing the method to fail. In contrast, MsDTM offers an
additional means of improving accuracy by increasing the number of iterations. The paper successfully applies MsDTM
to solve the Van der Pol equation and presents the results, demonstrating that the method is highly effective for equations
with very strong nonlinearity.

Keywords: van der pol equation, plasma, multistage differential transform method, numerical simulation

MSC: 34A34,34C15,35Q60

1. Introduction
Computation in applied mathematics is a crucial topic for finding solutions in various forms, such as analytical, semi-

analytical, exact, numerical, and equivalent. The literature presents a variety of methods, including Fejér-quadrature
collocation algorithm [1], Jacobi rational operational method [2], A potent collocation approach [3], Petrov-Galerkin
Lucas polynomials procedure [4], Galerkin algorithm [5], Legendre-Galerkin spectral method [6], modified shifted
Chebyshev polynomials [7–10], Alleviated shifted Gegenbauer spectral method [11], polynomial coefficients using a
Bernstein polynomial basis [12], among others. This article is devoted to studying the multistage differential transform
method (MsDTM) which is a numerical method. The MsDTM has been used to solve systems of equations and fractional
equations. The main objective of this paper is to examine the effectiveness of MsDTM in solving equations with
very strong nonlinear term. To achieve this, we will select an application from field of plasma physics to support our
investigation.
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Plasma is one of the states of matter and has several significant applications, including wave propagation in radio,
optics, solar energy, and other important industrial, space, and physics applications [13].

As an application, this article studies the generalized nonlinear Van der Pol equation with strong nonlinearity using
the highly accurate MsDTM. The generalized nonlinear Van der Pol equation models a range of real-world phenomena
where self-sustained oscillations and nonlinear damping occur. It is particularly relevant for describing nonlinear wave
propagation in plasma, both in astrophysical and laboratory environments. Examples of plasma phenomena modeled
by the Van der Pol equation include nonlinear oscillations in plasma waves, wave propagation in astrophysical plasma,
plasma instabilities and turbulence, and radio frequency oscillations in plasma devices.

The equation was introduced by Balthazar Van der Pol, a pioneer of radio telecommunication, in 1927 through
experimental work in the laboratory to describe oscillations in electric circuits. In the mid-20th century, the Van der Pol
equation was mathematically formalized [14, 15]. Between 1945 and 1949, Cartwright and Littlewood [16] and Levinson
[17] confirmed the existence of singular solutions for the Van der Pol equation. The general nonlinear Van der Pol equation
is as follows:

Utt −ξ (1−U2 −αU4 −βU6)Ut +U = 0, (1)

where the function U(t) represents the electric and magnetic fields, ξ is a perturbation term indicating the nonlinearity
and the strength of the damping on the oscillations ( ξ ≪ 1), and α and β are non-negative parameters that are determined
the amplitude of the wave. If α = β = 0, the equation reduces to

Utt −ξ (1−U2)Ut +U = 0. (2)

Assume the equation (1) is subject to initial conditions;U(0) = A andUt(0) = B. Let’s define Ψ = (ξ , α, β , A, B).
The equation (2) was solved by Nayfeh [18] for A = 1, B = 0 yielding a periodic solution. Additionally, the same

equation was solved numerically using He’s homotopy perturbation method [19]. The general form of equation (1) was
solved analytically using the ansatz method and the Krylov-Bogoliubov-Mitropolsky method [20]. However, in this work,
we aim to demonstrate higher accuracy than previous methods. In this manuscript, we will employ the MsDTM.

The differential transformmethod (DTM) for one dimension is a numericalmethod first introduced by Puchov in 1979
[21]. The solution of the target equation is assumed to be in the form of a Taylor expansion, such thatU(t) = ∑N

k=0 u(k)tk,
where the initial solution corresponds to k = 0 and N is the iteration number. The main equation is transformed into a
new scheme by applying differential transformation, allowing us to compute u(k+1) from u(k). However, the DTM can
only find solutions in small domains due to its local convergence limitations [22]. The DTM was improved by using a
multistage technique, where the domain is divided into subdomains, and DTM is applied within each subdomain [23].
MsDTM has proven powerful in solving several problems [24, 25]. In this paper, we aim to demonstrate the capability
of MsDTM in solving problems with strong nonlinearity. The significance of using MsDTM is that its accuracy can be
enhanced through two factors: the number of iterations and the time step size.

The paper is organized as follows: the next section describes the MsDTM, the third section discusses numerical
solutions through various examples, the fourth section examines the accuracy ofMsDTM, and the final section summarizes
our analysis and results.

2. Algorithm description
The Differential Transform Method (DTM) involves transforming the given equation into an iterative scheme based

on the principles of differential transformation. The solution is represented as an infinite series around the initial point. In
certain cases, if a closed-form solution can be derived, it results in the exact solution. However, this is rarely achievable
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for most real-world problems. As a result, the solution is approximated and represented as a finite series. Due to the local
convergence of the finite series, the solution is only valid within a small domain. To extend the domain and improve the
accuracy of the results, the multistage approach is employed.

The following are key definitions necessary to explain the MsDTM.

2.1 Preliminaries and definitions
2.1.1The differential transform method

Assume U(t) is a function of variable t that is continuously differentiable, and consider the Taylor series for U(t)
about the point t0 as follows:

U(t) =
∞

∑
k=0

(t − t0)k

k!
dkU(t0)

dtk . (3)

The Nth Taylor polynomial is defined as

N

∑
k=0

(t − t0)k

k!
dkU(t0)

dtk . (4)

Then,

U(t) =
N

∑
k=0

(t − t0)ku(k)+RN , (5)

where RN is the reminder terms and u(k) is the differential transformation defined as:

u(k) =
1
k!

[
dkU(t)

dtk

]
t=t0

, (6)

for k = 0, 1, 2, ... ∞. The point t0 is the initial point of the the domain T . The list of differential transformation for various
functions is provided in Table 1.

Table 1. The one-dimensional differential transformation for basic operations [26]

Original function Transformed function

U(t)±V (t) u(k)± v(k)
dmU(t)

dtm
(k+m)!

K!
u(k+m)

U(t)V (t) ∑k
l=0 u(l)v(k− l)

U(t)2 ∑k
l=0 u(l)u(k− l)

U(t)3 ∑k
l=0(∑

l
m=0 u(m)u(l −m))u(k− l)

U(t)4 ∑k
l=0(∑

l
m=0(∑

m
d=0 u(d)u(d −m))u(l −m))u(k− l)

U(t)3V ∑k
l=0(∑

l
m=0(∑

m
d=0 u(d)u(d −m))u(l −m))v(k− l)

exp(λ t)
λ k

k!
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2.1.2The multistage differential transform method

Consider the ordinary differential equation L(U(t), Ut(t), U(tt), t) where t ∈ [t0, tN ]. Let ∆t = (tN − t0)/M, where
M is integer and ∆t is the time step size. Consequently, we obtain subdomains [tm0 , tmN ], where m = 1, 2, 3, ...., M. For
each subdomain, we apply the DTM with the initial condition at tm0 . The DT M will be applied M times, and the number
of iterations is K.

2.2 The semi-analytical scheme

For the simplicity, the eq.(1) is transferred to the system of two functions U and V ;

Ut =V, (7)

Vt =ξ (1−U2 −αU4 −βU6)V −U. (8)

Applying the MsDTM by dividing the domain into M subdomains and we obtain the following scheme

Umk+1 =
k!

(k+1)!
Vmk , (9)

Vmk+1 =
k!

(k+1)!
(
ξVmk −ξ Ω1 −αξ Ω2 −βξ Ω3 −Umk

)
, (10)

where

Ω1 =
k

∑
r=0

Vmk−r

(
r

∑
l=0

Um1 lUmr−l

)
,

Ω2 =
k

∑
r=0

Vmk−r

(
r

∑
l=0

Umr−l

(
l

∑
f=0

Uml− f

(
f

∑
s=0

UmsUm f−s

)))
,

Ω3 =
k

∑
r=0

Vmk−r

(
r

∑
l=0

Umr−l

(
l

∑
f=0

Uml− f

(
f

∑
s=0

Um f−s

(
s

∑
w=0

Ums−w

(
w

∑
d=0

UmdUmw−d

)))))
,

where m = 1, 2, 3, ..... M.

3. Numerical results
In this section, we will find the solution of the generalized nonlinear Van der Pol equation for different cases. By

helping the Mathematica software, we found the numerical solution.
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3.1 Example 1

Assume the eq.(2) with A = 1, B = 0, ξ = 0.1 and T = [t0 = 0, tN = 60]. First step, the domain [0, 60] is divided
using the step size ∆t = 60/1,000 = 6×10−2 to obtain subdomains [tm0 , tmN ]where tmN = tm+∆t , and m = 1, 2, ...., 1,000.
For first subdomain m = 1, T1 = [0, 0.06], we assume U10 = A = 1, V10 = B = 0 and k = 3. Then, the DTM is applied in
the domain [0, 0.06] as following:

U1k+1 =
k!

(k+1)!
V1k , (11)

V1k+1 =
k!

(k+1)!

(
ξV1k −ξ

k

∑
r=0

V1k−r

(
r

∑
l=0

U1lU1r−l

)
−U1k

)
, (12)

we obtainU10 = 1, U11 = 0, U12 =−0.5, U13 = 0. Thus, the following Taylor expansion about the point t0 = 0 converges
in domain T1

U1 =
3

∑
k=0

U1k(t
k − t10) = 1.−0.5t2, where t ∈ [0, 0.06].

For m = 2, we have the subdomain T2 = [0.06, 0.12] and the initial condition U20 =U1(0.06) = 0.9982. Following
the previous processes for t ∈ [0.06, 0.12] implies:

U2 = 0.00981452
(

t − 3
50

)3

−0.499111
(

t − 3
50

)2

−0.059964
(

t − 3
50

)
+0.9982.

For t ∈ [0.12, 0.18], we have:

U3 = 0.0192413
(

t − 3
25

)3

−0.49649
(

t − 3
25

)2

−0.119717
(

t − 3
25

)
+0.992807.

Then, we continuo applying DTM at the rest of subdomains until we reach the solution for last subdomain t ∈
[59.94, 60]:

U1,000(t) =−0.15103
(

t − 2,997
50

)3

+0.877946
(

t − 2,997
50

)2

+0.567098
(

t − 2,997
50

)
−1.90498.

Each subdomain has won equation which is used to plot the solution for each subdomain. The solution is plotted in
Figure 1 for ξ = 0.1 and in Figure 2 for 0.01.
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Figure 1. The semi-analytical solution of eq. (1) via MsDTM with Ψ = (0.1, 0, 0, 1, 0), Error = 4.141× 10−7 and the comparison with numerical
solution via 4thRKM

Figure 2. The semi-analytica solution of eq. (1) via MsDTM with Ψ = (0.01, 0, 0.1, 0), Error = 1.0488×10−6 and the comparison with numerical
solution via 4thRKM

3.2 Example 2

In this example, we apply MsDTM on eq. (1) where Ψ = (0.01, 1, 1, 0.3, 0). The solutions in Figure 3 as follows

U1 =−0.000450586t3 −0.15t2 +0.3,

U2 =0.00154918
(

t − 1
25

)3

−0.149934
(

t − 1
25

)2

−0.011999
(

t − 1
25

)
+0.29976,

U3 =0.00354667
(

t − 2
25

)3

−0.149628
(

t − 2
25

)2

−0.0239831
(

t − 2
25

)
+0.29904,

...
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U1,000 =0.0472654
(

t − 999
25

)3

+0.115212
(

t − 999
25

)2

−0.281009
(

t − 999
25

)
−0.233073.

For Ψ = (0.1, 1, 1, 0.3, ), the solutions in Figure 2 as follows

U1 =−0.00450586t3 −0.15t2 +0.3,

U2 =−0.00251805
(

t − 1
25

)3

−0.150421
(

t − 1
25

)2

−0.0120185
(

t − 1
25

)
+0.29976,

U3 =−0.000524244
(

t − 2
25

)3

−0.150604
(

t − 2
25

)2

−0.0240611
(

t − 2
25

)
+0.2990384,

...

U1,000 = 0.24304
(

t − 999
25

)3

+0.421201
(

t − 999
25

)2

−0.95731
(

t − 999
25

)
−0.808123.

For Ψ = (0.1, 1.2, 1, 0.3, 0), the solutions in Figure 4 as follows

U1 =−0.00449775t3 −0.15t2 +0.3,

U2 =−0.00251805
(

t − 1
25

)3

−0.150421
(

t − 1
25

)2

−0.0120185
(

t − 1
25

)
+0.29976,

U3 =−0.00051639
(

t − 2
25

)3

−0.150602
(

t − 2
25

)2

−0.0240609
(

t − 2
25

)
+0.299038,

...

U1,000 = 0.240655
(

t − 999
25

)3

+0.416454
(

t − 999
25

)2

−0.944113
(

t − 999
25

)
−0.79728.

For Ψ = (0.1, 1, 1.5, 0.3, 0), the solutions in Figure 5 as follows

U1 =−0.00450403t3 −0.15t2 +0.3,
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U2 =−0.00251624
(

t − 1
25

)3

−0.150421
(

t − 1
25

)2

−0.0120184
(

t − 1
25

)
+0.29976,

U3 =−0.000522511
(

t − 2
25

)3

−0.150604
(

t − 2
25

)2

−0.024061
(

t − 2
25

)
+0.299038,

...

U1,000 = 0.242112
(

t − 999
25

)3

+0.411099
(

t − 999
25

)2

−0.9349
(

t − 999
25

)
−0.788009.

Figure 3. The semi-analytica solution of eq. (1) via MsDTMwith Ψ = (0.01, 1, 1, 0.3, 0), Error= 6.64037×10−7 and the comparison with numerical
solution via 4thRKM

Figure 4. The semi-analytica solution of eq. (1) via MsDTM with Ψ = (0.1, 1, 1, 0.3, 0), Error= 8.24691×10−7 and the comparison with numerical
solution via 4thRKM
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Figure 5. The semi-analytica solution of eq. (1) via MsDTMwith Ψ= (0.1, 1.2, 1, 0.3, 0), Error= 1.62967×10−6 and the comparison with numerical
solution via 4thRKM

Figure 6. The semi-analytica solution of eq. (1) via MsDTMwith Ψ= (0.1, 1, 1.5, 0.3, 0), Error= 5.89819×10−7 and the comparison with numerical
solution via 4thRKM

The numerical results show how oscillations grow, stabilize, and sustain themselves, often leading to complex
dynamical behaviors like limit cycles.

4. Discussion of the accuracy
To assess the accuracy of MsDTM, we define the error as the distance between the solution obtained via MsDTM

and the numerical solution obtained using the 4thRKM, as given by

Error = max
x0<t<tN

|4thRKM−MsDTM|. (13)

Actually, the example (1) has been solved by Nayfe using the Perturbation method (PM) [18], yielding the solution:
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U(x) = ξ
(
−9sin(x)

32
− 1

32
sin(3x)+

3
8

xcos(x)
)
+ cos(x), + ........,

and also by He’s homotopy perturbation method (HHPM) [19], with the solution:

U(x) =
(

3a2

4(9a2 +ξ 2)
+

a2 −4
4(a2 +ξ 2)

)
exp(ξ x)+

(
4ξ −a2ξ

)
sin(ax)

4(a3 +aξ 2)
−

(3aξ )sin(3ax)
12(9a2 +ξ 2)

+

(
−4a2 −3ξ 2 +4

)
cos(ax)

4(a2 +ξ 2)
+

ξ 2 cos(3ax)
12(9a2 +ξ 2)

+ cos(ax)+2,

where a ≈ 3π
2ξ

.

The Table 2 shows that the results obtained using MsDTM are more accurate compared to those obtained with PM
and HHPM. While PM can yield more accurate results for very small perturbation parameter ξ , MsDTM provides highly
accurate results even with large perturbation parameters.

Table 2. The error of using PM, HHPM and MsDTM with K = 4 and ∆t = 0.06

ξ Error by PM Error by HHPM Error by MsDTM

0.01 3.75788×10−3 −1.33061 6.76611×10−6

0.1 1.2528 −1.33333 1.20984×10−5

The definition (13) was also used in [20] to study the error of the analytical solutions for the equation (1) (example (2))
using the ansatz method and the Krylov-Bogoliubov-Mitropolsky (KBM) method. Table 3 compares the errors associated
with MsDTM, the ansatz method and the KBM method. MsDTM achieves higher accuracy than both analytical methods.

The accuracy of MsDTM depends on two factors; the time step ∆t and the number of iterations K. Table 2
demonstrates that the accuracy of MsDTM improves either by decreasing ∆t or increasing K. This is a signficant
advantages of the MsDTM compared to other numerical methods such as Euler method, Runge Kutta method, or finite
difference method, which relay solely on the time step ∆t . As illustrated in the figure, our numerical solution closely
matches the results obtained by the 4th RK method, but the MsDTM scheme requires less time to achieve a solution
compared to the 4th RK method.

Table 3. The error of using PM, HHPM and MsDTM with K = 4 and ∆t = 0.06

(ξ , α, β , A, B) Ansatz method KBM method MsDTM

(0.01, 1, 1, 0.3, 0) 2.09×10−2 2.149×10−6 6.64037×10−7

(0.1, 1, 1, 0.3, 0) 4.99×10−2 8.042×10−4 8.24691×10−7

(0.1, 1.2, 1, 0.3, 0) 5.96×10−2 7.377×10−4 1.62967×10−6

(0.1, 1, 1.5, 0.3, 0) 6.973×10−2 7.685×10−4 5.89819×10−7
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Table 4. The accuracy improvement by changing iteration number K comparing to the change of time step size ∆t

K with ∆t = 1000 Error ∆t with K = 4 Error

2 1.2593×10−2 100 8.80352×10−3

3 5.05061×10−5 500 1.5794×10−5

4 8.24691×10−7 1,000 8.24691×10−7

5 8.39729×10−7 10,000 8.37739×10−7

5. Conclusions
MsDTM is a versatile tool that can be applied to a wide range of equations in the sciences. The accuracy of MsDTM

can be controlled by increasing the number of iterations or decreasing the time step size. Many equations can be readily
adapted to the MsDTM scheme. However, a limitation of the method arises when the forcing term in the equation is
a complex function for which it is difficult to apply differential transformation. This can reduce the efficiency of the
MsDTM in handling certain types of problems. In future work, MsDTM holds the potential to provide accurate solutions
to numerous problems in plasma physics, as well as other scientific fields.
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