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Abstract: The two-mode equations are nonlinear models that describe the behavior of two-way waves moving
simultaneously while being affected by confined phase velocity. This article expands a non-linear Schrödinger equation
(NLSE) by constructing it as a dual-mode structure. Applying the modified extended direct algebraic method (MEDAM)
yields exact and explicit solutions. The results of this investigation have significant implications for the propagation of
solitons in nonlinear optics. There are multiple resulted solutions that comprise singular periodic solutions, Weierstrass
elliptic doubly periodic solutions, Jacobi elliptic function (JEF), singular soliton, bright soliton, dark soliton, and rational
solutions, moreover, hyperbolic wave solutions. We show our acquired traveling wave solutions’ uniqueness and
significant addition to current research by contrasting themwith the body of existing literature. Themethod’s effectiveness
shows that it may be used to address a wide variety of nonlinear problems across multiple disciplines, particularly in the
theory of soliton, as the studied model appears in many applications. Additionally, we display the outlines of some of
these discovered solution behaviors in 3D and 2D graphs to help with comprehension. Finally, we analyze modulation
instability to examine the stability of the discovered solutions.
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1. Introduction
Different studies of nonlinear partial differential equations (NLPDEs) have rapidly become pronounced as scientific

research advances. Many scientific fields, including physics, engineering, earth sciences, and numerous other technolo-
gical fields, have employed NLPDEs. These NLPDEs have been the subject of much research for a long time, especially
when it comes to accurate and numerical solutions. Among the exact solutions for NLPDEs, numerous solutions for
solitary waves have been found, especially in many fields related to physics like plasma theory, nonlinear optics, and
fluid mechanics [1–9]. These studies discuss many aspects of optical solitons, including theoretical and experimental

Copyright ©2024 Hamdy M. Ahmed, et al.
DOI: https://doi.org/10.37256/cm.5420245672
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Contemporary Mathematics 5358 | Hamdy M. Ahmed, et al.

http://ojs.wiserpub.com/index.php/CM/
http://ojs.wiserpub.com/index.php/CM/
https://www.wiserpub.com/
https://orcid.org/0000-0001-8772-3663
https://doi.org/10.37256/cm.5420245672
https://creativecommons.org/licenses/by/4.0/


models, dynamics observations, and nonlinear effects. Bright and solitary solitons in a (2 + 1)-dimensional nonlinear
Schrödinger equation with spatio-temporal dispersions were studied by the authors in [10]. The authors focused on
the significance of ions in optical systems with dispersive effects by studying their formation, properties, and behavior.
Solitons solutions derived from the nonlinear Schrödinger equation were described in reference [11]. The study helped to
understand the features and behavior of novel kinds of solitons in this system by identifying them. The authors investigated
the Manakov system with asymmetrical and self-similar optical structures in [12]. The study focused on breather stability
and interactions, which are essential for nonlinear optical systems and optical communication.

Recently, a category of nonlinear formulas of equations referred to as the two-mode or sometimes named the dual-
mode the class has been presented. The NLPDEs family has been recently identified to include second-order NLPDEs
in the temporal context [13–17]. Two different nonlinear wave modes propagating are governed by these equations
simultaneously. Various kinds of solutions were proposed in some novels of real dual-mode models [18–22]. In some
of the previously stated studies, the researchers were able to derive soliton solutions to dual-mode equations under some
constraints. Some authors found analytical solutions for nonlinear derivative and quantic Schrödinger’s equations by
using extended mapping method, the extended and modified direct algebraic methods, and some other methods [23–28].
Furthermore, Alquran [29] investigated how phase velocity affected Schrodinger’s equation of dual-mode wave solutions
that included various nonlinearities. The motivation behind this work is to explore two-mode waves for the third-order
NLSE and study their interactions by controlling some parameters. Various soliton solutions and other wave solutions
are established for the suggested model when the modified extended direct algebraic method (MEDAM) is proposed to
be used. Additionally, we go over the stability analysis of the solutions that are derived using the modulation instability
(MI) analysis idea. Consequently, novel analytical solutions are produced in previously unattainable forms and with more
generality. The extracted solutions attest to the existing technique’s potency and effectiveness. Also, the nature of the
resulting solutions is demonstrated by contour, 3D, and 2D simulations. In this work, the utilized model of the dual-mode
model in [23] is represented in its new structure below:

i(Ψtt − s2Ψxx)+

(
∂
∂ t

−b s
∂
∂x

)
(β2Ψxx − iΨxxx)+

(
∂
∂ t

−a s
∂
∂x

)(
2β2 Ψ|Ψ|2 −6i γ Ψx|Ψ|2

)
= 0, (1)

where Ψ = Ψ(x, t) represents a function of the complex field in two independent variables x and t that are referring to
2D of space and time coordinates and the imaginary number i =

√
−1. a stands for the dispersive factor, b represents the

non-linearity factor while s is the interaction of the phase velocity, under conditions that |a| ≤ ±1, |b| ≤ ±1 and s ≥ 0.
On the other side, the constant coefficients are represented by β2 and γ . Noting that, sometimes, in water waves and the
optical field theories, the variables x and t are exchanged.

The phase velocity (s), dispersion parameter (b), and nonlinearity parameter (a) are important factors that shape the
behavior of solutions in the context of the NLSE and its dual-mode extension. The phase velocity s affects the dual waves’
propagation speed and direction, which changes how near or far apart the waves move in relation to one another. The
waves may converge or further diverge as s rises. The wave stability and its inclination to hold its shape are influenced by
the dispersion parameter b, which regulates how the wave packet spreads over time. On the other hand, when appropriately
balancedwith b, the nonlinearity parameter a controls the strength of wave interactions, resulting in phenomena like soliton
creation. There are several practical uses for the dual-mode extension of the NLSE, especially in fluid dynamics and fiber
optics. It simulates how optical solitons propagate in birefringent fibers, or fibers with different refractive indices, where
two modes-for example, polarizations-interact and affect one another’s behavior. Comprehending the maintenance of
stability and integrity of data transmissions across extended distances is crucial for telecommunications networks. The
dual-mode NLSE in fluid dynamics explains how waves interact in shallow water settings, including how solitons and
bidirectional wave patterns arise in tidal flows and tsunami wave simulations. These examples show how the dual-mode
NLSE contributes to the prediction and control of wave behaviors in complex media, hence guaranteeing system stability
in applications such as precise modeling of oceanic wave dynamics or high-speed data transmission.
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This article is composed of the following structure: Section 1 offers a broad introduction and theoretical foundation
about the suggested model, while the key points of the suggested approach are presented in Section 2. All of the findings
are displayed in Section 3, which also provides an explanation of the solution’s many dynamic waveforms. Section 4
deals with the analysis of modulation instability for the extracted solutions. In Section 5, a few derived conclusions are
presented graphically in both 2D and 3D formats. Section 6 provides physical interpretations of the obtained solutions.
Section 7 presents some conclusion marks at the end.

2. The mathematical framework of the applied method
The basic outlines of the MEDAM, which will be used in Section 3, are presented in this section. By beginning to

think about the subsequent NLPDE [30]:

F (Ψ, Ψt , Ψx, Ψxx, Ψtt , Ψxt , . . .) = 0, (2)

such that F represents a polynomial in terms of Ψ(x, t) with some of the partial derivatives of that F with respect to
time and space.

Step 1 Using the wave transition described below:

Ψ(x, t) = Q(ξ ) eiζ (x+Ωt), ξ = x− ct, (3)

where Q acts as the amplitude value of the solution. Ω, c, and ζ denote a few constants of real values that this work will
determine later.

By substituting with Eq. (3) in Eq. (2), a nonlinear ordinary differential equation (NLODE) will have the following
construction by rearranging its form as:

R(Q, Q′, Q′′, Q′′′, . . .) = 0. (4)

Step 2 According to the used technique, Eq. (4) produces solutions are following the below form:

Q (ξ ) =
M

∑
i=−M

CiH
i(ξ ), (5)

where Ci (i = 0, 1, 2, .., M) are constants of the solutions that their values will be determined through the work
mathematical procedures, under the condition that CM and C−M can not be equal to zero, concurrently.

Step 3 In addition, H (ξ ) satisfies the following Eq. (6), according to applying the principle of balance to Eq. (4)
that works on its calculations between the highest-order derivative term and the term of the highest non-linear to evaluate
the positive integerM:

(
dH

dξ

)2

= ρ0 +ρ1H (ξ )+ρ2H
2(ξ )+ρ3H

3(ξ )+ρ4H
4(ξ )+ρ6H

6(ξ ), (6)
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where ρ j is a real constant; ( j = 0, 1, 2, 3, 4, 6). Eq. (6) has the following general solutions:
Case 1When ρ0 = ρ1 = ρ3 = ρ6 = 0, the following solutions are raised:

H (ξ ) =
√

−ρ2

ρ4
sech(

√
ρ2ξ ) , ρ2 > 0, ρ4 < 0.

H (ξ ) =
√

−ρ2

ρ4
sec
(√

−ρ2ξ
)
, ρ2 < 0, ρ4 > 0.

H (ξ ) =
√

−ρ2

ρ4
csc
(√

−ρ2ξ
)
, ρ2 < 0, ρ4 > 0.

Case 2When ρ1 = ρ3 = ρ6 = 0, ρ0 =
ρ2

2
4ρ4

, the following solutions are raised:

H (ξ ) =
√

− ρ2

2ρ4
tanh

(√
−ρ2

2
ξ
)
, ρ2 < 0, ρ4 > 0.

H (ξ ) =
√

ρ2

2ρ4
tan
(√

ρ2

2
ξ
)
, ρ2 > 0, ρ4 > 0.

Case 3When ρ3 = ρ4 = ρ6 = 0, the following solutions are raised:

H (ξ ) =
ρ1 sinh

(
2
√ρ2ξ

)
2ρ2

− ρ1

2ρ2
, ρ2 > 0, ρ0 = 0.

H (ξ ) =
ρ1 sin(

√−ρ2ξ )
2ρ2

− ρ1

2ρ2
, ρ2 < 0, ρ0 = 0.

H (ξ ) = exp(
√

ρ2ξ )− ρ1

2ρ2
, ρ2 > 0, ρ0 =

ρ2
1

4ρ2
.

Case 4When ρ0 = ρ1 = ρ2 = ρ6 = 0, the following solution is raised:

H (ξ ) =
4ρ3

ρ2
3 ξ 2 −4ρ4

.

Case 5When ρ0 = ρ1 = ρ6 = 0, the following solutions are raised:

H (ξ ) =−
ρ2

(
tanh

(
1
2
√ρ2ξ

)
+1
)

ρ3
, ρ2

3 = 4ρ2ρ4, ρ2 > 0.
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H (ξ ) =−
ρ2

(
coth

(
1
2
√ρ2(x−νt)

)
+1
)

ρ3
, ρ2

3 = 4ρ2ρ4, ρ2 > 0.

H (ξ ) =
ρ2sech2

(
1
2
√ρ2ξ

)
2
√ρ2ρ4 tanh

(
1
2
√ρ2ξ

)
−ρ3

, ρ2
3 ̸= 4ρ2ρ4, ρ2 > 0, ρ4 > 0.

H (ξ ) =−
ρ2 sec2

(
1
2
√−ρ2ξ

)
2
√−ρ2ρ4 tan

(
1
2
√−ρ2ξ

)
+ρ3

, ρ2
3 ̸= 4ρ2ρ4, ρ2 < 0, ρ4 > 0.

Case 6When ρ2 = ρ4 = ρ6 = 0, the following solution is raised:

H (ξ ) =℘
(

1
2
√

ρ3(x−νt); −4ρ1

ρ3
,−4ρ0

ρ3

)
, ρ3 > 0.

Case 7When ρ1 = ρ3 = 0, the following solutions are raised:

H (ξ ) =

√√√√√ 2ρ2sech2 (√ρ2ξ
)

2
√

ρ2
4 −4ρ2ρ6 −

(√
ρ2

4 −4ρ2ρ6 +ρ4

)
sech2 (√ρ2ξ

) .

H (ξ ) =

√√√√ 2ρ2 sec2 (
√−ρ2ξ )

2
√

ρ2
4 −4ρ2ρ6 −

(√
ρ2

4 −4ρ2ρ6 −ρ4

)
sec2 (

√−ρ2ξ )
.

Case 8When ρ1 = ρ3 = ρ6 = 0, the following solutions are raised which are shown in Table 1:

Table 1. Solutions of case 8

No. ρ0 ρ2 ρ4 H (ξ )

1 1 −1−m2 m2 sn(ξ , m) or cd(ξ , m)

2 m2 −1 2−m2 −1 dn(ξ , m)

3 −m2 2m2 −1 1−m2 nc(ξ , m)

4 -1 2−m2 m2 −1 nd(ξ , m)

5 1 2−4m2 1 dn(ξ |m)nc(ξ |m)s(ξ |m)

6 m4 −2m3 +m2 − 4
m

−m2 +6m−1
mcn(ξ |m)dn(ξ |m)

msn(ξ |m)2 +1

7
1
4

1
2
(
m2 −2

) m4

4
cn(ξ |m)

dn(ξ |m)+
√

1−m2
or

sn(ξ |m)

dn(ξ |m)+1
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Step 4 By substituting the solutions that appear to be given in Eq. (5) and Eq. (6) into Eq. (4), we can raise
a polynomial H (ξ ); (i = 0, ±1, ±2, ...) in which the coefficients can be equalized to zero in order to construct an
algebraic system of non-linear equations in which Mathematica software program is entered to solve it or some different
other software programs. Finally, we can derive several kinds of exact solutions for Eq. (2) as the dual-mode traveling
wave solutions.

3. Application of the MEDAM methodology
The below NLODEs couple will be created as the real component and the imaginary component of Eq. (1),

respectively, by applying the wave transformation that is given in Eq. (3):

(−bβ2s−4bζ s−β2c−3cζ +ζ Ω)Q(3)+(−6aβ2s−24aγζ s−6β2c−18cγζ +6γζ Ω)Q2Q′

+
(
−2β2ζ 2Ω+3bβ2ζ 2s+4bζ 3s+β2cζ 2 + cζ 3 +2cζ Ω−3ζ 3Ω+2ζ s2)Q′ = 0, (7)

(bs+ c)Q(4)+
(
6aγsQ2 +β2ζ Ω−3bβ2ζ s−6bζ 2s+ c2 −2β2cζ −3cζ 2 +6γcQ2 +3ζ 2Ω− s2)Q′′

+(12aγs+12cγ)Q
(
Q′)2

+
(
−2aβ2ζ s−6aγζ 2s+2β2ζ Ω+6γζ 2Ω

)
Q3

+
(
−β2ζ 3Ω+bβ2ζ 3s+bζ 4s−ζ 4Ω−ζ 2Ω2 +ζ 2s2)Q = 0, (8)

Following the process of integration of Eq. (7) with respect to ξ and setting the arbitrary constant’s value of the
integration to zero, the below ordinary differential equation (ODE) results from entering the result into Eq. (8):

(b2β2s2 +4b2ζ s2 +2bβ2cs+7bcζ s−bζ sΩ+β2c2 +3c2ζ − cζ Ω)Q(4)+E1Q
(
Q′)2

+E2Q+E3Q
3

+(−12a2β2γs2 −48a2γ2ζ s2 −24aβ2γcs−84aγ2cζ s+12aγ2ζ sΩ−12β2γc2 −36γ2c2ζ +12γ2cζ Ω)Q5 = 0, (9)

where En; (n = 1, 2, 3) are constants coefficients given by:

E1 =12abβ2γs2 +48abγζ s2 +12aβ2γcs+36aγcζ s−12aγζ sΩ+12bβ2γcs+48bγcζ s+12β2γc2

+36γc2ζ −12γcζ Ω,

E2 =−25b2β2ζ 4s2 −8b2β 2
2 ζ 3s2 −20b2ζ 5s2 +3bβ2c2ζ 2s+4bc2ζ 3s−22bβ2cζ 4s−8bβ 2

2 cζ 3s

−6bβ2cζ 2sΩ−15bcζ 5s−12bcζ 3sΩ−8β2ζ 4Ω2 −2β 2
2 ζ 3Ω2 −8bβ2ζ 2s3 −12bζ 3s3 +28bβ2ζ 4sΩ

+8bβ 2
2 ζ 3sΩ−bβ2ζ 2sΩ2 +25bζ 5sΩ−4bζ 3sΩ2 +β2c3ζ 2 + c3ζ 3 +2c3ζ Ω−5β2c2ζ 4 −2β 2

2 c2ζ 3

Volume 5 Issue 4|2024| 5363 Contemporary Mathematics



−6β2c2ζ 2Ω−3c2ζ 5 −9c2ζ 3Ω+2c2ζ s2 +12β2cζ 4Ω+4β 2
2 cζ 3Ω+β2cζ 2Ω2 +9cζ 5Ω+3cζ 3Ω2

−4β2cζ 2s2 −4cζ 3s2 −2cζ s2Ω−8ζ 5Ω2 +ζ 3Ω3 −2ζ s4 +4β2ζ 2s2Ω+8ζ 3s2Ω,

E3 =36abβ2γζ 2s2 +4abβ2ζ 2s2 +4abβ 2
2 ζ s2 +48abγζ 3s2 −2aβ2c2s−8aγc2ζ s+16aβ2γcζ 2s

+2aβ 2
2 cζ s+12aγcζ 3s+12aγcζ sΩ+2aβ2s3 +20aγζ s3 −20aβ2γζ 2sΩ−4aβ2ζ 2sΩ−2aβ 2

2 ζ sΩ

−36aγζ 3sΩ+2β2γζ 2Ω2 +36bβ2γcζ 2s+12bβ2cζ 2s+6bβ 2
2 cζ s+60bγcζ 3s−2β2ζ 2Ω2 +8bβ2ζ 2sΩ

+2bβ 2
2 ζ sΩ+12bγζ 3sΩ−2β2c3 −6γc3ζ +18β2γc2ζ 2 +6β2c2ζ 2 +4β 2

2 c2ζ +24γc2ζ 3 +14γc2ζ Ω

−16β2γcζ 2Ω−24γcζ 3Ω+2β2cs2 +18γcζ s2 −2γζ s2Ω, (10)

Applying the principle of balance discussed in the second section, we can precisely solve Eq. (9) as follows:

Q(ξ ) = C0 +C1H (ξ )+
C−1

H (ξ )
. (11)

A polynomial in H (ξ ) is resulted by substituting the obtained condition from Eq. (6) with the other of Eq. (11) into
Eq. (9). By collecting all terms that have the same powers and adding them then setting them equal to zero, We create
a system of algebraic nonlinear equations that is evaluated with the aid of using the Mathematica program in order to
produce the next possible scenarios. Providing the requirement that C1 and C−1 cannot both be zero at the same time.

Case 1 If ρ0 = ρ1 = ρ3 = ρ6 = 0, the set of the following solutions are raised:

C−1 = C0 = 0, C1 =±2

√
5ρ4E2

ρ2 (ρ2E1 +E3)
,

b =
1

2s(β2 +4ζ )

(
ζ (Ω−7c)−2β2c∓

√
ζ 2(c+Ω)2 − 4E2(β2 +4ζ )

ρ2
2

)
,

a =− 1
2s(β2 +4γζ )

(
γζ (7c−Ω)+2β2c±

√
γ2ζ 2(c+Ω)2 − (ρ2E1 +E3)(ρ2E1 +6E3)(β2 +4γζ )

300γE2

)
.

By using the acquired set of solutions, Eq. (1) can be solved under condition that E2 (ρ2E1 +E3) < 0, giving its
derived analytical solutions as follows:

1.1 If ρ2 > 0 and ρ4 < 0, the below bright soliton solution is raised:
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Ψ1.1(x, t) =±2

√
− 5E2

ρ2E1 +E3
sech [(x− ct)

√
ρ2] eiζ (x+Ωt). (12)

1.2 If ρ2 < 0 and ρ4 > 0, two forms of singular periodic solutions resulted as follows:

Ψ1.2(x, t) =±2

√
− 5E2

ρ2E1 +E3
sec
[
(x− ct)

√
−ρ2

]
eiζ (x+Ωt), (13)

or

Ψ1.3(x, t) =±2

√
− 5E2

ρ2E1 +E3
csc
[
(x− ct)

√
−ρ2

]
eiζ (x+Ωt). (14)

Case 2 If ρ1 = ρ3 = ρ6 = 0 and ρ0 =
ρ2

2
4ρ4

, different sets of solutions are deduced as follows:

(2.1)

C0 = 0, C−1 =∓1
4

√
5ρ2E2

ρ4 (E3 −ρ2E1)
, C1 =±1

2

√
5ρ4E2

ρ2 (E3 −ρ2E1)
,

a =− 1
2s(β2 +4γζ )

(
γζ (7c−Ω)+2β2c±

√
γ2ζ 2(c+Ω)2 − 2(E3 −ρ2E1)(2ρ2E1 +3E3)(β2 +4γζ )

75γE2

)
,

b =
1

2s(β2 +4ζ )

(
ζ (Ω−7c)−2β2c±

√
ζ 2(c+Ω)2 +

E2 (β2 +4ζ )(4ρ2E1 +E3)

16ρ2
2 (ρ2E1 −E3)

)
.

(2.2)

C0 = C1 = 0, C−1 =∓

√
5ρ2E2

ρ4 (4E3 −ρ2E1)
,

a =− 1
2s(β2 +4γζ )

(
γζ (7c−Ω)+2β2c±

√
γ2ζ 2(c+Ω)2 − (4E3 −ρ2E1)(ρ2E1 +6E3)(β2 +4γζ )

300γE2

)
,

b =
1

2s(β2 +4ζ )

(
ζ (Ω−7c)−2β2c±

√
ζ 2(c+Ω)2 − 4E2 (β2 +4ζ )(ρ2E1 +E3)

ρ2
2 (4E3 −ρ2E1)

)
.

(2.3)
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C0 = C−1 = 0, C1 =∓2

√
5ρ4E2

ρ2 (4E3 −ρ2E1)
,

a =− 1
2sβ2 +4γζ

(
γζ (7c−Ω)+2β2c±

√
γ2ζ 2(c+Ω)2 − (4E3 −ρ2E1)(ρ2E1 +6E3)(β2 +4γζ )

300γE2

)
,

b =
1

2s(β2 +4ζ )

(
ζ (Ω−7c)−2β2c±

√
ζ 2(c+Ω)2 − 4E2 (β2 +4ζ )(ρ2E1 +E3)

ρ2
2 (4E3 −ρ2E1)

)
.

(2.4)

C0 = 0, C−1 =∓

√
− 5ρ2E2

2ρ4 (E3 −2ρ2E1)
, C1 =∓

√
− 10ρ4E2

ρ2 (E3 −2ρ2E1)
,

a =− 1
2s(β2 +4γζ )

(
γζ (7c−Ω)+2β2c±

√
γ2ζ 2(c+Ω)2 − (E3 −2ρ2E1)(3E3 −ρ2E1)(β2 +4γζ )

150γE2

)
,

b =
1

2s(β2 +4ζ )

(
ζ (Ω−7c)−2β2c±

√
ζ 2(c+Ω)2 − E2 (β2 +4ζ )

ρ2
2

)
.

Next, the corresponding solutions to Eq. (1) for the set of solutions (2.1) that was previously mentioned are as
follows:

(2.1.1) If ρ2 < 0, ρ4 > 0 and E2 (E3 −ρ2E1)< 0, the following singular soliton solution is resulted:

Ψ2.1, 1(x, t) =∓

√
− 5E2

2(E3 −ρ2E1)
coth

[
(x− ct)

√
−2ρ2

]
eiζ (x+Ωt). (15)

(2.1.2) If ρ2 > 0, ρ4 > 0 and E2 (E3 −ρ2E1)> 0, the below singular periodic solution can be reached:

Ψ2.1, 2(x, t) =∓

√
5E2

2(E3 −ρ2E1)
cot
[
(x− ct)

√
2ρ2

]
eiζ (x+Ωt). (16)

By applying case (2.2), Eq. (1) is solved, giving some solutions as displayed below:
(2.2.1) If ρ2 < 0, ρ4 > 0 and E2 (4E3 −ρ2E1)< 0, a singular soliton solution is determined as:

Ψ2.2, 1(x, t) =∓

√
− 10E2

4E3 −ρ2E1
coth

[
(x− ct)

√
−ρ2

2

]
eiζ (x+Ωt). (17)
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(2.2.2) If ρ2 > 0, ρ4 > 0 and E2 (4E3 −ρ2E1)> 0, the solution is obtained as a singular periodic solution that is shown
below:

Ψ2.2, 2(x, t) =∓

√
10E2

4E3 −ρ2E1
cot
[
(x− ct)

√
ρ2

2

]
eiζ (x+Ωt). (18)

Through applying the case (2.3), Eq. (1) gives the following solutions:
(2.3.1) If ρ2 < 0, ρ4 > 0 and E2 (4E3 −ρ2E1)< 0, the following dark soliton solution is raised as:

Ψ2.3, 1(x, t) =∓

√
− 10E2

4E3 −ρ2E1
tanh

[
(x− ct)

√
−ρ2

2

]
eiζ (x+Ωt). (19)

(2.3.2) If ρ2 > 0, ρ4 > 0 and E2 (4E3 −ρ2E1)> 0, the solution produces as singular periodic solution as below:

Ψ2.3, 2(x, t) =∓

√
10E2

4E3 −ρ2E1
tan
[
(x− ct)

√
ρ2

2

]
eiζ (x+Ωt). (20)

The set of solutions (2.4) indicates that Eq. (1) has certain exact solutions, which are as follows:
(2.4.1) If ρ2 < 0, ρ4 > 0 and E2 (E3 −2ρ2E1)> 0, the following singular soliton solution can be carried out as:

Ψ2.4, 1(x, t) =∓2

√
5E2

E3 −2ρ2E1

[
(x− ct)

√
−2ρ2

]
eiζ (x+Ωt). (21)

(2.4.2) If ρ2 > 0, ρ4 > 0 and E2 (E3 −2ρ2E1)< 0, a singular periodic solution is presented as:

Ψ2.4, 2(x, t) =∓2

√
− 5E2

E3 −2ρ2E1
csc
[
(x− ct)

√
2ρ2

]
eiζ (x+Ωt). (22)

Case 3 If ρ3 = ρ4 = ρ6 = 0, then the following sets of solutions are produced:

C−1 = 0, C0 = ρ1

√
−

β2ρ2
2 (bs+ c)2 +E2(

ρ2
1 −4ρ0ρ2

)
E3

, C1 = 2ρ2

√
−

β2ρ2
2 (bs+ c)2 +E2(

ρ2
1 −4ρ0ρ2

)
E3

, E1 =−E3

ρ2
,

(i) ζ = γ = 0.
(ii) ζ = 0, a =−c

s
.

(iii) ζ = 0, a =−c
s
.;

(iv) ζ = γ = 0, a =−c
s
.

(v) γ = 0, a =−c
s
, Ω = 4bs+3c.

These sets of solutions indicate that Eq. (1) has certain exact solutions, which are as follows:
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(3.1) If ρ0 = 0 or ρ0 > 0, ρ1 = 0 and ρ2 < 0, the following periodic wave solution is obtained such that
E3
(
β2ρ2

2 (bs+ c)2 +E2
)
< 0:

Ψ3.1(x, t) =

√
−

β2ρ2
2 (bs+ c)2 +E2

E3
sin
[
(x− ct)

√
−ρ2

]
eiζ (x+Ωt). (23)

(3.2) If ρ0 = 0, ρ2 > 0 and E3
(
β2ρ2

2 (bs+ c)2 +E2
)
< 0, the reached solution is as the following hyperbolic wave

solution:

Ψ3.2(x, t) =

√
−

β2ρ2
2 (bs+ c)2 +E2

E3
sinh [2(x− ct)

√
ρ2] eiζ (x+Ωt). (24)

(3.3) If ρ0 > 0, ρ1 = 0, ρ2 > 0 and E3
(
β2ρ2

2 (bs+ c)2 +E2
)
> 0, the following hyperbolic wave solutions is resulted:

Ψ3.3(x, t) =

√
β2ρ2

2 (bs+ c)2 +E2

E3
sinh [(x− ct)

√
ρ2] eiζ (x+Ωt). (25)

Case 4 If ρ0 = ρ1 = ρ2 = ρ6 = 0, the evaluated sets of solutions are as follows:

C−1 = C0 = E2 = 0, C1 = (bs+ c)

√
−30β2ρ4

E1
, ρ3 = 2

√
ρ4E3

E1
,

(i) ζ = 0, a =−1
s

(
c± E1

30β2(bs+ c)

√
− 1

2γ

)
.

(ii) ζ = 0, a = b, γ =− E 2
1

1,800β 2
2 (bs+ c)4 .

(iii) a = b, γ =− E 2
1

1,800β 2
2 (bs+ c)4 , Ω = 4bs+3c.

Using the above-obtained set of solutions, a rational wave solution for Eq. (1) is computed :
(4.1) If E1 ̸= 0 and β2E3 < 0, the obtained rational solution will be as follows:

Ψ4.1(x, t) =
8ρ4

E1

√
−30β2E3

[
bs+ c

ρ2
3 (x− ct)2 −4ρ4

]
eiζ (x+Ωt). (26)

Case 5 If ρ0 = ρ1 = ρ6 = 0, the resulted set of solutions is mentioned below:

C−1 = 0, C0 =±2

√
− 5E2

ρ2E1 +8E3
, C1 =±2ρ3

ρ2

√
− 5E2

ρ2E1 +8E3
,

a =− 1
2s(β2 +4γζ )

(γζ (7c−Ω)+2β2c

Contemporary Mathematics 5368 | Hamdy M. Ahmed, et al.



±

√
γ2ζ 2(c+Ω)2 − (12E3 −ρ2E1)(ρ2E1 +8E3)(β2 +4γζ )

1,200γE2
,

b =
1

2s(β2 +4ζ )

(
ζ (Ω−7c)−2β2c±

√
ζ 2(c+Ω)2 − 16E2 (β2 +4ζ )(2E3 −ρ2E1)

ρ2
2 (ρ2E1 +8E3)

)
.

Based on the collected set of solutions, the precise exact solutions to Eq.(1) are resulted having the following
structures:

(5.1) If ρ2 > 0, ρ3 = 2
√ρ2ρ4 and E2 (ρ2E1 +8E3)< 0, either dark soliton or singular soliton solutions are produced

as:

Ψ5.1, 1(x, t) =∓2

√
− 5E2

ρ2E1 +8E3
tanh

[
1
2
(x− ct)

√
ρ2

]
eiζ (x+Ωt), (27)

or

Ψ5.1, 2(x, t) =∓2

√
− 5E2

ρ2E1 +8E3
coth

[
1
2
(x− ct)

√
ρ2

]
eiζ (x+Ωt). (28)

Case 6 If ρ2 = ρ4 = ρ6 = 0, the below set of solutions is evaluated:

C1 = 0, C−1 =
16
ρ1

√
−

5ρ3
0 E2

ρ2
1 E1 +64ρ0E3

, C0 = 4

√
− 5ρ0E2

ρ2
1 E1 +64ρ0E3

, ρ3 =−
ρ3

1

8ρ2
0
,

a =− 1
2s(β2 +4γζ )

(
γζ (7c−Ω)+2β2c±

√
γ2ζ 2(c+Ω)2 −

(
16ρ0E3 −ρ2

1 E1
)(

ρ2
1 E1 +64ρ0E3

)
(β2 +4γζ )

19,200γρ2
0 E2

)
,

b =
1

2s(β2 +4ζ )

(
ζ (Ω−7c)−2β2c±

√
ζ 2(c+Ω)2 −

256ρ2
0 E2 (β2 +4ζ )

(
8ρ0E3 −3ρ2

1 E1
)

3
(
ρ6

1 E1 +64ρ0ρ4
1 E3
) )

.

By inserting the above parameters for Eq. (1), get the following solution:
(6.1) If ρ0 < 0, ρ1 < 0 and E2

(
ρ2

1 E1 +64ρ0E3
)
> 0, a Weierstrass elliptic doubly periodic solution is generated on

the following form:

Ψ6.1(x, t) = 4

√
− 5ρ0E2

ρ2
1 E1 +64ρ0E3

1+
4ρ0

ρ1℘
(

1
2
√ρ3(x− ct);−4ρ1

ρ3
, −4ρ0

ρ3

)
 eiζ (x+Ωt). (29)
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Case 7 If ρ0 = ρ1 = ρ3 = 0, the raised sets of solutions are generated as:

C0 = C1 = ρ6 = 0, C−1 =±

√
− E2

ρ4E1
, ρ2 =−E3

E1
,

(i) a =−c
s
.

(ii) a =
γζ (Ω−3c)−β2c

s(β2 +4γζ )
, b =−c

s
.

(iii) a =
γζ (Ω−3c)−β2c

s(β2 +4γζ )
, b =−β2c+3cζ −ζ Ω

β2s+4ζ s
.

By using the acquired set of solutions with Eq. (1), the below analytical types of solutions are derived:
(7.1) If ρ2 > 0 and E2E3 > 0, a hyperbolic wave solution can be reached as:

Ψ7.1(x, t) =±

√
E2

E3
sinh [(x− ct)

√
ρ2] eiζ (x+Ωt). (30)

(7.2) If ρ2 < 0 and E2E3 > 0, the following periodic wave solution is obtained:

Ψ7.2(x, t) =±

√
E2

E3
cos
[
(x− ct)

√
−ρ2

]
eiζ (x+Ωt). (31)

Case 8 If ρ1 = ρ3 = ρ6 = C1 = 0, we can deduce the below set of solutions:

C−1 =±2

√
5ρ0ρ2E2

ρ2
2 (ρ2E1 +E3)+4ρ0ρ4 (3E3 −2ρ2E1)

,

β2 =
1

γ(bs+ c)− (as+ c)

(
4γζ s(a−b)− γE2 (ρ2E1 +E3)(

ρ2
2 (ρ2E1 +E3)+4ρ0ρ4 (3E3 −2ρ2E1)

)
(bs+ c)

+
(ρ2E1 +6E3)

(
ρ2

2 (ρ2E1 +E3)+4ρ0ρ4 (3E3 −2ρ2E1)
)

1,200γρ2
2 E2(as+ c)

)
,

Ω =
1

γ(bs+ c)− (as+ c)

(
γ(4as+3c)(bs+ c)− (4bs+3c)(as+ c)− E2 (ρ2E1 +E3)(as+ c)

ζ
(
ρ2

2 (ρ2E1 +E3)+4ρ0ρ4 (3E3 −2ρ2E1)
)
(bs+ c)

+
(ρ2E1 +6E3)

(
ρ2

2 (ρ2E1 +E3)+4ρ0ρ4 (3E3 −2ρ2E1)
)
(bs+ c)

1,200γζ ρ2
2 E2(as+ c)

)
.

The following outcomes resulted as Eq. (1) solutions through the above mentioned case:
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(8.1) If ρ0 = 1, ρ2 = −m2 − 1, ρ4 = m2,
(
m6 −5m4 −5m2 +1

)
E1E2 >

(
m4 +14m2 +1

)
E3E2 and 0 ≤ m ≤ 1, the

solutions will be as Jacobi elliptic functions (JEFs) that are displayed below:

Ψ8.1(x, t) =∓2

√
5(m2 +1)E2

(m6 −5m4 −5m2 +1)E1 − (m4 +14m2 +1)E3
ns(x− ct) eiζ (x+Ωt), (32)

or

Ψ8.2(x, t) =±2

√
5(m2 +1)E2

(m6 −5m4 −5m2 +1)E1 − (m4 +14m2 +1)E3
dc(x− ct) eiζ (x+Ωt). (33)

As a special case, when either m = 0 or m = 1 for Eq. (32), either the below singular periodic or singular soliton
solutions are generated:

Ψ8.3(x, t) =∓2

√
5E2

E1 −E3
csc[x− ct] eiζ (x+Ωt), (34)

or

Ψ8.4(x, t) =∓

√
− 5E2

E1 +2E3
coth[x− ct] eiζ (x+Ωt). (35)

Special case, when m = 0 for Eq. (33), a singular periodic solution is obtained:

Ψ8.5(x, t) =∓2

√
5E2

E1 −E3
sec[x− ct] eiζ (x+Ωt). (36)

(8.2) If ρ0 =m2−1, ρ2 = 2−m2, ρ4 =−1, (m−1)
(
m2 −2

)
E2
((

m6 +2m4 −12m2 +8
)
E1 −

(
m4 −16m2 +16

)
E3
)

> 0 and 0 ≤ m < 1, the below JEF solution is reached:

Ψ8.6(x, t) =±2

√
5(m2 −1)(m2 −2)E2

(m6 +2m4 −12m2 +8)E1 − (m4 −16m2 +16)E3
nd(x− ct) eiζ (x+Ωt). (37)

(8.3) If ρ0 = −m2 ρ2 = 2m2 − 1, ρ4 = 1−m2,
(
2m2 −1

)((
−16m4 +16m2 −1

)
E3E2 +

(
8m6 −12m4 +2m2 +1

)
E1E2 > 0 and 0 < m ≤ 1, the evaluated solution is produced as JEF solution that is formed as:

Ψ8.7(x, t) =±2 m

√
5(2m2 −1)E2

(8m6 −12m4 +2m2 +1)E1 +(−16m4 +16m2 −1)E3
cn(x− ct) eiζ (x+Ωt). (38)
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Special case, by setting m = 1, the following bright soliton solution is produced:

Ψ8.8(x, t) =±2

√
− 5E2

E1 +E3
[x− ct] eiζ (x+Ωt). (39)

(8.4) If ρ0 =−1 ρ2 = 2−m2, ρ4 =m2−1,
((

2−m2
)
E1 +6E3

)((
m6 +2m4 −12m2 +8

)
E1 −

(
m4 −16m2 +16

)
E3
)

> 0 and 0 ≤ m ≤ 1, the following JEF is obtained as:

Ψ8.9(x, t) =±2

√
5((2−m2)E1 +6E3)

(m6 +2m4 −12m2 +8)E1 − (m4 −16m2 +16)E3
dn(x− ct) eiζ (x+Ωt). (40)

Special case, by setting m = 1, the following bright soliton solution is reached:

Ψ8.10(x, t) =±2

√
− 5E2

E1 +E3
[x− ct] eiζ (x+Ωt). (41)

(8.5) If ρ0 = 1, ρ2 = 2−4m2, ρ4 = 1,
(
2m2 −1

)((
8m6 −12m4 +2m2 +1

)
E1E2 −2

(
m4 −m2 +1

)
E2E3

)
> 0 and

0 ≤ m ≤ 1, the following solution is determined as JEF solution:

Ψ8.11(x, t) =∓

√
5(2m2 −1)E2

(8m6 −12m4 +2m2 +1)E1 −2(m4 −m2 +1)E3
nd(x− ct)cn(x− ct)ns(x− ct) eiζ (x+Ωt). (42)

As a special case, when eitherm= 0 orm= 1, two types of solutions appear as the below singular periodic or singular
soliton solutions:

Ψ8.12(x, t) =∓

√
− 5E2

E1 −2E3
cot[x− ct] eiζ (x+Ωt), (43)

or

Ψ8.13(x, t) =∓

√
− 5E2

E1 +2E3
coth[x− ct] eiζ (x+Ωt) (44)

(8.6) If ρ0 = m4 − 2m3 +m2, ρ2 = − 4
m
, ρ4 = −m2 + 6m− 1, E2((3m9 − 24m8 + 42m7 − 24m6 + 3m5 − 4m)E3 +

(8m8 −64m7 +112m6 −64m5 +8m4 +16)E1)> 0 and 0 < m < 1, the below JEF solution is reached:

Ψ8.14(x, t) =±2m(m−1)
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√
5E2

(8m8 −64m7 +112m6 −64m5 +8m4 +16)E1 +(3m9 −24m8 +42m7 −24m6 +3m5 −4m)E3

×
(

1+msn2(x− ct)
cn(x− ct)dn(x− ct)

)
eiζ (x+Ωt).

(45)

(8.7) If ρ0 =
1
4
, ρ2 =

1
2
(
m2 −2

)
, ρ4 =

m4

4
, E2

((
m6 +2m4 −12m2 +8

)
E1 −8

(
m4 −m2 +1

)
E3
)
> 0 and 0 ≤ m ≤

1, the solutions will be as JEFs that are given below:

Ψ8.15(x, t) =±2

√
5(2−m2)E2

(m6 +2m4 −12m2 +8)E1 −8(m4 −m2 +1)E3

(√
1−m2 +dn(x− ct)

cn(x− ct)

)
eiζ (x+Ωt), (46)

or

Ψ8.16(x, t) =∓2

√
5(2−m2)E2

(m6 +2m4 −12m2 +8)E1 −8(m4 −m2 +1)E3

(
1+dn(x− ct)
sn(x− ct)

)
eiζ (x+Ωt). (47)

As a special case, when m = 0 for Eq. (46), the produced solution is a singular periodic solution that is obtained in
the following form:

Ψ8.17(x, t) =±2

√
5E2

E1 −E3
sec[x− ct] eiζ (x+Ωt). (48)

As a special case, when either m= 0 or m= 1 for Eq. (47), singular periodic or singular soliton solutions are obtained
as:

Ψ8.18(x, t) =∓2

√
5E2

E1 −E3
csc[x− ct] eiζ (x+Ωt), (49)

or

Ψ8.19(x, t) =∓2

√
− 5E2

E1 +8E3
coth

[
1
2
(x− ct)

]
eiζ (x+Ωt). (50)

4. Modulation instability analysis
When nonlinear and dispersive effects interact, the steady state is modulated by many nonlinear phenomena that

exhibit instability. We examine modulation instability (MI) by applying the techniques of standard linear stability [31].
Assuming Eq. (1) possesses steady-state solutions as below:
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ϕ(x, t) = [Z(x, t)+
√
R] ei(t R), (51)

In this equation,R symbolizes the steady-state solution for Eq. (1). In this context, Z(x, t) represents the perturbation
term.

By inserting Eq. (51) into Eq. (1) and linearizing, we can derive:

i b s Zxxxx − i Zxxxt +(R−bbeta2 s) Zxxx +β2 Zxxt + i (β2R− s(s−6aγR))Zxx + i Ztt −6iγ R Zxt

2(3β2 −1) RZt +6 R (γ R−a β2s) Zx + i (6 β2 −1) R2 (Z∗+Z) = 0, (52)

where Z∗ denotes the conjugate of Z. Consider the solution to Eq. (52) can be stated as:

Z = F1 ei(L x−ω t)+F2 e−i(L x−ω t), (53)

where ω and L denotes the perturbation frequency and the normal wave number prospectively.
A linear evolution equation that has the dispersion relation ω = ω(L ) with constant coefficients defines the

relationship between temporal oscillations eiL x and spatial oscillations e−iω t at frequency ω . When we substitute Eq.
(53) into Eq. (52), the dispersion relation is resulted as:

ω =
1
12

−3T3 ±

√3T7 +

√√√√−6

[
−3T 2

3 +8T2 +
3√4T4 +

(
2 3√2T5

T4
± 3

√
3T6√
T7

)] , (54)

where

T2 = L 2
(
−2s

(
bL 2 −6aγR

)
−2s2 +

(
L 2 −6γR

)2
)
+β2

(
L 2 −6R

)(
−β2

(
L 2 −6R

)
−2R

)
−2R2,

T3 = 12γLR−2L 3,

T4 = (2T 3
2 −72T0T2L

2 +108T 2
1 L 2 +27T0T 2

3 L 2 −18T1T3T2L

+
√

(2T 3
2 +108T 2

1 L 2 −9T0(8T2 −3T 2
3 )L

2 −18T1T3T2L )2 −4(T 2
2 +12T0L 2 −6T1T3L )3)

1
3 ,

T5 = T 2
2 +12T0L

2 −6T1T3L , T6 = T 3
3 −4T2T3 +16T1L , T7 = 3T 2

3 −8T2 +2 3√4T4 +
4 3√2T5

T4
.
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The steady-state’s linear stability analysis is given by equation (54). The steady-state stability is indicated by a real
value of ω . Conversely, instability in the steady-state solution is indicated by an imaginary ω , defined by the exponential
growth of the disturbance. Therefore, the gain spectrum of modulation instability is determined as follows:

G(R) = 2 Im

 1
12

−3T3 ±

√3T7 +

√√√√−6

[
−3T 2

3 +8T2 +
3√4T4 +

(
2 3√2T5

T4
± 3

√
3T6√
T7

)] . (55)

Increasing b typically causes the wave to become more stable by dispersing its energy, as seen in graphs with larger
dispersion values and a slower rate of MI increase. On the other hand, graphs where wave amplitudes develop quickly
and soliton production occurs to show that greater a enhances MI. Higher levels of phase velocity (s) bring the waves
closer together and increase their interaction, which, depending on the configuration, can either stabilize or destabilize the
system. s also impacts the spatial dynamics of the wave. Plotting these changes in three dimensions over time highlights
how careful parameter tuning is essential to managing wave stability by showing the transition from stable continuous
waves to soliton structures as parameters vary.

5. Visual explanations and graphical presentations of some resulted solutions
Different solution sets were generated for Eq. (1) by varying the values of the parameters that are located in the

model used in this study. Consequently, this scheme has produced some new results that were not published or attained
previously in the mentioned literature. Plots for different particular solutions in two and three dimensions are presented
to illustrate the physical properties of the obtained solutions.

Figure 1 shows 3D graphical depictions for dual-modewaves for the bright soliton solution of Eq. (12) when selecting
parameters as c = 1.1, s = 0.8, ζ = −0.7, β2 = 0.8, γ = 0.5, Ω = −0.86, ρ2 = 1, and x from −10 to 10. And all
its 2D depictions are shown in Figure 2. Figure 3 clarifies 3D graphical depictions for dual-mode waves for the singular
periodic solution of Eq. (13) with choosing the parameters’ values as c = 1.1, s = 0.8, ζ = −0.7, β2 = 0.8, γ =

−0.5, Ω = 0.86, ρ2 =−1 and x from −10 to 10. Besides, the 2D depictions that represent Eq. (13) are drawn in Figure
4. Figure 5 shows 3D graphical depictions for dual-mode waves for the dark soliton solution of Eq. (19) when giving the
parameters the next values as c = −1.1, β2 = −0.8, s = 0.8, ζ = 0.7, γ = 0.5, Ω = 0.86, ρ2 = −1 and −10 ≤ x ≤
10. Furthermore, Figure 6 displays the 2D graphical depictions that represent this dark soliton providing the previously
mentioned restrictions. Figure 7 shows 3D graphical depictions of dual-mode waves for the singular soliton solution of
Eq. (15) when applying the parameters’ values as c = −1.3, s = 0.7, ζ = 0.8, β2 = −0.95, γ = 0.7, Ω = 0.8, ρ2 =

−1 and −10 ≤ x ≤ 10. Furthermore, Figure 8 clarifies the 2D graphical depictions that represent this singular soliton by
obeying the same restrictions. Figure 9 displays a three-dimensional plot illustrating the L, R, and L−R waves forming
regions of the modulation instability gain spectrum described by Eq. (55). The parameters used in these graphs are
s = 1, β2 = 0.8 and γ = 0.5.
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Figure 1. 3D graphical depictions for dual-mode waves for the solution of Eq. (12)

Figure 2. 2D graphical depictions for the dual-modes waves for the solution of Eq. (12)

Figure 3. 3D graphical depictions for dual-mode waves for the solution of Eq. (13)
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Figure 4. 2D graphical depictions for the dual-modes waves for the solution of Eq. (13)

Figure 5. 3D graphical depictions for dual-mode waves for the solution of Eq. (19)

Figure 6. 2D graphical depictions for the dual-modes waves for the solution of Eq. (19)
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Figure 7. 3D graphical depictions for dual-mode waves for the solution of Eq. (15)

Figure 8. 2D graphical depictions for the dual-modes waves for the solution of Eq. (15)

Figure 9. MI gain spectrum regions of Eq. (55) for different values of a, b, and other model parameters

6. Physical interpretations of the obtained solutions
In this part, we aim to provide a brief summary of physical interpretations of the obtained solutions. Solitons with

characteristics such as bright, dark, and singular can characterize localized energy disturbances and maintain their shape
as they propagate. The lone waves are likened to a weak, black soliton in comparison to the background. It has been
demonstrated that dark solitons are more challenging to handle than regular solitons, but they are also more stable
and resistant to losses. Singular solitons are a different kind of solitary waves that have singularities, usually endless
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discontinuities. When solitary solitons have an imagined center, they might be compared to single waves. This solution
is a rare instance in nonlinear physics with its point of singularity or intensity divergence. The abrupt shift at the point
is illustrated, and details on the interplay between nonlinearity and dispersion that produce anomalous solitary waves are
given. Therefore, a discussion of lone solutions is necessary. This kind of solution may provide a description of the
creation of rogue waves since it has spikes in them. Peakons and compactons are examples of such solitary waves, with
peaks that have a discontinuous first derivative. Compaction on compactons has limited compact support. The number
of cycles per second is known as the frequency, and the length of time needed for a waveform cycle to complete is
known as the period. Periodic wave solutions characterize waves with a continuous, repeated pattern that determines their
wavelength and frequency.

Concerning the double periodic, the complex periodic pattern known as Weierstrass elliptic solutions may find use
in fields such as crystal lattices. They show cyclic activity in both space and time.

7. Conclusive remarks
In this work, we have created a revolutionary two-mode NLSE. Finding totally traveling wave solutions was our

goal, and we used mathematical analysis to look at the physical characteristics of these extracted solutions. We used the
MEDAM,which is a reputable and reliable approach. Among the retrieved solutions, we got (dark, singular, bright) soliton
solutions, singular periodic, rational wave, a periodic wave, JEF, hyperbolic, and Weierstrass elliptic double periodic
solutions. Some of the solutions acquired for the analyzedmodel were visually shown via the 3D and 2D displays. Through
non-linear dynamical systems, our findings provided additional insight into the breadth of space-time and spatial patterns
of solitons by generalizing most of the solutions and expanding certain previously retrieved results.

The given methodology performed better than others for solitons with the senses of controlled parameters and
transient stability, as confirmed in section 4 by the simulation of the results using Mathematica software. This provided
a simulation example that illustrated the efficacy of the suggested scheme in this research, together with its stability
analysis. Therefore, it can be said that the system in use is functional. Moreover, the discussion of the system’s stability
confirmed the viability of the suggested approach. Additionally, our accomplishments achieved valuable knowledge and
information for the community of nonlinear scientists. For example, when we compared our findings with those published
through [32], We highlighted their uniqueness, originality, and noteworthy contribution to the current field knowledge
and understanding. The efficiency of our approach suggested that it can be applied to numerous nonlinear issues across
multiple fields, including soliton theory. The work’s findings might have an effect on how integrated telecommunication
systems for data transfer develop. In particular, the dual-wave doubling phenomenon may function as a carrier wave to
facilitate the multi-way transmission of specific types of data.
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