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Abstract: This paper considers the two-dimensional Stokes system in a semi-infinite channel and is committed to deriving
the structural stability of the model. Using the differential inequality technique, we obtain the expression of energy
function. By making use of the earlier work, a second order differential inequality for energy function is obtained. By
solving this second-order differential inequality, the continuous dependence on the coefficient of the system is established.
This paper shows how to derive a priori estimates of nonlinear terms.
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1. Introduction

In this paper, we consider the following Stokes system which can be written as [1]
v, —UAv+Vp =0, in R x [0, o), @)
divw =0, in R x [0, ). 2)

Here v = (vi, v3) denotes the velocity of the fluid. p is the hydrostatic pressure. p is the kinematic viscosity
coefficient. The region R is defined as

R:= {(m, X2)IX1 >0,0<x Sh}v

where £ is a fixed positive constant.
In the paper [1], the authors derived the estimates for weighted energy expression for the solution of equations (1)
and (2) in R. By using these estimates, the Phragmén-Lindel6f alternative result was established. In the case of decay, the

Copyright ©2025 Yuanfei Li, et al.

DOI: https://doi.org/10.37256/cm.6120255683

This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Volume 6 Issue 1]2025| 465 Contemporary Mathematics


http://ojs.wiserpub.com/index.php/CM/
http://ojs.wiserpub.com/index.php/CM/
https://www.wiserpub.com/
https://orcid.org/0009-0005-1047-6373
https://doi.org/10.37256/cm.6120255683
https://creativecommons.org/licenses/by/4.0/

bound of the total weighted energy was also obtained. In the present paper, we want to use the results obtained in paper
[1] and study the continuous dependence on the coefficient . Continuous dependence questions are fundamental in that
one wishes to know whether a small change in a coefficient in the equations will induce a dramatic change in the solution.
In the spirit of the earlier work [1], we derive a second order partial differential inequality which leads to the continue
dependence result.

In fact, a large number of articles have studied the structural stability of various types of partial differential equations.
Scott [2] considered a porous mediu of Darcy type and obtained the continuous dependence on boundary reaction terms.
Considering the simultaneous existence of multiple fluids in a bounded region, Li et al. [3] obtained the structural stability
in resonant penetrative convection in a Brinkman-Forchheimer fluid interfacing with a Darcy fluid. Liu et al. [4] assumed
that Boussinesq fluid interfaced with a Darcy fluid in a bounded region in R?, and they obtained the continuous dependence
on the interface parameter. For more papers one can refer to [5—19].

Obviously, most of the above results usually supposed that the problems were defined in a bounded region.
Meanwhile, the structural stability of solutions of partial differential equations defined in a cylinder has begun to attract
attention. Using the results of [20], Li et al. [21] proved that the solutions of the nonhomogeneous Brinkman-Forchheimer
equations depended on the Forchheimer coefficient continuously in a three-dimensional semi-infinite cylinder. Obviously,
this type of research has not been fully carried out. As far as we know, the continuous dependence results of the solutions
of partial differential equations defined on a two-dimensional semi-infinite channel have not yet appeared. Our motivation
for doing this is to extend the structural stability results obtained from a three-dimensional cylinder to two-dimensional
rectangular regions using the Stokes equation as an example. The argument to derive the result will be more complicated
and the results are interesting. The methods which are used in our paper can be extended to other similar equations (e.g.,
Generalized heat equation).

2. Formulation

We also use the following notations
L := {(xb x2)‘x1 =z, 0<xn< h}7

R:i={(n, m)n >z 0<0 <n}.

Clearly Ry = R.
Throughout this paper, the usual summation convention is employed with repeated Greek subscript summed from 1

0
to 2. The comma is used to indicate partial differentiation, e.g., Qo o = lex:l a(pa . Therefore, the Stokes systems (1)-(2)
Xo
can be rewritten as
Va, 1 —UAVG+p ¢ =0, in R x [0, o), 3)
Va, ¢ =0, in Rx [0, ), 4)

with the initial-boundary conditions
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le(xla X2, 0) = 07 in R7 (5)

va(x1, 0, ) =vg(x1, h, 1) =0, x; >0, >0, (6)
VO!(07 -x27 t):fa(x27 t)70Sx2Sh7t>Oa (7)
v, Vv, p, Vp=o0(1), as x| — oo, ®)

for & = 1, 2. The functions f (o = 1, 2) satisfy the compatibility relationship f (0, ) = fu(h, ) = 0.

The Stokes equation describes the flow behavior of compressible fluids. It forms the foundation of theoretical
mechanics and fluid mechanics, not only determining the flow behavior of mechanical flows but also playing a significant
role in thermodynamics, heat transfer, and gel mechanics. The study of structural stability of the Stokes equations primarily
concerns the continuous dependence and convergence of the solutions on the coefficients. By achieving structural stability
of the solutions with respect to the coefficients, one can simulate physical phenomena more accurately and control errors
more effectively.

Under the condition fg’ Sfidxp = 0, it follows that at each instant of time ¢

/VldXz =0.
L

Since (vy, v;) is divergence-free, we have

4 Z
/ vidxs :/ V1dX2+/ / VI, 1d)C2d€ = —/ / V2, deQdé =0.
L Lo 0 Jrg 0 Jre

Now, we list some lemmas which have been derived in [1]. These lemmas will be used in the next sections of this

paper.
Combining (2.8) and (4.16) in [1], we have the following lemma.
Lemma 1 Let vy, p are the solutions of (3)-(8) with f,, € L. Then for & >z >0,

" 1
[ [ [ =al s inin 3 1o
+j’;/0’ /RZ [1+k(§ *Z)} {va, nVa, n Vi, apVi, aﬁ}dAdn

+zi/0t /R, {1 +k(E —z)} {va‘ BVa, g+ %Vl, avl, a}dAdn

<2cs (t)eikz,
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where k is a computable positive constant and c¢;(¢) is a positive function.
Combining (5.2) and (5.14) in [1], we have the following lemma.
Lemma 2 Let vy, p are the solutions of (3)-(8) with fi, € L. Then

J 1 2n* 1 h?
/0/Rva.ﬁvaﬁﬁdAdn—|—§/RvavadA'n:t+?/0 /RVOt-,n"a,ndAdn‘F?/RVa,ﬁ"a,ﬁdA’nzt <ci (),

where ¢ (¢) is a positive function which depends on fy.
In view of (5.30) and (5.14) in [1], we have the following lemma.
Lemma 3 Let vy, p are the solutions of (3)-(8) with fy € L™. Then

t
/O/RVL aﬁvl,aﬁdAdn <e3(t),

where ¢3(¢) is a positive function which depends on f.
In this paper, we want to establish the continuous dependence on the kinematic viscosity coefficient . Let (vq, p)
and (vi, p*) be solutions of (3)~(8), but with different coefficients u and p*, respectively. We set

Wo=Va—Vy, T=q—q", T=pu—pu".
Then, it is easy to find that (wy, 7) satisfy
Wa, 1 — TAvg — WAwg + 1 ¢ =0, in R x [0, o), 9
We a =0, in Rx [0, o), (10)

with the initial-boundary conditions

we(x1, x2, 0) =0, in R, (11)
wa(x1, 0, 1) =wg(xy, h, 1) =0, x; >0, ¢t >0, (12)
W (0, x2, 1) =0, 0 <xp < h, £ >0, (13)
w, Vw, T, Vi =o0(1), as x; — oo. (14)

Our main result may be written as:
Theorem 1 Assume that (wg, p) and (wh, p*) be solutions of (9)-(14). If f, € L and f(f’ fidx; = 0, then for
£>z>0,
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t t !
’u*/() /]; (é _Z)Wa, BWa, ﬁdAdTI +5/0 /R (‘5 _Z)Woc7 nWa, ndAdTl +5u*/0 /R (é —Z)Wa_’ B1Wa, ﬁldAdT]

1
<Li(t)t?e P+ L,(1) mfz(esz —e b7,

or

t t of p
IJ*/O/R("’::_Z)Wa.ﬁwmﬁdAdTl-l-S/o/R(‘S_Z)Wa,nwa,ndAdT]-i-Su*/o/R(é—z)w%ﬁlw%ﬁldAdn
<Ly (l‘)’l«'ze‘ibz + Ly (07226th7

where L;(¢)(i = 1, 2) are positive functions which only depend on ¢, b, § > 0.

Remark 1 Theorem | not only indicates that the solutions of equations (9)-(14) depend continuously on change in
the coefficient i, but also indicates that the solutions of equations (9)-(14) decay exponentially as z — 0. Continuous
dependence ensures the stability of the system. When the viscosity coefficient is subjected to small disturbances, the
system can recover to its original state after being disturbed, or at least remain within an acceptable range of fluctuations,
which is very important for many practical applications, such as control systems and signal processing.

Remark 2 Most papers (see e.g., [1, 7, 20, 23]) obtained the spatial exponential decay results of the solutions to
equations. Differently, this article demonstrates that the difference between perturbed and undisturbed solutions still
decays exponentially with spatial variable.

Remark 3 From (88), we can conclude that L;(#)(i = 1, 2) depend on [} fRz Ve, nVa, pndAdn. By referring to the
methods of [1], we can obtain the following theorem.

Theorem 2 Assume that (wg, p) be solutions of (3)-(8). If fi € L™, then

t
/0 /R Va, BnVa, pndAdn < n(t),

where n(z) is a positive function which only depends on ¢.

3. The definitions for energy functions

We introduce a stream function ¢ (x;, x2, ¢) such that

Wi =02, Wp=—0, 1. (15)

We can eliminate the troublesome pressure term 7, o in (9). The equations (9)-(14) may be transformed into the
following form

(AQ) 1 —TAVy, 2+ TAvy | — W*A2@ =0, in R x [0, ), (16)
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with the initial-boundary conditions

o(x1, x2, 0)=0, inR, 17)
@(x1, 0, 1) = @(x1, h, 1) =0, @ 2(x1, 0, 1) = @ 2(x1, h, 1) =0, x; >0, >0, (18)
00, x2,1)=¢ 1(0, 22, 1) =0,0<x, <h,t>0. (19)

To deduce the continuous dependence result, the key is to set up an appropriate energy function. Now, we look for
such an energy function.
Step 1: Definition for @ (z, ). We start with the integral

xt "
/ / @, 1nPdxadn.
0Jr,

Making use of the divergence theorem, Eq.(16) and the initial-boundary conditions (17)-(19), we have

ot 3 t 00 1 %) n
//fp, mfpdxzdnz—// /(Aq)),nq)dAdn—f/ / ?, 0P adAln—
0 LZ O z Lg 2 Z Lé

' L
:/ / [—rAvl, 2+ TAV: —H*Azfl’] PdAdn — */ ?. a?, adA‘
0 JR, 2 Jk, =

1 ! !

:77/ (P‘a(P.adA’ 7p*//A2(p(PdAd77+// [71Av1.2+TAv2_1}(pdAdn
2 R, / n=t 0 JR; 0 JR; ’ /

.1y

=—f/ 0.0, adA| A1+ A+ As. (20)
2 JR, n=t

Integrating by parts, we have

t t
Ay =u*/0/LA¢,1¢dxzdn+u*[)AA¢,a¢. adAdn

" a [t « " . !
=—Hu 87/ / AQ 1 @dAdn — p / / ¢ 109, adxodn — 1 / / ? opP, apdAdn
zJo Jr, Jo Jr, 0 JR,

(9 1 t
Zﬂ*a*{/ / 0, 119dxdn +/ / ? 100, adAdT]}
zUJo Ji, 0 Jr,

-[ n xl
_“*/ / 0, 100, adx2dn _IJ*/ / ?, ap®, apdAdn
0 JL; 0 JR,
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0 t t
:li*a*{/ / 0, 119dx2dn +/ / 0 af, adxzdn}
zUJo Ji, 0.JL,

t
—u /0 /R 9. up P, apdAdn, @)

and
t t t t
Ar+Aj ZT//VL 12§0dX2dT]+T//V112a§0, adAdT]—T//VQ’]lngXQdT]—T//sz 10 Q, adAdn
0 JL. 0 Jr. 0 JL. 0 Jr.

t ' po) t '
Z‘L'/ / Vi, 1290d)€2d1]+’17/ / V1,209, adAdn —Taf{/ / v, 1(dezdn}+1/ / V2, 19, 1dxdn
Jo Jr. 0 Jr. zUJo Ji, 0 JL.

1 1
+1 / / V2, 0@, qdxadn + 7 / / V2, @, 1dAd). (22)
0 JL, 0 JR,

If we define

.t n
q)l(zv t):l'l'*/o /R (P, Otﬁ(p, aﬁdAdn»

then inserting (21) and (22) into (20), we have

1
CDI(Z, t)"_E/R: (P,ot(P, adA’n:l:yll(& t)+Y12(Z, t)+Y13(Z» t), (23)
where
o
Y1z, t) = 87/ / [N*(P, HO— 1P qP o— TV, 1(P]dx2d77, (24)
zJo Jr,
t n
yi2(z, 1) :/0 /L {’Wl, 2O 1+TV2 10 1— @, 1n@+Tv2, q@, a}dxzdn, (25)
t
yis(z, 1) :/0 /R {‘L’vh 20 P, -T2, 0, la}dAdn. (26)

Step 2: Definition of ®;(z, r). We consider the integral
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t
dAdn.
/0 /RZ(P,ocn(P,an n

By using the divergence theorem and the initial-boundary conditions (17)-(19), we have

t ot p ¢
/O/RZ(P, oan @, ocndAdT]:—/O /LZ(P., o, ndxzdn—/o /RZ(P"TI(A(P)’ndAdn
2
N 2az//‘°"dx2d" H //AWP ndAdn
t
*// [TAV1,2*7AV2,1}(P,ndAdT]
0 Jr,

s zaZ//(pndxzdn+Bl+Bz+B3 @7)

By the divergence theorem, we have

.[ ~ _[ .
B :u*/o /L AQ, 1@, ndxrdn +u*/0 /R AQ, 0@, qndx2dn

//A(P 19, ndAdrl // D 19, andx2dn_*” / D ap?, aﬁdA‘

0 4 4 1
9:H /0 /Lz ¢, 19, ndxadn — 2/ /0 /Lz . 109, andx2dn — p '/Rz ? ap®, (x[idA‘n:tv (28)

and

t t
B>+ B3 :T/O/LVI, 12(P,ndx2d77+’5/0/RV1,2a(P,omdAdn

! t
—T/ / V2, 11<p7ndx2dn—17/ / V2, 1a®, andAdn
0 JL, 0 JR,
a t ot .
==7 dxyd —‘L'/ / v ndxad
{ /O/LZVLz(P,n X2am o . 2,19 1 277}
t t
*T/ / V1,29, 1ndX2d11+T/ / V2, 19, 1ndx2dn
0 JL, 0 JL,
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t t
+T/ / V2, a@, andx2dm "‘7/ / V2, a®, 1andAdn
0 JL; 0 JR;
0 t t
_(971{7/() /szl‘yg(p’nd)Csz[—T/O /LZVQ7 1(p’nd)C2dT’}
t t
*T/ / V1, 20, 1,,dx2dn Jr‘L'/ / V2, 19, 1ndxzd1‘]
0 JL, 0 JL;
t
_r/ / V2, 0@, andx2dn —r/ V2, a®, mdA’
Jo JL, R, n=t

1 1
*T/ / V2, n@, 11dAdn *T/ / V2, n Q. 1aadAdn).
0 Ji, o Jr,

If we define

t
D (z, t):/o /R @, oan®, andAdn,

then combining (27)-(29) we conclude that

1
D (z, t)+5u*/R ? ap®P, apdA e =y21(z, 1) +y22(z, 1) +y23(2, 1),

where

a ! 1 2 *
iz, t) = 871/0 ‘/Lz [—E‘P, n TR @ 11Q TV 20— TV2, 19, n}dxzdn,
t
y22(z, t) =/0 /L [—2#*(;)7 109, an — TV1, 20, 1n +TV2, 19, 1n — TV2, a @, an — TV2, n @, 11|dx2dT],

t
y23(z, t) = —T/ V2, 0@, ladA‘ —T/ / V2, nQ, 1aadAdn.
R. n=t 0 Jr,

Step 3: Definition of ®3(z, ). We define

t
®3(z, 1) zu*/o /R ? 1089, 1apdAdN.

Integrating by parts and using (16) and the initial-boundary conditions (17)-(19), we have

29)

(30)

€2))

(32)

(33)
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1 t
@s3(z, t)=—u*/0/L<p, m(p,nadxzdn—u*/O/R(p, 129, 1appdAdN
t t t 2
=—u*//<p,1a<p,nadxzdn+u*//<p,1<p.uﬁgdxzdn+u*// ¢ 1A%9 1dAdn
0 JL, 0 JL, 0 JR,

9 u* [t t
=—J = dxad * dxyd
8z{ 2 /O/LZ(P,la(P,la xoan +p /O/LZ(P,HP, 18B4X2 TI}

t t t
—N*/ / 10, 1ﬁﬁdX2dTl+// ¢, 1A@, 1ndAdn +// <P.1{—TV1, 12+ T2, 11|dAdN.
0 JL, 0 JR, 0 JR,

Since

t t ot
/ / 0, 1AQ, 1ndAdn = —/ / ®, 19, 11ndx2dn —/ / 0, 1P, 1andAdn
0 JR, 0 JL, 0 JR,

J [t 4 1
= —*/ / @19, 1ndx2dn +/ / ¢, 119, 1ndx2dn — */ P, 109, 1adA
dz Jo Ji, 0 JL, 2 JR, n=t

and

(34

t t t t
/ / (P’][—TV1712+TV2711}dAdT]=T/ / (0} 12V]71dAdT]—T/ / V2,|(P7]dedT]—T/ / (p,11V2,|dAdT],
0 JR; 0 JR; 0 JL, 0 JR;

we conclude that

1
D3(z, t)+§/R ?, 1P, 1adA . =1z, t) +yn(z, 1) +y33(z 1),

where
Ja [ u .
ya(z, t) = 87/0 /Lz {_T(P’ 1@, 10 TH Q10 188 — 10, 1n}dX2dTL
t
nz@vﬂ::%;ﬂz[*Lﬁ¢J1¢JﬁB‘“ﬂm1¢J‘%¢m1¢ﬂn}dndn,

r
y33(z, t) :/o /R {T(P, 12V1,1 — T, 112, 1]dAd77-

Now, we define

(35)

(36)

(37

(3%
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t r t
D(z, 1) =p" ? 6P, opdAdn +0 @, an®, andAdn +u* ? 148®, 1apdAdN,
0 JR, 0 JR, 0 JR,

where & > 0. Then, we let

W(z, 1) = /Z To(E, 1dE
:u*/OI/RZ(i—Z)q), ap®, a,;dAdn+6/0[/RZ(§—z)<p7 an®, andAdn

1
+6,u-*/0 /R@—Z)(p laﬁ(P, l(XﬁdAdn

Clearly, we find
2 =@
az Z7 - Z’ )
and
92
A combination of (23), (30) and (35) leads to
1
W(z, t)+ E/R (&—2) {&P, 1a®, 1o +H 8¢ a®P ap TP a?®, a}dA’nzt =Ji+Jh+Js,

where
! * * 1 2 *
Ji :—/O/L [u PP P aP a2 10 5007 L9 1191
+8TV1 20 0 — 8TV 10,7 — %&p, 109, 10+ 189 10 15 — 8019, 1y |dx2dn),
J= [ [nafE, 0+ 8un(E 1)+ 8yna(&, 1)]dE.
Z

J3 :/m [y13(57 t)+0y23(8, 1)+ 0y33(E, l)}dé

t t t
PR t):u*/o/szp, ap®, aﬁdxzdn+5/0 /szp, an, andxzdn+u*5/0 /quo, 1ap P, 1apdx2dn.

(39

(40)

(41)

(42)

(43)

(44)

(45)

(46)
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4. Some useful lemmas

To derive continuous dependence result we will use the basic results which have been derived in section 3. In addition,

we will also frequently use the following well-known inequalities:
(1). If o(x2) € C'(0, h) and ®(0) = w(h) = 0, then

hZ
/ a)zd)Q < ?/ wzzde.
L L

(). If ®(x2) € C*(0, 1) and ®(0) = ® 2(0) = @(h) = @, 2(h) = 0, then

h2

2 2
W°5dxy < / W podxy.
/LZ ' 4m2 Ji,

(3). If ®(x2) € C*(0, 1) and ®(0) = ® 2(0) = @(h) = @, 2(h) = 0, then

h4
/ a)zdxz < / (D zzdxz.

(47)

(43)

(49)

These inequalities can be found in Ref [22]. In addition to (15)-(17), we also use some Sobolev inequality in R, X
[0, T] which have been widely used in the study of Navier-Stokes equations or Boussinesq equations (see e.g. Refs.[24—

28]).
Next, we derive upper bounds for J;, J> and J3. We have the following lemmas.
Lemma 4 For J; which defined in (44), we have the following inequality

9° 1 ,
Ji <kt )aZZ‘P( Jrif / / Va, BVa, pdx2dn,

where kj (t) is a positive function which only depends on z.
Proof. Using the Schwarz inequality and (49), we have

t t t 1
*ﬂ*//<P,n<Pdden§u*[//w?lldxzdn//qozdxzdn}z
0 JL, 0 JL, 0 JL,

_97r2” //‘Pndxzdn// ¢22dx2d77 7

2h* 92

< —=—¥(z, t).
~ 92 972 @ 1)

Using the Schwarz inequality and (47), we have
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t . 1 N %
/O/L [u <p,a<p,a+55<p?n—u 0P 1190, 7 — 160 10 155 — @, 19, 1n|dx2dn

no o
Sﬁ# ./0 '/Lz(pA’ a2®, azdxzdn+ﬁ5./o ./LZ(P’Z”dedn
t t
*\/ﬁ[u*/ / qo?ndxzdn+6/ / 9%pdradr|
0 JL; 0 JL,
t 2 t 5
7‘/3[“*/ / (P,“dxzdn+5u*/ / ] mﬁdxzdn}
0 JL, 0 JL,

2\/775 / / (p 12dx2d11+5/ / (p lndXQdT]

(51

gmax{

and

/5
Y f Zfﬁn}82ly( )

' 200 (1 5o ! 2
— < —
/0 /L [’Cv; 19 —8Tvi 20,y +8Tv2 10, n}dxzdn <om Uo /Lzr vy 1dxadn +/0 /Lz 0} 22dx2dn}

Choosing k; (1) =

we can get Lemma 4.

6+

hZ
+ ax{?,

27[2/ / ‘sz% 2dx2dn + = 52/ / (0} 2ndx2dn}
271_2/ / T V2 1dx2d1'l+ 62/ / (p 2ndx2d7‘]}

11h2
> 97[2 / / Va, BVa, ﬁddeT’

2h? } 92

oo ) 37 SW(z, 1). (52)

+max{6

h ~h 2h? o
) /OU*+ p \/3} + max {3, W} and combining (50)-(52) and (44),

Lemma 5 For J, which defined in (45), we have the following inequality
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d 2h? n?
B <) - pald 0|+ |2 4+ nhm/g} er(t) 227,

where k(t) is a positive function.
Proof. From (45), (46), (25), (32) and (37), we have

(o] -[ "
/ yi2(&, t)dé :/o /R [TVI, RO, 1+TV2 10 1— @, 1n@+TV2, @, a} dxdm, (53)
Z 4
) t
5/ y2(&, 1)dE = 5/0 /R [—Zﬂ*fp, 1a®, an — TV1, 20, 1n +Tv2, 19, 1n — TV2, a @, an — TV2, n @, 11|dxdn,  (54)

00 ot 3
5/ ygz(é,t)déz/o/R [—u*q),nq), 1B =TV 191+ 9, 1, m}dxdn. (55)
Z Z

Using the Schwarz inequality, Lemma 1 and (47), we have

ot p h2 t ) 1 ot p )
<| _
J J oo so o g ofavan <[5 [ @47 pasan 35 [ [ o%aean

1 t
znz//12v271dxd11+§/0/1e(p7212dxdn]

271:2/ / T V2 avz ad.xdn+ 2/ / (P az(p a2d.xdn:|

1
26

2h%
<SP+ [
7'L'

+ 1} [ ;Z\P(z, z)}. (56)

Using (49), we have

2 2
// <p1n¢dxdn< // @ pdxdn + // (Pzdedn

2h? d
< S [f G z)}. (57)
Inserting (56) and (57) into (53), we have
/w (&, 1 )d§<2h2rc()*k1+[1 +1+27}’2H—Q\P( 3] (58)
. Y12 2t 25 ﬂz\/ﬁ 9 Z, .
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Using the Holder inequality, we obtain

—2p” 6/ / ? 109, andxdn < \/p* / / ? 109, ladan+6/ / ¢, an®, andxdn

SRIE a%\p(z, ). (59)

Using the Holdrer inequality and Lemma 1, we obtain

t
5/0 /R [— ™20, 1n +Tv2, 19, 19 —TV2, a®, an — TV2, 1@, ll]dan

t
S|:/ / T Vl 2dxd7]—|— 62/ / (P lndxdn:|
JO .
+ / / T V2 ldxdn+ 52/ / (P lndxdni|

-t 1 t
+ / / TZVZ, av2, qdxdn + *32/ / ? an®, omdxdn}
LJo JR. 4 Jo Jr,

r [t ] t
+ / / 3 ndxdn+752/ / (pzlldxdn}
LJo JR. : 4 Jo Jr. "

} [— a%\y(z, t)}. (60)

1
<4 2 t 7kz |:7
<4t7cy(t)e ™+ 3 e

Inserting (59) and (60) into (54), we have

} [ a%lp(z, t)] 61)

/;Y22(5 NdE < 4T (1)e S + {

Similar, we have
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\f
5/ y2(8 ST // @71 ydxdn + S // (Plﬁﬁdan

h2 2
27[2” \F//VZ 1dxdn+7u // @7 1pdxdn

0 * ! 2 ! 2
+1/E[u/o/Rz(pvndxdn+5/O /Rzgmdxdn}

5[5 J K272
Smax{g, E}[—a—zw(z, t)}+Wf\/3c2(;)esz. (62)

5 |6 1 2n?
Inserting (58), (61) and (62) into (45) and choosing k;(f) = max {g, E} + 75 +1+ m +
——, we can obtain Lemma 5.
Lemma 6 For J3 which defined in (46), we have the following inequality
2 —kz 1 1
B<kOPe 42 [ (E-D9 wg mdi] _+ 3%,
2 JR, n=t 2
2 1w 1, =
where k3(l) = %max{E, W + Es y m, o }Cz([).
Proof. Inserting (26), (33) and (38) into (46), we have
t
J3 :/0 /R (5 —Z) [’L’Vl.’ 200, a0 +TV2, a@, 10 — ’1'5\/27 o, laa} dAdT[
t
—l—/o /R (é —Z) [T(S([), 12V1, 1 —’L'5(p7 11v2, 1}dAdT[ —’58/R (é —Z)Vz, oc(P, 1adA - (63)

Using the Holder inequality, Young’s inequality and Lemma 1, we have
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t
/0 /R (é —Z) {th 209, 0+ TV2, 0P, 10 — ’L'SVQ7 n®, 10505} dAdn

1

<jlr[/0t/Rz(§ _Z)TZVI}ZO(VI,Zadxdn}z {/()I/RZ@ 20, 200, Zadan}%

Ly (€ —2)T%v2, av2, adxdn I (& —2)0 1209, 12¢dxdn z
I RIYA |

1

8{/0t/RZ(§—Z)r2v%7ndxdn}2 [/;/R}&—z)cp?madxdnf

h2 2
‘u 7'[2/ / —Z V1, 2aV1, Zadan+ [.L // —2Z (P 209, 2adxdn)

ht? 1o,/
+ W/O ./Rl(é —2)V2, aV2, dxdn +Z# 5/0 /Rz(fg —2)0, 1209, 12odxdN

728

1, 4

(6 =23 pardn +310°8 [ [ (£=2)97 gucdrd, (649)

r

/ / (é —Z) {76@, 12V1. 1 —15(/),’ 11v2, 1:|dAdT[

0 JR,

I 5o [ 2 Lo 2
<—T8 //(g_z)vl,ldan‘F*H //(5—2)(1’, 12dxdn
u 0 JR. ’ 4% Jo Jr,

I 5o [ 2 Lo 2
+28 [ [ (E—and v+ [ [ (E-2)07dxan

u Jo Jr. 4% Jo Jr,

t 1 t
371262/ / (& —2)va, 1Va, 1dxdn + fu*/ / (E—2)0, 19, q1dxdn (65)
u 0 JR; 4 0 JR;

and

l 1
16 [ mapada| <10 [ Dmanad| 11 [ E-D0momd] . ©6
R; n=t 2 R, n=t 2 R; n=t

Inserting (64)-(66) into (63), we can have
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hZ 2 l’l2 1 1 2 "
J3 < w 7r2/ / —2)v1, 2aV1, 20dxdn + [5# = +“ ) }’L’ /0 /R-(é—z)va,ﬁva_’ﬁdxdn

%8

1
g —Z)V%, pdxdn + ETZ‘SZ/ (& —2)v2, a2, adx’
R; n=t

n=t

1 1
+*/ (E—2)0 w19, aldx’ +-¥(z, t).
2 R, 2

In (67) using Lemma 1 we can obtain Lemma 6.
In next section, we use Lemmas 4, 5 and 6 to proof our main results.

5. The proof of Theorem 1

Combining Lemmas 4-6 and (43), we have

9? d 22h% ) ke,
iz, 1) < 20 (055 ¥ 1)+ 2eolt) [ - 5 0]+ 5 5 / / Ve, Ve, pdradn + Tks(r)e

2 2

2h
where ky(t) =2 |k3(t) + — +4+ 7} c2(t). From (68), we obtain an inequality of the form
1 m2u/§

9? d S o
SV )W ) k¥ 1) = (e kz_12k4(t)/0 /szm gva. pdxadn,

~ 1~ k() ~ 11n?

= _ k(1)
here k; = k) = ky = ka(t) = ———
where ki k= BT 4(1) 5 ()72

. From (69) it follows that
ki (t) (69)

J J 27 ke _ 27 [
[jz_a] {afz\y(z, £)+b¥(z, 1) > —1hkze ¥ —1 k4(t)/0 /szmﬁvm pdx2dn,

or

J —az J 27 —(a+k)z 27 —az '
8—2{6 [a—Z‘P(z, 1) +b¥(z, t)}} > —17ks(t)e — Tky(t)e /0 /Lz Va, pVa, pdx2dn,

where

ki + /K2 + 4k, , —ky 41/ I3+ 4k

a=——"—"——,b= >

2

(67)

(68)

(69)

(70)
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An integration of (70) from z to oo leads to

p) A B e o t
< z az aé // .
aZ‘P(Z, N+b¥(z, 1)<t a+kk3(t)e + Tka(1)e /z e ( 0 Ve, pVa, ﬁdxzdn>d§ (71)
Since
et < Exy,

we have by using Lemma 1

oo . .
—aé / / dx->rd dé < —az/ / dAdn <2 ¢ —(a+k)z' 7
l e ( 0 )i, Ve, BVa, pdx2 77) <§ e b sza’ BVa, B n < C2( )e (72)

Inserting (72) into (71), we have

(%‘{’(z, 1) +b¥(z, 1) < Tks(t)e ™, (73)

~ 1 ~ ~
where ks (¢) = ﬂkg +2¢2(t)k4(r). The inequality (73) can be rewritten as
a

J bz 27 (b—k)z
Z[w(z, 1)’ < Tks (1)el"H7, (74)

(A) If b # k, then integrating (74) from O to z, we have

1 ~
W(z, 1) <P(0, t)e P 4 rzb—kks (1) (e —et7). (75)
(B) If b = k, then integrating (74) from 0 to z, we have

W(z, 1) <W(0, t)e b + t2ks (1)ze ™~ (76)

To establish continuous dependence on the coefficients p, we have to give the upper bound for W(0, ¢). From (73),
we have

bY(0, 1) < —%\P(o, 1)+ ks (). (77)

d . .
So, we only need to bound —a—‘P(O, t). We choose z =0 in (39) and combine (15) to have
b4
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3 t t t
290, 1) = // dAd +5// dAdn + & // dAd
3z 0,1)=p A RO(P,aﬁ(P,aﬁ n A RO‘P,an‘P,an n+ou” ) Romam 1apdAdn

t 1 t
_ u*/ / Wa, pWa, pdAdn) +6/ / We. nWa, ndAdn +6u*/ / Wa, 1pWe, 1pdAdT.  (78)
0 JRy 0 JRy 0 JRy ' '
Multiplying (9) with wg and integrating in R x (0, ), we have
t
/ / {wa, n = TAVG — 1" Awg — T, o | wadAdn = 0. (79)
0 JR

Integrating (79) by parts, we have

1 N t t
E/RWO!WadA‘n:t“‘/J' /0 /RWa.,ﬁWa,ﬁdAdn =’L'/0 /R"a,ﬁwa,ﬁdAdTI

2t 1,/
< TH*/O /RvmﬁvmﬁdAdn—i-i,u /0 /Rwa'ﬁwa?ﬁdAdn- (80)

Using Lemma 2, we have

1 t 72
= Alp= * Adn < — . 1
Z/Rwawad ln=t + M1 /0 /RWoc.ﬁWa,ﬁd dn < u*cl(t) (81)

Multiplying (9) with wg,  and integrating in R x (0, 1), we have

t
/ / |:Wa’ n— TAV(X - ”*AW(X - 7T7 o "Va7 ndAdn =0. (82)
0 JR

Integrating (82) by parts, we have
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I, !
Eu /R;Wa" ﬁwa’ BdA‘n:t +/0 /R;VV(X7 nWa_’ ndAdn
ot p
Z‘L'/O /Rva’ BWa, ,BndAdn

t
=T [ vy gW dA’ 71/ /v wy gdAd

72

<
=2ur

1
dA‘ - */ dA’
/R"a,ﬁ"wﬁ n=,+2ﬂ Ve B BAA|

72

o

t 1,
/O/RV(X’B,]V(X’ ﬁndAdn+§’“l /()/meﬁwa’ﬁdAdn. (83)

Using (81) and Lemma 2, we have from (83)

1 T27l'2 T2 1 T2
dAdn < ———ci(t dAdn + —c(1). 84
/0 /menwmn 777thu*cl()‘qu*/o/Rva,ﬁn"a,ﬁn n+2#*cl() ( )
To bound [ Jry Wa, 1pWa, 15dAdN, we consider the following identity
t
/0 /R {Wa, In— ‘L'Avog7 1— ‘U*Awm 1= 7 al |Wa, 1dAdT] =0.
Therefore, using Lemma 3 we have
1/ dA|p— + */t/ dAd
7 RWa, 1Wa, 184A|n= + 1 b RWoc. B1Wa, B1 n
t ) t %
S[//TV % dAd//w w dAd}
o Jr o, 1V, B1 n.O.R o, 1, B1 n
<L 2] /I/ dAd (85)
=2 c3 2# o RWa,ﬁlwa,ﬁl n.
From (85), we have
* / t / dAdn < 7 () (86)
w w —17c3(1).
u o Jr a, f1%a, B1 n_u* 3

Combining (81), (84), (86) and (78), we have
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— W0, 1) < ke(1)72, 87
dz
where
Folt) = ——e1(6) 4~ er (1) + — 5// dAdT + = 8er (1) + L Ses (1) (88)
6 _‘u*cl 2h2u* €1 2[.1* 0 vaﬁnva,ﬁn n 2‘U.* 1 u* 3

Inserting (87) into (77), we have

w0, 1) < %7560)124—12 (89)

arip-
Combining (75), (76) and (89), we can obtain

L e e, b2k,

W(z, 1) < [51«6@ + 1

Choosing that

1~ 1 -~ I ~

—ke(2) + )bks(t),Lz(t) = mks(t)

L) = gk %

and combining (40) and (15), we can complete the proof of Theorem 1.

6. The proof of Theorem 2

In this section, we seek bound for [§ [, Va, pnVa, pndAdn. To do this, we introduce another stream function
u(xy, xp, t) such that

V] = Lt’ 2, V2 = —u, 1- (90)
The initial-boundary problem (3)-(8) can be rewritten as

A% u = (Au),, in R x [0, o)

u(xy, 0, 1) = up(x1, 0, 1) =0, x; >0, 1 >0,
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u(xy, by t) =uy(x1, h, 1) =0, x; >0,1>0,
X

0. 32 1) =12, ) = [ il s, 0 < <h 1 >0,
0

u, 1(0, x2, 1) = —fo(x2, 1), 0<x2 < h, t >0,
U q(x1, x2,0)=0, inR.

Now, we introduce an auxiliary function

i, 1, 1) = [/02 ‘;gg(g, g +x1 (g1 e, t)+/0x2 %‘g(g, t)dg)}e—xl.

Obviously, u(x], x, t) has the same initial-boundary conditions as u. We compute

4 t
.U/O /Rvmﬁnl{ apndAdn :,u/o /Ru, apnlt, apndAdn

it p . )

:H/O /Ru, apni, apndAdn -HL/O /Ru7 apn {u apn — U, aﬁn}dAdn
t ‘ %

:H/O /‘Ru’ Otﬁrlu’ aﬁndAdn 7.““/(‘] /‘Ru’ afBn |:M7 on —u, an:|dAdT'
t . ) -
t ‘ R

:“/0 /Ru apn', “ﬁ”dAdn+/() /RA”nn [“n —”n}dAdTl
t ' R

:“/0 /Ru’ Otﬁrlu’ aBndAdn 7/‘0 /RM7 oann |:l/t, an — U, OtT':|dAdn

t
- U ypnit opndAd —/u i dA‘
“/O/R,ocﬁn,ocﬁn n il wdA|

/ 1
+//u i qnndAd —&—f/u " dA‘ . 91
o ,oanU, ann n 2 )k Carl, ar et 1)

Using the Schwarz inequality and (47), we have
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1 1

2 2
—/“, oczi‘\, atdA’ > — {/ U arlt, atdA‘ :| [/ ﬁ atﬁ, atdA‘ ]
R n=t R n=t R n=t

1 |
Z—f/u ol wdA’ **/u. otU, ardA’ )
2Jr T n=t 2Jr 7 n=t

and

1

1
1 R h t 2 t . N 2
/O/R“, anll, anndAdn Zn[/o /R”, aznl, aanAdn] UO /R“, annl, anndAdn}

hZ

1 t t
> L U oot qondAd ——//ﬁ i@ anndAdn.
z 4“[)/1€7a2n,a2n n um Jo Jg't et enn n

Inserting (92) and (93) into (91), we have

t R 3 1
,U/O /Ru’ apnX, aﬁndAdT[ ZZ[J/O /RM’ apnk, aﬁndAdT]

| N Wt R
- E/R vOCl‘M7 atdA‘n:t - W/O /RUA’ annu’ anndAdn

On the other hand, we have

1

t t t 2
[,L/O /RM’ apni, apndAdn < u [/0 /RM7 apnX, aﬁndAdn/O /Rua’ Bk, aﬁndAdT]} .

If we define

t t
fz(u)zu/o /Ru wpnit, apndAdn), F (@) :”/o /Rﬁm gl qpndAdn,

and

| N W ot R
Q(I)ZE/Ru’ (qu’ (ZldA‘n:t_'_W/O /Ru annu7 anrldAdn,

then we have from (94) and (95)
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or

2
VEW-3VF@| <00+ 55 @, ©7)

From (97) it follows that

2
F) < |VF@+ 500+ 57 @) ©8)

4

2 [4 2
Combining (90), (96) and (98) and choosing n(r) = {3 Vv (u)+ gQ(t) + 99(@] , we can obtain Theorem 2.2.

7. Conclusion

This article establishes the stability of Stokes equation for disturbances in viscosity coefficients. This indicates
that small perturbations in the viscosity coefficient will not have a significant impact on the solution. When the viscosity
coefficient of the Stokes equation is slightly disturbed by external factors, the properties of the partial differential equation
solution (such as existence, uniqueness, and stability) will not undergo significant changes. The topic of this article can be
further discussed in depth. For example, considering the structural stability of nonlinear models (e.g., Brinkman equations)
on two-dimensional rectangular regions remains an open topic. How to construct prior estimates for nonlinear terms will
be a challenge.
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