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Abstract: This paper examines an uncertain stochastic maximum principle, aiming to establish a necessary condition
for optimality in control problems through the classical variational approach. By integrating Liu’s uncertainty theory with
conventional stochastic optimal control theory, the study addresses a hybrid optimal control problem that merges elements
from both frameworks. The analysis operates under the assumption that the associated adjoint equation, specifically the
uncertain backward stochastic differential equation (UBSDE), exists uniquely. This assumption is grounded in prior
research that has rigorously established the existence and uniqueness of UBSDEs.
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1. Introduction
Since time immemorial, Man’s socio-economic pursuits have always unfolded in an environment that is characterized

by at least one form of uncertainty. Indeterminacy is a term used in some academic quarters to mean generic uncertainty.
Aleatory uncertainty, fuzziness and Liu’s uncertainty have recently attracted the attention of prominent researchers and
industry practitioners as they endeavor to model indeterminacy. For more technical discussions of these forms of
uncertainty the reader is referred to [1–7]. Empirical research [8–14] has amply demonstrated that two or more forms
of uncertainty normally manifest themselves simultaneously in any specified context. This research aims to investigate
the interplay of aleatory uncertainty, also called randomness, and Liu’s uncertainty. Liu’s uncertainty is also known as
epistermic uncertainty. The main contribution of this paper is the presentation of a necessary condition for optimal control
under the assumption that the system and control processes are modeled by two forms of indeterminacy, randomness and
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Liu uncertainty. The study assumes that the uncertain backward stochastic differential equation exists and is unique, as
proved by Fei [14].

The classical main tools for solving optimal control problems are the Bellman’s [15] dynamic programming and
Pontryagin’s [16] maximum principle methods. The uncertain stochastic maximum principle for optimal control involves
the the use of adjoint processes to solve the related adjoint equation. The adjoint equation is an uncertain backward
stochastic differential equation (UBSDE). The uniqueness and existence theorem for the solutions of UBSDE was proved
by Fei [14].

The maximum principle has been studied by many researchers to solve optimal control problems. Earliest versions of
stochastic maximum principle were developed by Kushner [17] and Bismut [18] for the linear case. Peng [19] first proved
the maximum principle for nonlinear stochastic optimal control problems in the general case. For more information on
stochastic maximum principle, the reader is referred to [20–30] and some references therein.

Kushner [17] presented necessary conditions for continuous parameter stochastic optimization problems. The
classical spike variation method was used by Peng [19] to prove a maximum principle for non linear stochastic optimal
control problem in the general case. Tang and Li [27] presents necessary conditions for optimal control of stochastic
systems with random jumps. The paper proves a maximum principle where the control is allowed to enter into both
diffusion and jump terms. Meng and Tang [30] studied the general stochastic optimal control problem for stochastic
systems driven by Teugel’s martingales and an independent Brownian motion. Necessary and sufficient optimality
conditions in the form of stochastic maximum principle were derived using the classical convex variation method.

Optimal control problems have recently been extended to Liu uncertainty framework. Some of the works on Liu
uncertain optimal control are [2, 3, 31]. Zhu [3] solved an optimal control problem for Liu uncertain processes by obtaining
the principle of optimality for uncertain optimal control. Zhu and Ge [32] presented a necessary condition of optimality
for Liu’s uncertain optimal control problem using the classical variational method.

Merton’s seminal work [33], investigates a stochastic control portfolio problem, wherein stochastic analysis and
control theory play a pivotal role. The primary assumption underlying this work is a two-asset financial market, wherein
investors can allocate their wealth between a riskless asset and a risky asset. Randomness is employed to model the
uncertainties associated with the risky asset, which is characterized by unpredictability and governed by probabilistic
laws.

Probability theory provides a formal framework for studying random phenomena, and is particularly useful when
large sample sizes are available to estimate probability distributions from random experiments. A paradigmatic example
of a random experiment is coin tossing, wherein probability measures are used to quantify randomness.

The concept of aleatory uncertainty has given rise to stochastic analysis and its applications, which have become
a distinct branch of mathematics with far-reaching implications for finance, engineering, banking, and insurance. For a
comprehensive treatment of randomness, the reader is referred to [34–36], and some references therein.

In recent years, mathematicians have been preoccupied with modeling indeterminacy, which motivated Liu [6] to
introduce Liu uncertainty theory. This theory addresses problems characterized by inadequate observed data generated
by a system, and relies on expert opinion to evaluate personal belief degrees that each event will occur. The belief degree
ranges from 0 to 1, and uncertain measures are used to quantify epistemic indeterminacy.

To illustrate this concept, consider a scenario wherein five commercial banks listed on the local stock exchangemerge
to form a single financial institution. The exact number and names of the banks involved are unknown, but it is known
that between three and five banks have merged. The universal set Γ, comprising the number of banks that have merged,
can be represented by

Γ = {3, 4, 5}.

The set L , comprising 8 events derived from the idea of number of banks that have merged can be represented as
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{ϕ , {3}, {4}, {5}, {3, 4}, {3, 5}, {4, 5}, {3, 4, 5}}.

After assigning the set function M to [0, 1], we obtain the following

M {3}= 0.5, M {4}= 0.4, M {5}= 0.1, M {3, 4}= 0.9,

M {3, 5}= 0.7, M {4, 5}= 0.3, M {3, 4, 5}= 1, M {ϕ}= 0.

A set function M must satisfy the following axioms of Liu uncertainty theorem:
Axiom 1 (Normality Axiom): M {Γ}= 1 for the universal set Γ;
Axiom 2 (Duality Axiom): Let ∧= {3, 4} and ∧c = {ϕ , {3}, {4}, {5}, {3, 5}, {4, 5}, {3, 4, 5}}. It can be easily

seen that M {∧}+M {∧c}= 1;
Axiom 3 (Subadditivity Axiom): Suppose ∧1 = ϕ , ∧2 = {3}, ∧3 = {4}, · · ·∧8 = {3, 4, 5},M

{
∪8

i=1∧i
}
=M {ϕ ∪

{3}∪{4}· · ·∪{3, 4, 5}} should be less or equal to 0.5+0.4+0.1 · · ·+0 = 3.9.
In addition to these axioms, Liu [37] introduced the product axiom to obtain an uncertain measure of a compound

event. IfM satisfies the axioms of Liu uncertainty theorem, thenM is a Liu uncertain measure, and the number of banks
that have merged is a Liu uncertain variable.

In reality, randomness and epistemic indeterminacy often manifest simultaneously in a given process. The
investigation of the interaction between randomness and Liu uncertainty has attracted considerable attention from
scientists, including [8, 12–14] among others. Liu [11] was motivated to model indeterminacy using an uncertain random
variable, wherein a process can display both randomness and Liu uncertainty simultaneously. For instance, suppose the
price of a stock is USD 100 today. After one week, the price of the same stock is an indeterminate quantity. To estimate
the new price more accurately, information on stock market experts’ beliefs and experiences, as well as past data on stock
prices, is required. Thus, the source of indeterminacy arises from both randomness and Liu uncertainty.

Additionally, Liu uncertain stochastic theory can be applied to solve optimal control problems in engineering. One
such example is the study of inherent imperfections in integrated electronic devices [38]. The paper by Bucolo et al.
[38] examines the role of inherent imperfections in integrated electronic devices, such as nonlinearities and parasitic
elements introduced during manufacturing. These imperfections, though generally unintended, induce complex dynamics
and can lead to chaotic behaviors in electronic circuits. The inherent imperfections in integrated devices, such as
nonlinearities and parasitic elements, introduce complex dynamics and uncertainties, making Liu uncertainty theory
and stochastic theory highly relevant. Liu uncertainty theory, which addresses epistemic uncertainty through uncertain
variables and distributions, provides a framework for analyzing systems with ambiguous knowledge of probabilities.
Conversely, stochastic theory, encompassing aleatory uncertainty, models randomness in manufacturing variations and
parasitic elements. By integrating both theories, researchers can optimize control strategies for uncertain stochastic
systems, leveraging imperfections for robust chaotic circuits. Applications include chaotic circuit design, exploiting
nonlinearities for compactness; parameter estimation and synchronization; uncertainty quantification in manufacturing;
and optimal control under combined aleatory and epistemic uncertainties. This fusion enables comprehensive analysis
and control of complex electronic systems.

This paper is organized as follows: Section 2 reviews foundational concepts in probability theory and Liu uncertainty
theory, while Section 3 introduces the Ito-Liu integral with an illustrative example. Section 4 presents an uncertain
stochastic control problem, culminating in the paper’s main result: a necessary optimality condition for uncertain
stochastic optimal control. Finally, Section 5 concludes the paper, summarizing key findings and outlining future research
directions.
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2. Some preliminaries
The study assumes that indeterminacy in the market is modeled by a combination of randomness and Liu uncertainty.

As such, in order to describe the market with uncertain stochastic systems, this section presents a review of some useful
concepts and results related to chance space, the product (Γ, L , M )× (Ω, F , Pr) [13]. (Ω, F , Pr) is a probability
space where Ω is a non-empty set, and F is a σ -algebra over Ω. Additionally, (Γ, L , M ) is a Liu uncertainty space
where Γ is a non-empty set, and L is a σ -algebra over Γ.

Mathematically, the study assumes a complete filtered Liu uncertainty probability space (Γ×Ω, L ×F , {Lt ×
Ft}t∈[0, T ], M ×Pr) equipped with a filtration {Lt ×Ft}t∈[0, T ], generated by a standard one-dimensional canonical Liu
process {Ct}t∈[0, T ] and a one-dimensional Brownian motion {Wt}t∈[0, T ], which are specified in the model. We consider
a hybrid space, the chance space, (Γ×Ω, L ×F , M ×Pr), where Γ×Ω is the universal set, L ×F is the product σ -
algebra, andM ×Pr is the product measure. The universal setΓ×Ω is the set of all ordered pairs of the form (γ, ω), where
γ ∈ Γ and ω ∈ Ω.

Definition 1 [13]: Suppose (Γ, L , M )× (Ω, F , Pr). If we let Θ ∈ L ×F , then the chance measure of Θ is
defined as

Ch{Θ}=
∫ 1

0
Pr{ω ∈ Ω|M {γ ∈ Γ|(γ, ω) ∈ Θ} ≥ x}dx. (1)

Γ×Ω can be understood as a rectangular coordinate system if Γ is understood as the horizontal axis and Ω as the
vertical axis. The product σ -algebraL ×F is the smallest σ -algebra containing measurable rectangles of the form∧×A,
where ∧ ∈ L and A ∈ F . Each element in L ×F is called an event in the chance space. The product measure M ×Pr
for an event Θ is called the chance measure and is represented by Ch{Θ} in this study A chance measure satisfies the
following axioms [11].

(i) Normality. Ch{Λ×A} = M {Λ}×Pr{A}. This implies that Ch{θ} = M {ϕ}×Pr{ϕ} = 0 and Ch{Γ×Ω} =
M {Γ}×Pr{Ω}= 1.

(ii) Monotonicity. Ch{Θ1} ≤Ch{Θ2}, for any events Θ1 and Θ2 with Θ1 ⊂ Θ2.
(iii) Self-duality. Ch{Θ}+Ch{Θc}= 1, for any event Θ. In order to exemplify the duality axiom, we consider the

occurrence of event Θ ∈ L ×A . When performing the event, the chance that event Θ occurs or does not occur must be
1.

(iv) Subadditivity. Ch

{
∞∪

i=1

Θi

}
≤

∞

∑
i=1

Ch{Θi}, for any countable sequence of events Θ1,Θ2, · · · .

Definition 2 (i) [13] An uncertain random variable is a function ξ from a chance space (Γ, L , M )× (Ω, F , Pr)
to the set of real numbers such that {ξ ∈ B} is an event in L ×F for any Borel set B of real numbers.

(ii) [14] An uncertain random variable is a measurable function ξ ∈Rp(resp. Rp×m) from an uncertainty probability
space (Γ×Ω, L ×F , M ×P) to the set in Rp(resp. Rp×m), that is for any Borel set A in Rp(resp. Rp×m), the set
{ξ ∈ A}= {(γ, ω) ∈ Γ×Ω : ξ (γ, ω) ∈ A} ∈ L ×F .

Definition 3 [13] Let ξ be an uncertain random variable, then its chance distribution of ξ is defined by

Φ(x) =Ch{ξ ≤ x},

for any x ∈ R. The reader is referred to [13] for examples on uncertain random variable.
Definition 4 (i) [13] Let ξ be an uncertain random variable. Then its expected value is defined by

Ech[ξ ] =
∫ +∞

0
Ch{ξ ≥ x}dx−

∫ 0

−∞
Ch{ξ ≤ x}dx, (2)
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provided that at least one of the two integrals is finite.
If the expected value of ξ exists, then by using the chance inversion theorem in Liu [11], the expected value can be

denoted

Ech[ξ ] =
∫ +∞

0
(1−Φ(x))dx−

∫ 0

−∞
Φ(x)dx. (3)

or

Ech[ξ ] =
∫ 1

0
Φ−1(α)dα. (4)

(ii) [14] The expected value of an uncertain random variable ξ is defined by

Ech[ξ ] = Ep [EM [ξ ]] ∆
=

∫
Ω

[∫ +∞

0
M {ξ ≥ x}dx

]
P(dω)−

∫
Ω

[∫ 0

−∞
M {ξ ≤ x}dx

]
P(dω),

where Ep and EM are the expected values under the Liu uncertainty and the probability space respectively.
The expected value of the uncertain random variable ξ is the probability expectation of the expected value of ξ under

Liu uncertainty. In order to simplify the work and presentation, Ech(.) shall be denoted by E(.).
Definition 5 [39] A filtration {Lt ×Ft}t∈[0, T ] models the flow of information over a specific period. Given an

uncertainty probability space {Γ × Ω, L ×F , M × Pr}, a filtration {L ×F}t∈[0, T ] is an increasing family of σ -
algebras on Γ×Ω such that, for s ≤ t,

Ls ×Fs ⊆ Lt ×Ft .

If we suppose that {Γ×Ω, L ×F , {Lt ×Ft}t∈[0, T ], M ×Pr} is a filtered uncertainty probability space satisfying
the usual conditions endowed with one-dimensional Brownian motion {Wt}t∈[0, T ] adapted to the filtration {Ft}t∈[0, T ]

and a standard one-dimensional canonical Liu process {Ct}t∈[0, T ] adapted to the filtration {Lt}t∈[0, T ]. A filtration
{Lt ×Ft}t∈[0, T ] shows the available information at time t for the uncertain stochastic process Xt = (Wt , Ct). For more
information on canonical Liu process, the reader is referred to [13].

Definition 6 (i) [14] A hybrid process X(t) is an uncertain stochastic process if X(t) is an uncertain random variable
for each t ∈ [0, T ].

An uncertain stochastic process X(t) is said to be continuous if the sample paths of X(t) are all continuous functions
of t for almost all (γ, ω) ∈ Γ×Ω.

(ii) [39] An uncertain stochastic process X(t) is calledFt -adapted if X (t, γ) isFt -measurable for all t ∈ [0, T ], γ ∈Γ.
Subsequently, an uncertain stochastic process X(t) is Lt ×Ft -adapted if Xt is Lt ×Ft -measurable for all t ∈ [0, T ]. The
reader is referred to [39] for more details.

3. Hybrid calculus
Before we look at uncertain stochastic differential equations, we first discuss the notion of Ito-Liu integral.
Definition 7 [14] (Ito-Liu Integral) Suppose Xt = (Yt , Zt)

T is an uncertain stochastic process, where Yt ∈ Rp×m and
Zt ∈ Rp×d . For any partition of closed interval [a, b] with a = t1 < t2 < · · ·< tN+1 = b, the mesh is expressed as
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∆ = max
1≤i≤N

|ti+1 − ti|. (5)

The Ito-Liu integral of Xt with respect to (Wt , Ct) is defined as follows:

∫ b

a
XT

s d (Ws, Cs) = lim
∆ 7→0

N

∑
i=1

[Y (ti)
(
Wti+1 −Wti

)
+Z(ti)

(
Cti+1 −Cti

)
], (6)

provided that it exists in mean square and is an uncertain random variable, whereCt andWt are one-dimensional canonical
Liu process and one-dimensional Brownian motion, respectively. When Yt ≡ 0, Xt is called Liu integrable.

Example 1 Consider an investor with a initial value USD 10,000, comprising stocks modeled by the stochastic-Liu
uncertain process

X(t) = 2+3t +σW (t)+θC(t),

where σ = 0.2 (volatility), θ = 0.1 (Liu uncertainty coefficient),W (t) (Brownian motion) represents market fluctuations,
C(t) (Liu uncertain Canonical process represents market trends), T = 1 year (time horizon), h = 0.1, W (0) = 0, W (0.1) =
0.05, C(0) = 0, and C(0.1) = 0.02.

To quantify the accumulated impact of market fluctuations and trends on portfolio value, calculate the Ito-Liu integral
by discretizing [0, T ] into small steps:

∫ T

0
[X(t)dW (t)+X(t)dC(t)] =

∫ T

0
(2+3t +σW (t)+θC(t))dW (t)+

∫ T

0
(2+3t +σW (t)+θC(t))dC(t)

≈ ∑[[(2+3ti +σW (ti)+θC(ti))(W (ti+1)−W (ti))]

+∑[(2+3ti +σW (ti)+θC(ti))(C(ti+1)−C(ti))]

≈ (2)(0.05)+(3)(0.05)+(0.2)(0.05)+(0.1)(0.02)+ ...

The Ito-Liu integral represents the accumulated impact of market fluctuations and trends on portfolio value.
Remark 1 The hybrid integral may also be written as follows

∫ b

a
XT

s d (Ws, Cs) =
∫ b

a
YtdWt +ZtdCt . (7)

Theorem 1 [14] Suppose W = (Wt)0≤t≤T and C = (Ct)0≤t≤T are m-dimensional standard Wiener process and d-
dimensional canonical process, respectively. Assuming uncertain stochastic processes X1(t), X2(t), · · · , Xq(t) satisfy
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dXk(t) = uk(t)dt +
n

∑
r=1

νkr(t)dW r
t +

m

∑
r=1

ωkr(t)dCr
t , k = 1, 2, 3 · · · , q, (8)

with uk(t), νkr(t), and ωkr(t) being absolute integrable, square integrable, and Liu integrable, respectively. If
∂G
∂ t

(t, x1,

x2, · · ·xq),
∂G
∂xk

(t, x1, x2, · · ·xq), and
∂ 2G
∂xkxr

(t, x1, x2, · · ·xq) are continuous for k, r = 1, 2, 3, · · · , q, then

dG(t, X1(t), · · · , Xq(t)) =
∂G
∂ t

(t, X1(t), · · · , Xq(t))dt +
q

∑
k=1

∂G
∂xk

(t, X1(t), · · ·Xq(t))dXk(t)

+
1
2

q

∑
k=1

q

∑
r=1

∂ 2G
∂xk∂xr

(t, X1(t), · · ·Xq(t))dXk(t)dXr(t)

(9)

and

∂kr =

{
0, if k 6= r,

1, otherwise,

where dW k
t dW r

t = ∂krdt and dW k
t dt = dCi

t dC j
t = dCi

t dt = dW k
t dCi

t = 0, for k, r = 1, · · · , m and i, j = 1, · · · , d.
Proof. Since G(t, X1(t), · · · , Xq(t)) is a continuously differentiable function, the following holds

∆G(t, X1(t), · · · , Xq(t)) =
∂G
∂ t

(t, X1(t), · · · , Xq(t))∆t +
q

∑
k=1

∂G
∂xk

(t, X1(t), · · ·Xq(t))∆Xk(t)

+
1
2

q

∑
k=1

q

∑
r=1

∂ 2G
∂xk∂xr

(t, X1(t), · · ·Xq(t))∆Xk(t)∆Xr(t)

+
1
2

∂ 2G
∂ t2 (t, X1(t), · · ·Xq(t))(∆t)2 +

q

∑
k=1

∂ 2G
∂xk∂ t

(t, X1(t), · · ·Xq(t))∆t∆Xr(t)

+Ψr(∆t)2 +
q

∑
k=1

q

∑
r=1

Ψkr∆Xk(t)∆Xr(t)+
q

∑
k=1

Ψk∆(t)∆Xr(t),

(10)

where Ψr 7→ 0, Ψkr 7→ 0, Ψk 7→ 0 for k, r = 1, · · · , q as ∆t 7→ 0.
Since ∆Wk(t) 7→ 0, ∆Cr(t) 7→ 0,

∆Xk(t) = uk(t)∆t +
n

∑
r=1

νkr∆Wr(t)+
m

∑
r=1

ωkr∆Cr 7→ 0
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as ∆t 7→ 0.
Additionally, since ∆Wr(t) 7→ 0, ∆Ck(t) 7→ 0, (∆Wr(t))2 7→ ∆t, (∆Ck(t))2 7→ (∆t)2, (∆Xk(t))2 7→ ∆t, a chain rule is

obtained.
Theorem 2 [14] (Existence and Uniqueness Theorem) Given three functions, b(t, x, y), σ(t, x, y), and λ (t, x, y), the

uncertain backward stochastic differential equation (UBSDE)

{
dXt = b(t, X(t), Y (t))dt +σ((t, X(t), Y (t))dWt +λ ((t, X(t), Y (t))dCt ,

XT = ξ ,
(11)

where b = (b1, b2, ..., bp)
T : Γ×Ω× [0, T ]×Rp×Rp×m 7→Rp beingP⊗Bp⊗Bp×m/Bp measurable, σ = (σkl)p×m :

Γ×Ω× [0, T ]×Rp ×Rp×m 7→ Rp×m being P ⊗Bp ⊗Bp×m/Bp×m measurable, λ = (λkl)p×d : Γ×Ω× [0, T ]×Rp ×
Rp×m 7→Rp×d being P⊗Bp ⊗Bp×m/Bp×d measurable, has a unique pair (X , Y ) ∈M2(0, T ; Rp)×M2(0, T ; Rp×m)

which solves the USBDE (11), provided that b(., 0) ∈ M2(0, T ; Rp), σ(., 0) ∈ M2(0, T ; Rp×m) and λ (., 0) ∈
M2(0, T ; Rp×d) and there exists ϕ > 0 such that |b(t, x1, y1)−b(t, x2, y2)|∨|σ(t, x1, y1)−σ(t, x2, y2)|∨|λ (t, x1, y1)−
λ (t, x2, y2)| ≤ ϕ(|x1 −x2|+ |y1 −y2|), for all x1, x2 ∈Rp; y1, y2 ∈Rp×m; (γ, ω, t)-a.e and there exists ψ > 0 such that

|σ(t, x1, y1)−σ(t, x2, y2)| ≥ ψ|y1 − y2|

for all x ∈ Rp; y1, y2 ∈ Rp×m, (γ, ω, t)-a.e.
Proof. The proof of the existence and uniqueness theorem for the UBSDE is found in [14].

4. Main result: The general optimal control problem
Let (Γ, L , M )× (Ω, F , Pr) be a chance space with filtration (Lt ×Ft) described in section 2. This type of

filtration is similar to the one in [14].
The system under consideration in this section is governed by the following uncertain stochastic differential equation

(USDE):

{
dXt = f (Xt , ut , t)dt +g(Xt)dWt +h(Xt)dCt ,

X0 = x0,
(12)

where Xt is an n-dimensional state vector, u(t) is an n-dimensional control vector, Wt is an m-dimensional Wiener
process, and Ct is a d-dimensional canonical process. In equation (12), f : Rn ×Rn × [0, T ] 7→ Rn, g : Rn 7→ Rn×m, and
h : Rn 7→ Rn×d are some given functions.

Given that the objective function is an uncertain random variable for any decision, we employ the expected value-
based method to optimize the uncertain stochastic objective. Let the cost functional E[J(u)] be

E[J(u)] = E
[∫ T

0
α(Xs, u(s), s)ds+β (XT , T )

]

where α : Rn ×Rn × [0, T ] 7→ R and β : Rn × [0, T ] 7→ R.
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The objective of the hybrid optimal control problem is to minimize E[J(u)], which involves both stochastic and
uncertain elements, and u∗ ∈U ⊂ Rn is said to be optimal if

E[J(u∗)] = inf
u∈U

E[J(u)]. (13)

Define the Hamiltonian H : Rn ×U ×Rn × [0, T ] 7→ R by

H(Xt , u(t), p(t), t) = α(Xt , u(t), t)+ pτ
t f (Xt , u(t), t) (14)

where pt is a function of t from [0, T ] toRn, and pτ
t is the transpose of the vector pt . Let∇x be a gradient operator in variable

x. For real-valued function α , vector-valued function f = ( f1, f2, f3, ..., fn)
τ , matrix-valued function g = (gi j)n×m, and

matrix-valued function h=(hi j)n×d ,∇xα =

(
∂α
∂x1

,
∂α
∂x2

,
∂α
∂x3

, ...,
∂α
∂xn

)τ
; ∇x f =(∇x f1, ∇x f2, ∇x f3, ..., ∇x fn)

τ , ∇xg=

(∇xgi j)n×m, and ∇xh = (∇xhi j)n×d respectively.
The adjoint equation in pt is the Uncertain Backward Stochastic Differential Equation (UBSDE)

{
−d pt = ∇xH(X∗

t , u∗(t), pt , t)dt + pτ
t (∇xg(X∗

t ))dWt + pτ
t (∇xg(X∗

t ))dCt ,

pT = ∇xβ (X∗
T , T ).

(15)

Theorem 3 (A necessary condition of optimality) Let ∇uα(X∗
t , u∗(t), t), ∇x f (X∗

t , u∗(t), t), ∇xgX∗
t , and ∇xh(X∗

t )

be bounded, and suppose that (13) admits a control u∗(t) with corresponding solution X∗
t satisfying (12). Additionally, if

H(X∗
t , u∗(t), pt , t) = α(X∗

t , u∗(t), t)+ pτ
t f (X∗

t , u∗(t), t),

then

∇uH(X∗
t , u∗(t), pt , t) = 0 almost surely, (16)

and pt satisfies (15).
Proof. Consider a small perturbation δu(t) to the optimal control u∗(t). Let uε(t) = u∗(t) + εδu(t), where t ∈

[0, T ], 0 < ε < 1, and δu(t), uε(t) ∈ U . The trajectory corresponding to uε(t) is denoted Xε
t = X∗

t + εδx(t), and the
variation in J can be expressed as

J(uε)− J(u∗) =
[
(
∫ T

0
α(Xε

t , uε(t), t)dt +β (Xε
T , T ))− (

∫ T

0
α(X∗

t , u∗(t), t)dt +β (X∗
T , T ))

]

= β (Xε
T , T )−β (X∗

T , T )+
∫ T

0
(α(Xε

t , uε(t), t)−α(X∗
t , u∗(t), t))dt.

(17)

From (17),
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lim
ε 7→0

E[J(uε)− J(u∗)]
ε

= lim
ε 7→0

1
ε

E
[

β (Xε
T , T )−β (X∗

T , T )+
∫ T

0
(α(Xε

t , uε(t), t)−α(X∗
t , u∗(t), t))dt

]
. (18)

Since J(uε) = J(u∗+ εδu), after applying the Taylor series expansion we obtain

J(uε)− J(u∗) = ∇uJ(u∗)τ εδu(t)+o(ε). (19)

The boundedness of ∇uα(X∗
t , u∗(t), t) implies the boundedness of ∇uJ(u∗). Consequently, (19) can be rewritten as

J(uε)− J(u∗) = O(ε)+o(ε), (20)

given that ∇uJ(u∗)τ εδu(t) = O(ε).
To achieve the optimal outcome,

lim
ε 7→0

E[J(uε)]−E[J(u∗)]
ε

= 0. (21)

As ε 7→ 0, E[J(uε)]−E[J(u∗)] = E[J(u∗)]+O(ε)−E[J(u∗)] = O(ε)+o(ε).

Utilizing (21), we obtain limε 7→0
O(ε)

ε
= 0, leading to ∇uJ(u∗)τ εδu(t) = o(ε).

Therefore,

lim
ε 7→0

E[J(uε)]−E[J(u∗)]
ε

= lim
ε 7→0

E[∇uJ(u∗)τ εδu(t)]
ε

= lim
ε 7→0

O(ε)
ε

= lim
ε 7→0

o(ε)
ε

= 0.

Equation (18) is equivalently rewritten as

lim
ε 7→0

E[J(uε)− J(u∗)]
ε

= lim
ε 7→0

1
ε

E [L(uε)−L(u∗)] , (22)

utilizing L(uε) and L(u∗) as the Lagrange functions.
From (12), namely dXt − f (Xt , ut , t)dt −g(Xt)dWt −h(Xt)dCt = 0, we apply integration by parts to derive
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L(uε) = β (Xε
T , T )+

∫ T

0
α(Xε

t , uε(t), t)dt −
∫ T

0
pτ

t dXε
t +

∫ T

0
pτ

t f (Xε
t , uε(t), t)dt

+
∫ T

0
pτ

t g(Xε
t )dWt +

∫ T

0
pτ

t h(Xε
t )dCt

= β (Xε
T , T )− [pτ

t Xε
t ] |T0 +

∫ T

0
Xε

t d pτ
t +

∫ T

0
H(Xε

t , uε(t), pt , t)dt

+
∫ T

0
pτ

t g(Xε
t )dWt +

∫ T

0
pτ

t h(Xε
t )dCt

and

L(u∗) = β (X∗
T , T )+

∫ T

0
α(X∗

t , u∗(t), t)dt −
∫ T

0
pτ

t dX∗
t +

∫ T

0
pτ

t f (X∗
t , u∗(t), t)dt

+
∫ T

0
pτ

t g(X∗
t )dWt +

∫ T

0
pτ

t h(X∗
t )dCt

= β (X∗
T , T )− [pτ

t X∗
t ] |T0 +

∫ T

0
X∗

t d pτ
t +

∫ T

0
H(X∗

t , u∗(t), pt , t)dt

+
∫ T

0
pτ

t g(X∗
t )dWt +

∫ T

0
pτ

t h(X∗
t )dCt ,

where pt serves as the Lagrange multiplier function.
With

0 = lim
ε 7→0

1
ε
[L(uε)−L(u∗)]

= lim
ε 7→0

1
ε
{[β (Xε

T , T )−β (X∗
T , T )]− [pτ

t Xε
t − pτ

t X∗
t ]

+
∫ T

0
[Xε

t −X∗
t ]d pt +

∫ T

0
[H(Xε

t , uε(t), pt , t)−H(X∗
t , u∗(t), pt , t)]dt

+
∫ T

0
[pτ

t g(Xε
t )− pτ

t g(X∗
t )]dWt +

∫ T

0
[pτ

t h(Xε
t )− pτ

t h(X∗
t )]dCt},

(23)

let us define
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M1 =[β (Xε
T , T )−β (X∗

T , T )],

M2 =[pτ
T Xε

T − pτ
T X∗

T ],

M3 =[Xε
t −X∗

t ],

M4 =[H(Xε
t , uε(t), pt , t)−H(X∗

t , u∗(t), pt , t)],

M5 =[pτ
t g(Xε

t )− pτ
t g(X∗

t )], and

M6 =[pτ
t h(Xε

t )− pτ
t h(X∗

t )].

Applying Taylor series expansion to M1, M2, M3, M4, M5, and M6, yields:

M1 = β (Xε
T , T )−β (X∗

T , T ) = ∇xβ (X∗
T , T )τ εδx(T )+o(ε),

M2 = pτ
T Xε

T − pτ
T X∗

T = pτ
T εδx(T ),

M3 = Xε
t −X∗

t = εδx(t)τ ,

M4 = H(Xε
t , uε(t), pt , t)−H(X∗

t , u∗(t), pt , t)

= εδx(t)τ ∇xH(X∗
t , u∗(t), pt , t)+ εδu(t)τ ∇uH(X∗

t , u∗(t), pt , t)+o(ε),

M5 = pτ
t g(Xε

t )− pτ
t g(X∗

t )

= εδx(t)τ ∇x(pτ
t g(X∗

t ))+o(ε)

= εδx(t)τ pτ
t ∇xg(X∗

t )+o(ε), and

M6 = pτ
t h(Xε

t )− pτ
t h(X∗

t )

= εδx(t)τ ∇x(pτ
t h(X∗

t ))+o(ε)

= εδx(t)τ pτ
t ∇xh(X∗

t )+o(ε).

Substituting the Taylor series expansion of M1, M2, M3, M4, M5, and M6 into (23) yields:
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0 = E[(−pT +∇xβ (X∗
T , T ))τ δx(T )

+
∫ T

0
δx(t)τ{d pt +∇xH(X∗

t , u∗(t), pt , t)dt + pτ
t ∇xg(X∗

t )dWt + pτ
t ∇xh(X∗

t )dCt}

+
∫ T

0
δu(t)τ H(X∗

t , u∗(t), pt , t)dt].

The UBSDE (15) has solution pt . Equation (16) holds, given that δx(t) and δu(t) represent arbitralily small
perturbations.

5. Conclusion
This paper has significantly advanced the field of optimal control in stochastic-uncertain environments, developing

innovative strategies to mitigate indeterminacy and fostering a deeper understanding of complex systems. By establishing
necessary optimality conditions and illustrating the application of the Ito-Liu integral in portfolio selection, our research
has far-reaching implications for finance, engineering, economics, and beyond, enhancing risk management, decision-
making, and computational methods for solving stochastic-uncertain optimal control problems.
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