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Abstract: This work examines a mathematical model of high blood sugar conditions and its consequences in a society
using fractional differential equations. It attempts to solve the problem using a nonstandard way because standard finite
difference numerical methods can result in numerical instabilities. The nonstandard finite difference scheme (NSFDS),
which satisfies dynamical consistency, is the recommended nonstandard method for discretising the model. To show that
the model is stable at the equilibrium positions, analyses of both discrete and continuous models are studied.Stability
analysis is carried out at the discretised model’s equilibrium point using the Schur-Cohn criterion. Consequently, the
model’s asymptotically stable state is demonstrated. Furthermore, by contrasting the stability for various step sizes with
conventional techniques like Finite Difference Scheme (FDS), the benefits of the NSFDS are shown. The NSFDS has been
shown to converge at bigger step sizes. Furthermore, a graphical comparison is shown between the numerical findings
acquired by the NSFDS and the FDS. It is noted that the NSFDS is accurate.
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Abbreviation
NSFDS Nonstandard finite difference scheme
FDS Finite difference scheme

1. Introduction
Differential equations can be applied to model a diversity of biological issues. As is well known, diabetes has recently

become a highly prevalent condition. Numerous significant studies on diabetes have been conducted. Stability analysis
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plays a crucial part in epidemicmodels. The following is a summary of some diabetes research: In order to provide a higher
quality for people, the authors in [1] suggest a mathematical model of high blood sugar. They provided the linear model’s
numerical solution and stability analysis, where the unknowns are the proportion of diabetics with and without issues. In
their research, Akinsola and Oluyo [2–4] used various techniques to arrive at the numerical and analytical solution of the
diabetes mellitus complications and control model. Furthermore, AlShurbaji et al. [5] consider the linear diabetes mellitus
model. Numerical techniques including Euler, Heun, Runge-Kutta, and Adams-Moulton were applied to get the solution
of a system of linear differential equations. Additionally, the Euler-Cauchy approachwas used to offer a numerical solution
by Vanitha and Porchelvi [6]. By using the right parameters, the authors in [7] constructed a nonlinear mathematical model
of high blood sugar conditions. Numerical experiments and stability analysis are presented. Global asymptotic stability
and the model suggested in [7] were taken into consideration by De Oliveira et al. [8]. Numerical simulations were used
to confirm stability. The dynamics of a population of healthy individuals, diabetics and pre-diabetics with and without
problems were given by authors in [9]. The theory of best favorable is applied. Controllability and stability for both linear
and nonlinear differential equations were demonstrated by Permatasari et al. [10], who worked on the model created in
[9]. The nonlinear diabetic mellitus model was examined by Widyaningsih et al. [11] in relation to genetic and lifestyle
factors. The number of deaths from diabetes was predicted using the 4th-order Runge-Kutta method. A model that is
linear which describes diabetes mellitus and its consequences was the subject of stability investigated by Aye [12]. The
Bellman and Coke theorem was used to test the stability.Aye et al. [13] used the Homotopy Perturbation Method to solve
a comparable scenario. Aye [14] investigated how to control affected the same model.

It is well known that the fields of applied mathematics heavily rely on stability analysis of mathematical models.
In stability analysis, discretizing the models is crucial in real-world scenarios. Numerical instabilities might also result
from using typical numerical methods to solve such situations. Nonstandard approaches are therefore important. The
nonstandard finite difference scheme (NSFDS), created by Mickens [15–20], is one of the most practical and efficient
discrete approaches. Additionally, it offers convergence outcomes at even larger step sizes. The studies of Patidar [21, 22]
give a thorough literature review on NSFDS. Numerous applied mathematics disciplines have produced numerous studies
on NSFDS. The following is a list of some recent research on NSFDS and stability analysis: A mathematical model
based on the Tacoma Narrows Bridge collapse is examined by Adekanye and Washington [23]. For the torsional and
vertical variants, two NSFDS are built. Anguelov et al. [24] proposed the applicability of NSFDS to Ebola virus system
of model in Africa. Arenas et al. [25] introduced fractional model of epidemic for susceptible-infected-recovered (SIR)
and susceptible infected (SI). There are some similarities with classical approaches after applying NSFDS. For integer
and fractional order, a unique chaotic model was analyzed by Baleanu et al. [26]. In both cases stability analysis was
presented. NSFDS is utilized to present numerical simulations. NSFDS are constructed for twometapopulation models by
Dang and Hoang [27]. Other features including positivity, boundedness, and monotone convergence were provided along
with stability analysis. The theoretical investigation was supported by numerical computations. Kocabıyık et al. [28] and
Dang and Hoang [29] used the NSFDS to approximate a computer virus model. Using NSFDS, the authors in [30] build
a mathematical system that describes the Michaelis-Menten harvesting rate. Kocabiyik and Ongun [31] described the
NSFDS of smoking model in discretization way to ascertain the impacts on humans who smoke. In the study by Ongun
and Arslan [32], two distinct NSFDS for the fractional order Hantavirus model were compared. Shabbir et al. [33] used
NSFDS to build a predator-prey model. Investigations are conducted into stability analysis as well as other characteristics
including positivity, boundedness, and persistence of solutions. An NSFDS for the SICA-AIDS model was put forth by
Vaz and Torres [34]. Both global and elementary stability were examined. In [35], Egbelowo et al. examined a linear
mathematical model of pharmacokinetics. The analytical solution, NSFDS, and Finite Difference Scheme (FDS) were
shown. [36–40, 40, 41] give more recent research on the stability study of the mathematical models. Said et al. [42]
presented a NSFDS for solving a fractional decay model. The proposed NSFDM was constructed by incorporating a
non-standard denominator function, resulting in an explicit numerical scheme as easy as the conventional Euler method,
but it provides very accurate solutions and has unconditional stability. It was found that the method’s estimated errors are
extremelyminimal, such as within themachine precision. IikemCetinkaya [43] presented and described the complications
of diabetes mellitus and its consequences, concluded that the model is asymptotically stable.
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Extension of ordinary calculus to fractional calculus takes us into a new mathematical domain for solution of diverse
problems in various fields of study, such as computational biology, probability, control theory etc. Differential equations
can represent these phenomena in a better way. The properties of well-known fractional calculus were used to get solutions
of certain fractional calculus equations representing these types of phenomena. The solution ofmost of these differ-integral
equations take the form of Mittag-Leffler function, Fox-Wright functions etc. There are numerous authors who define
fractional calculus. The Riemann-Liouvellie (R-L) definition is the one that is most frequently employed [44–48]. The
Caputo definition of fractional derivative (1967) [44–48] is another helpful formulation. To prevent nonzero fractional
derivative of a constant function, applying left hand Jumarie’s version of the R-L fractional derivative is helpful [49, 50].
A theory of characterizing the points where the function is non-differentiable, using a Jumarie type right hand fractional
derivative version of the R-L was recently developed by Ghosh et al. in the publication [51]. Different types of solutions
were provided by differential equations in various fractional derivative forms [44–48]. Therefore, fractional differential
equations cannot be solved using a normal algorithm. Therefore, a growing area of applied mathematics in fractional
calculus gives the solution and interpretation of such models. Recently, the Predictor-Corrector approach [52], Adomain
decompositionmethod [45, 53, 54], Disordered Perturbationmethod [55], Iterationmethod through variation [56], Method
through differential transform [57] were employed to get the solution of both linear and non-linear differential equations.
An analytical approach for solving linear FDE’s with the derivatives by Jumarie [50] using sine, cosine and Mittag-Leffler
functions was recently devised by Ghosh et al. [58]. The numerical analysis of the nuclear decay model and fractional
population growthwas presented byAlzaid et al. [59]. By applying exponential decay kernel, Alqhtani et al. [60] provided
solutions of space-fractional diffusion equations numerically.

NSFDS have a particular advantage over traditional finite difference schemes because they may provide exact
numerical schemes that lead to exact solutions at the nodal points. For the purpose of solving certain classes of first-
order differential equations, such as the logistic and exponential growth, systems of linear ODE models, higher order
ODEs, some PDE problems, etc., Micken was the first to design and explain the derivation of exact finite difference
techniques [61, 62]. Initially, NSFDS were designed to offer either an accurate finite difference scheme or the optimal
numerical scheme, with the goal of achieving all the solutions qualitatively of the original problem.

The purpose of this piece of work is to design a numerical scheme employing nonstandard finite difference
discretization to solve the diabetes model and its consequences given in linear fractional differential equations. It compares
the performance of the proposed scheme to other methods found in the literature. The main features of the proposed
numerical approach are its explicit Euler method-like design, high order of convergence, and unconditional stability.

The paper is organized in the following manner:
Section 1 provides an insight of fractional calculus and the development of an NSFDS. The mathematical

preliminaries are given in section 2. In the Section 3 proposed methodology is introduced. Section 4 employs numerical
examples from existing literature to evaluate the validity of the proposed technique. Finally, the discussion and conclusions
are presented in Section 5.

2. Mathematical preliminaries
Definition 2.1 Riemann-Liouville (R-L) fractional derivative:
The fractional Riemann-Liouville (R-L) left derivative is given by,

bDα
z f (z) =

1
Γ(n+1−α)

(
d
dz

)n+1 ∫ z

b
(z− τ)n−α f (τ)dτ, (1)

where n ≤ α < n+1, n is positive integer.
When 0 ≤ α < 1 then
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bDα
z f (z) =

1
Γ(1−α)

d
dz

∫ z

b
(z− τ)−α f (τ)dτ. (2)

The corresponding fractional Riemann-Liouville (R-L) right derivative is given as follows:

zDα
b f (z) =

1
Γ(1−α)

−d
dz

∫ b

z
(τ − z)m−α f (τ)dτ, (3)

where n ≤ α < n+1.
According to the definitions (1)-(3) above, a constant’s derivative is non-zero, which is in opposition to the constant’s

classical derivative of zero. A revision to the R-L concept of fractional derivative was offered by Caputo [29] in 1967 in
order to get around this drawback.

Definition 2.2 Caputo Derivative:
Fractional derivative defined by Caputo is given in the following form [49]:

C
b Dα

z f (z) =
1

Γ(m−α)

∫ z

b
(z− τ)m−α−1 f m(τ)dτ, (4)

where m−1 ≤ α < m.
In this concept, f (x) is differentiated n times first, and then n−α times are integrated. This method’s drawback is

that f (x) needs to be n times differentiable for the existence of α-th order, where m−1 ≤ α < m. This definition is not
applicable if the function is non-differentiable. This method has two key advantages:

(i) the derivative of a constant is zero in fractional way; and
(ii) the initial conditions of the R-L type differential equations are fractional type, whereas the Caputo type fractional

differential equations have classical derivative type initial conditions.
This indicates that a fractional differential equation including R-L fractional derivatives necessitates an understanding

of fractional initial conditions, which can occasionally be challenging to physically interpret [45].
Definition 2.3 Jumaire type fractional derivative:
In order to get around the fractional derivative of a constant that is not zero, Jumarie [50] suggested another way to

define the left R-L type fractional derivative in the interval [a, b] of the function f (x) in the form as follows:

f (α)
L (z) =J

aDα
z f (z) (5)

=



1
Γ(−α)

∫ z

a
(z− τ)−α−1 f (τ)dτ, α < 0

1
Γ(1−α)

d
dz

∫ z

a
(z− τ)−α( f (τ)− f (a))dτ, 0 < α < 1

(
f (α−n)(z)

)(n)

, n ≤ α < n+1.
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For z < a, they assume that f (z)− f (a) = 0. The R-L derivative of order α (0 < α < 1) of the offset function
( f (x)− f (a)) is shown in the second line of equation (5), while the first expression represents fractional integration. They
employ the third line for α > 1, which means that they apply complete n order differentiation to the offset function with
order 0 < (α − n) < 1 after first differentiating it using the formula of the second line. In this case, they selected the
integer n, which is just less than the real number α (n ≤ α < n+1).

Definition 2.4 Mittag-Leffler function:
This function was defined and explored by Mittag-Leffler. The exponential function, ex, is directly generalized by

this function, which is an essential part of fractional calculus. Power series expansion has been used to define the one,
two, and three-parameter Mittag-Leffler functions as follows [63–65].

Eα(x) =
∞

∑
i=0

xi

Γ(1+αi)
, for α ∈C, Re(α)> 0. (6)

Eα, β (x) =
∞

∑
i=0

xi

Γ(β +αi)
, for α, β ∈C, Re(α)> 0. (7)

Eγ
α, β (x) =

∞

∑
i=0

(γ)ixi

Γ(β +αi)i!
, for α, β , γ ∈C, Re(α)> 0. (8)

where, (γ)i = γ(γ +1)(γ +2)(γ +3)...(γ + i−1) and (γ)0 = 1.
The representation in terms of integral is given in [63, 66–68] as follows,

Eα(z) =
1

2π

∫
C

tα−1et

tα − z
dt, z ∈ C, Re(α)> 0.

In this case, the path of integration C is a loop that encloses the disk’s circles |t| ≤ |z|1/α in the positive sense:
|arg(t)| ≤ π on C [63, 66–68]. It begins and ends at −∞.

The two parameterMittag-Leffler function’s appropriate integral representation is provided by [63, 66–68] as follows:

Eα, β (z) =
1

2π

∫
C

tα−β et

tα − z
dt, z ∈ C, Re(α) is + ve.

Where C, the contour remains same as already defined above.

3. Modelling of the fractional diabetes mellitus system
The non-fractional model is given in [43] as below:
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

dH
dt

=−(τ +µ)H +βθ +σS,

dS
dt

=−(µ +αp +β (1−θ)+σ)S+ τH,

dD
dt

= ωT +αpS− (λp +µ)D,

dC
dt

=−(µ +δ + γ)C+λpD,

dT
dt

=−(µ +ω)T + γC,

such that the initial values at time t = 0 are given by H0, S0, D0, C0, and T0. The state variables H(t), S(t), D(t),C(t), and
T (t) represent totally healthy, suspected, confirmed without complications, confirmed with complications and confirmed
with complications receiving treatment, respectively. The parameters γ, τ, θ , αp, σ , ω, λp, µ, δ , and β , denote
birth rate of children, healthy born children rate, naturally caused mortality rate, healthy population becoming suspected
population rate, suspected population becoming healthy population rate, diabetes incidence rate probability, confirmed
diabetic population developing complications rate, confirmed diabetic with complexity becoming without complexity rate,
natural mortality with complexities rate and cured population rate from diabetes.

As an extension of the system above, the following diabetes mellitus mathematical system is considered using the
fractional derivatives of order α . A system of linear differential equations with fractional order α is considered as:



cDα
t H =−(τ +µ)H +βθ +σS,

cDα
t S =−(µ +αp +β (1−θ)+σ)S+ τH,

cDα
t D = ωT +αpS− (λp +µ)D,

cDα
t C =−(µ +δ + γ)C+λpD,

cDα
t T =−(µ +ω)T + γC,

(9)

such that the initial values are same as stated above in the non-fractional model.
An autonomous vector field of a general form can be considered as below:

Y ′ = S(Y ), Y ∈ Rn, (10)

the corresponding fractional system after linearization can be defined as
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cDα
t ψ = J(E∗)ψ,

such that the E∗ represents the equilibrium points of the corresponding steady system given in 10, and J(E∗) represents
Jacobian of the same system above. Negative real values are assumed from the Jacobian establishing the asymptotic
stability of the system 10, as in [40].

4. Diabetes mellitus fractional system discretization by NSFDS
The fractional order diabetes mellitus system is discretized using the non-standard differences. On the basis of

the guidelines in [16], the construction of the numerical scheme is carried out using non-standard differences. The
development of the weight functions relies on the eigen-values of the matrix obtained from the fractional system.

• To counter the instabilities arising numerically, the discretized differential should be same as the differentials in the
given system.

• A general form representing fractional discretized derivatives of order α is given below:

cDα
t x → xn+1 −ψ(h)xn

ϕ(h)
,

where ψ(h, α, p)and ϕ(h, α, p), where p is the set of model’s parameters, are called the weight functions.
• Nonlocal terms are constructed in a discrete setting to replace the nonlinearities such that s2 → s2

n−1 and s2 → snsn−1.
• Furthermore, the corresponding difference model should be aligned with the original differential model in terms of

the conditions imposed.
The positivity requirement from above is satisfied as the system is discretized in the following setup:
(i) For H(t): H(t)→ H(n+1) and S(t)→ S(n) are used.
(ii) For S(t) and H(t): H(t)→ H(n) and S(t)→ S(n+1) are used.
(iii) For S(t), D(t), and T (t): S(t)→ S(n), D(t)→ D(n+1), and T (t)→ T (n) are used.
(iv) For D(t) and C(t): D(t)→ D(n) and C(t)→C(n+1) are used.
(v) For C(t) and T (t): C(t)→C(n) and T (t)→ T (n+1) are constructed.
Thus, the following discrete model is obtained:
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

H(n+1) =
H(n)+(βθ +σS(n))ϕ1

1+(µ + τ)ϕ1
,

S(n+1) =
S(n)+(β (1−θ)+ τH(n))ϕ2

1+(µ +αp +σ)ϕ2
,

D(n+1) =
D(n)+(αpS(n)+ωT (n))ϕ3

1+(µ +λp)ϕ3
,

C(n+1) =
C(n)+λpϕ4D(n)
1+(µ +δ + γ)ϕ4

,

T (n+1) =
T (n)+ γϕ5C(n)
1+(µ +ω)ϕ5

,

(11)

such that ϕi, i = 1 → 5 represents the corresponding weight functions to all the state variables given below as:



ϕ1 =
−Eα(−(µ + τ)h)+1

(µ + τ)
,

ϕ2 =
−Eα(−(µ +αp +σ)h)+1

(µ +αp +σ)
,

ϕ3 =
−Eα(−(µ +λp)h)+1

(µ +λp)
,

ϕ4 =
−Eα(−(µ +δ + γ)h)+1

(µ +δ + γ)
,

ϕ5 =
−Eα(−(µ +ω)h)+1

(ω +µ)
.

The standard finite differences carry the approximation errors over the iterations resulting in instabilities as numerical
computations are performed. The above discretization using non-standard differences helps achieve better approximations
as the construction and the consequent presence of the weight functions based on eigen-value decomposition incorporates
better corrections as compared to the standard classical schemes such as Euler and Runge-Kutta discretizations.

4.1 Analysis
From the above model (9) we write in the matrix-vector formulation as follows:

(Xα)
′
= AX +b, (12)
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where, Xα = [Hα , Sα , Dα , Cα , T α ]T ,

A =


−(τ +µ) σ 0 0 0
−(−τ) −(α +σ +µ) 0 0 0

0 α −(λ +µ) 0 ω
0 0 λ −(γ +δ +µ) 0
0 0 0 γ −(ω +µ)

 ,

and

b =


βθ

β (1−θ)
0
0
0

 .

We decompose the matrix A such that equation (12) becomes

(Xα)
′
= P−1DP+b. (13)

Where D is the matrix of the eigen values and P is the matrix of the eigen vectors such that

P = [w1, w2, w3, w4, w5].

We write the solution using the Mittag-Leffler function such that

U(t) = P


c1Eα(λ1tα)

c2Eα(λ2tα)

c3Eα(λ3tα)

c4Eα(λ4tα)

c5Eα(λ5tα)

+


βθ

β (1−θ)
0
0
0

 ,

or

U(t) = [w1, w2, w3, w4, w5]


c1Eα(λ1tα)

c2Eα(λ2tα)

c3Eα(λ3tα)

c4Eα(λ4tα)

c5Eα(λ5tα)

+


βθ

β (1−θ)
0
0
0

 ,

where,
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U(0) = [w1, w2, w3, w4, w5]


c1

c2

c3

c4

c5

+


βθ

β (−θ +1)
0
0
0

=


u1(0)
u2(0)
u3(0)
u4(0)
u5(0)

 ,

and

Eα(λ tα) =
∞

∑
n=0

λ α(t)αn

Γ(αn+1)
.

5. Discretized fractional diabetes mellitus system stability
The stability of the discretized model is discussed in this section. The Lemma below outlines a special case when all

the state variables, after incorporating the initial states, are all non-negative. We present the Lemma as:
Lemma 1 If the following inequality:

−((−θ +1)β + τH(n))
⟨

S(n)
ϕ2

⟩
,

holds for S, H, β , θ , τ and ϕ2. Then all analytical representations of the state variables in (11) are positive along with
the positive initial states.

The Lemma 1 has been proved in [43] by establishing the above inequality and the positive weight functions.
A local asymptotic stability result is presented below.
Theorem 5.1 [43] Suppose J is the Jacobian and E∗ represents equilibrium points of the fractional system. Then the

fractional system demonstrates asymptotic stability if real parts from J(E∗) are all negative.
Proof. The equilibrium point of system 9 is obtained as E∗ = (H∗, S∗, D∗, C∗, T ∗), where

H∗ =
βθ

µ + τ
+

 β (1−θ)+
βθτ
µ + τ

(µ +α +σ)− τσ
µ + τ

 σ
µ + τ

,

S∗ =
β (1−θ)+

βθτ
µ + τ

(µ +α +σ)− τσ
µ + τ

,
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D∗ =
αβ (1−θ)+αβθτ

(µ +λ )[(µ +α +σ)(µ + τ)− τσ ]
+

 γλαβ (1−θ)− γλαβθτ
µ + τ

−(µ +δ +λ )(µ +λ )
[
(µ +α +σ)− τσ

µ + τ
]


−(µ +ω)+
γλω

(µ +λ )(µ +δ + γ)

×

[
ω

µ +λ

]
,

C∗ =

−λαβ (1−θ)+
λαβθτ

µ + τ

−(µ +δ +λ )(µ +λ )[(µ +α +σ)− τσ
µ + τ

]

+

 γλαβ (1−θ)− γλαβθτ
µ + τ

−(µ +δ +λ )(µ +λ )
[
(µ +α +σ)− τσ

µ + τ
]


−(µ +ω)+
γλω

(µ +λ )(µ +δ + γ)

×

[
λω

(µ +λ )(µ +δ + γ)

]
,

T ∗ =

 γλαβ (1−θ)− γλαβθτ
µ + τ

−(µ +δ +λ )(µ +λ )
[
(µ +α +σ)− τσ

µ + τ
]


−(µ +ω)+
γλω

(µ +λ )(µ +δ + γ)

.

The Jacobian matrix of the continuous model at the equilibrium point E∗ = (H∗, S∗, D∗, C∗, T ∗) determined as

J(H∗, S∗, D∗, C∗, T ∗) =


−(µ + τ) σ 0 0 0

τ −(µ +α +σ) 0 0 0
0 α −(µ +λ ) 0 ω
0 0 λ −(µ +δ + γ) 0
0 0 0 γ −(µ +ω)

 .

Locally asymptotic stability of the fractional model can be analyzed by obtaining the eigenvalues of the Jacobian
matrix at equilibrium points. Since all the eigen values of the Jacobian matrix are negative real numbers then the system
is asymptotically stable.

We introduce the Schur-Cohn criterion for our system.
Lemma 2 [41] Consider the characteristic polynomial

q(λ ) = λ 5 +a1λ 4 +a2λ 3 +a3λ 2 +a4λ +a5,

where b1, b2, b3, b4, b5 are constants. The zeros of the characteristic polynomial defined by above lie inside the unit disk
if and only if the following conditions hold:
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a. q(1)> 0,
b. 1−b1 +b2 −b3 +b4 −b5 > 0,
c. The matrices

Q±
4 =


1 0 0 0 0
b1 1 0 0 0
b2 b1 1 0 0
b3 b2 b1 1 0
b4 b3 b2 b1 1

 ±


0 0 0 0 b5

0 1 0 b5 b4

0 0 b5 b4 b3

0 b5 b4 b3 b2

b5 b4 b3 b2 b1

 ,

are positive.
Proof. One can conclude that if the Schur-Cohn criterion is satisfied, then the system is asymptotically stable.

Therefore, the Jacobian matrix at the equilibrium point E∗ = (H∗, S∗, D∗, C∗, T ∗) can be written as:

J∗ = J(H∗, S∗, D∗, C∗, T ∗) =


h1 ϕ1σh1 0 0 0

ϕ2τh2 h2 0 a5 b4

0 ϕ3αh3 h3 0 ϕ3ωh3

0 0 ϕ4λh4 h4 0
0 0 0 ϕ5γh5 h5

 ,

where,

h1 =
1

1+ϕ1(µ + τ)
,

h2 =
1

1+ϕ2(µ +α +σ)
,

h3 =
1

1+ϕ3(µ +λ )
,

h4 =
1

1+ϕ4(µ +δ + γ)
,

h5 =
1

1+ϕ5(µ +ω)
,

where the coefficients are determined as
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b1 =−(h1 +h2 +h3 +h4 +h5),

b2 = (h3 +h4)h5 +h3h4 +(h1 +h2)(h3 +h4 +h5)− (1− τσϕ1ϕ2)h1h2,

b3 =−(1+ γλωϕ3ϕ4ϕ5)h3h4h5 +(τσϕ1ϕ2 −1)h1h2(h3 +h4 +h5)− (h1 +h2)[h5(h3 +h4)+h3h4],

b4 = (h1 +h2)(1+ϕ3ϕ4ϕ5λωγ)+h1h2(1−στϕ1ϕ2)[h5(h3 +h4)+h3h4],

b5 = h1h2h3h4h5(στϕ1ϕ2 −1)(1+ϕ3ϕ4ϕ5λωγ),

we find the coefficients of the characteristic polynomial as below:

b1 =−4.95460854, b2 = 9.97630952, b3 =−9.9657420912, b4 = 4.9873210654, b5 =−0.98322055324.

In the view of Lemma 2, since
a. q(1) = 1+b1 +b2 +b3 +b4 +b5 = 0.213×10−12 > 0,
b. −p(−1) = 1−b1 +b2 −b3 +b4 −b5 = 30.78648021 > 0,
c. The matrices

Q±
4 =


1 0 0 ±b5

b1 1 ±b5 ±b4

b2 b1 ±b5 1±b4 ±b3

b3 ±b5 b2 ±b4 b1 ±b3 1±b2

 .

As all the axioms of Schur-Cohn are established, the given system is asymptotically stable locally for the chosen
parameters.

6. Numerical experiment
This section represents numerical experiment in order to make analytical results, standard finite differences and the

non-standard finite difference approximations. The parameter values are chosen such that θ = 0.913, β = 0.037, τ =

0.035, µ = 0.51, σ = 0.081, λp = 0.512, αp = 0.0231, δ = 0.02001, ω = 0.079, and γp = 0.081. The eigen values are
calculated using the matrix A given in (12).


λ1

λ2

λ3

λ4

λ5

=


−0.596819223081673
−0.310501484379986
−0.252031242374329
−0.123968757625671
−0.126679292538342

 .

Contemporary Mathematics 6308 | Said Al Kathiri, et al.



Since all the eigen values are negative real numbers, Theorem 5.1 dictates the asymptotic stability of the fractional
system locally. The corresponding eigen vectors are given as follows:

w1 =


5.896221210428095×10−17

1.650399374969535×10−16

−0.596315604210655
0.7870714682318165
−0.1578803473213

 , w2 =


7.085776189609232×10−16

−7.225923671895149×10−16

0.1490848796756575
−0.8058512826844632
0.5730422400206641

 ,

w3 =


0.6221573520391458
−0.7312778595570425
0.01064184857958888
−0.1563541004840987
0.2315017661831681

 , w4 =


−0.44704799767537
−0.1901699845231093
−0.1107453024216173
−0.5888750357075574
−0.6363529956501267

 , w5 =


−1.085147452761105×10−15

−4.908431230456085×10−16

0.120651887117552
0.6605943518791119
0.7409846316897467

 .

The comparison of the FDS and the NSFDS using time series solutions for the state variables H(t) (healthy
individuals), S(t) (susceptible individuals), D(t) (diabetic without complications individuals), C(t) (Diabetic with
comlications individuals , and T (t) Diabetic with com lications receivin a cure individuals in figure 1). These solutions
are compared using the analytical solution (green solid line), the standard finite difference scheme (FDS, blue dashed
line), and the non-standard finite difference scheme (NSFDS, red dashed line with arrows).

For H(t), the FDS differs from the analytical solution significantly after t = 2, while the NSFDS stays close to the
analytical solution. Similarly, for S(t), the FD method shows more prominent deviations after t = 4, whereas the NSFDS
remains closer to the analytical solution throughout the time domain. In the case of D(t), the FDS shows considerable
differences in the decreasing phase after t = 2, while the NSFDS method accurately follows both the peak and the
subsequent decrease. For C(t), the FDS outgrows significantly during the decreasing phase after t = 3, whereas the
NSFDS shows a closer agreement with the analytical solution. Finally, for T (t), the FDS strays more as time progresses,
particularly after t = 4, while the NSFDS remains close to the analytical solution throughout. Overall, the NSFDSmethod
consistently follows the analytical solution more closely across all state variables, exhibiting better accuracy and stability,
whereas the FDmethod exhibits larger differences, particularly as time progresses, indicating less accurate approximation.
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Figure 1. Comparison between FDS and NSFDS using time series for θ = 0.913, β = 0.037, τ = 0.035, µ = 0.51, σ = 0.081, λp = 0.512, αp =
0.0231, δ = 0.02001, ω = 0.079, and γp = 0.081

6.1 Error magnitude
In this section, the error between the FDS and the NSFDS is compared by using the heat maps. Both the schemes,

side by side for each state variable are compared. Each heat map illustrates the error magnitude over time for the
approximations. The time range is from 0 to 10, with the y-axis labeled “Index” representing the different time steps
within this interval. The error magnitude is depicted using a color scale, ranging from 10−10 to 10−2. The left panels in all
the figures (Figure 2 to Figure 6) compare the error between the FDS and the analytical solution, the right panels compare
the NSFDS and the analytical solution.

In the FDS heat map (left), the error is uniformly represented in a green hue across all time steps, indicating a
consistent error magnitude closer to 10−4 throughout the entire time interval. This suggests that the FDS maintains
a relatively stable error but at a higher magnitude compared to the NSFDS. The NSFDS heat map (right) shows a
predominantly blue to purple color, corresponding to lower error magnitudes closer to 10−8 to 10−10 for most time steps.
This shows that the FDSmaintains a uniform but higher error throughout the simulation, the NSFDS achieves significantly
lower errors.

Figure 2. Heatmap for H(t) for error comparison between FDS and NSFDS
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In the case of S(t), the FDS (left panel) exhibits errors up to 10−4, uniformly distributed across the time
steps, indicating a consistent error magnitude throughout the simulation. On the other hand, the NSFDS (right panel)
demonstrates significantly lower errors, ranging between 10−6 and 10−8. This suggests that while the FDS maintains a
steady but higher error, the NSFDS performs more accurately across most of the time interval.

Figure 3. Heatmap for S(t) for error comparison between FDS and NSFDS

In the case of D(t), the error heat maps present a smooth pattern. For the FDS (left panel), the error remains relatively
constant throughout the majority of the simulation time but shows an increase towards the upper values (closer to the end
of the time interval). The error magnitude is around 10−4 with a slight increase to 10−2 near the end. On the other hand,
the NSFDS (right panel) shows a more stable pattern where the error is much less, with values around 10−7 to 10−6. This
further establishes the better accuracy of the NSFDS in approximating the analytical solution for D(t).

Figure 4. Heatmap for D(t) for error comparison between FDS and NSFDS

In the case ofC(t), the FDS (left panel) shows a uniform error distribution, with the magnitude of the error generally
ranging from 10−5 to 10−4, and highest around 10−2. The uniform green-yellow color suggests that the error remains
fairly same throughout the simulation period, with some higher error accumulation towards the upper values for the later
time steps. Oppositely, the NSFDS (right panel) displays a significantly better performance, with errors hovering around
10−8 to 10−6.
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Figure 5. Heat map for C(t) for error comparison between FDS and NSFDS

Lastly, in the case of T (t), the FDS (left panel) shows a relatively uniform error magnitudes, ranging from 10−5 to
10−3, such that the highest value is at 10−2. This is represented by the green to yellow filling, indicating a moderate error
level throughout the time steps. On the other hand, the NSFDS (right panel) demonstrates significantly better performance,
with errors predominantly within the range of 10−8 to 10−6.

Figure 6. Heat map for T (t) for error comparison between FDS and NSFDS

Across all state variables, the NSFDS demonstrates consistently lower error magnitudes compared to the standard
FDS. This suggests that the NSFDS offers a more accurate and reliable approximation of the analytical solution over the
given time period.

6.2 Convergence rate analysis
In figures 7-11, the convergence rate analysis based on the step sizes and the magnitude of the error for all the state

variables are discussed. The convergence rate plots display the error magnitudes for the state variable approximations
using both the FDS and NSFDS for step sizes h = 10−3, 10−2, and 10−1.
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Figure 7. Convergence rate of H(t) for error comparison between FDS and NSFDS at different step sizes

Figure 8. Convergence rate of S(t) for error comparison between FDS and NSFDS at different step sizes

Figure 9. Convergence rate of D(t) for error comparison between FDS and NSFDS at different step sizes
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Figure 10. Convergence rate of C(t) for error comparison between FDS and NSFDS at different step sizes

Figure 11. Convergence rate of T (t) for error comparison between FDS and NSFDS at different step sizes

The analysis of the convergence rates reveals a uniform pattern when comparing the FDS with the NSFDS. For H(t),
the FDS starts with an error of approximately 10−4 at the smallest step size h = 10−3 and slowly decreases to about
6×10−5 as the step size increases to h = 10−1. On the other hand, the NSFDS demonstrates a superior performance by
maintaining a much lower and stable error around 10−6 throughout all step sizes. A similar behaviour is observed for S(t),
where the FDS shows a stepwise reduction in error from approximately 10−4 at h = 10−3 to 4×10−5 at h = 10−1, while
the NSFDS uniformly holds the error around 10−6, signifying its accuracy. For D(t) and C(t), the FDS begins with an
error close to 10−3 and reduces to around 10−4 as the step size increases, but it still remains considerably higher compared
to the NSFDS, which maintains an error level at approximately 10−5 across all step sizes. This uniform low error indicates
the NSFDS’s ability to closely follow the analytical solution, regardless of the step size. Lastly, for T (t), the FDS shows
a similar error reduction behaviour from 10−2 to 10−3 as the step size increases, while the NSFDS maintains an even
more stable error close to 10−5 across all tested step sizes. This detailed analysis shows the NSFDS’s better accuracy and
stability, making it a more reliable computational technique for accurately solving the fractional diabetes mellitus system
of differential equations with varying step sizes. Overall, the NSFDS exhibits a significantly lower and more stable error
magnitude across all state variables and step sizes.
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7. Conclusion
This paper applies the NSFDS to numerically solve the system of linear fractional differential equations that model

diabetes mellitus. This scheme is found to be stable and more accurate than the FDS up to step size h = 10−3. The
comparison of the FDS and the NSFDS using time series solutions for the state variables H(t) (healthy individuals),
S(t) (susceptible individuals), D(t) (diabetic without complications individuals), C(t) (Diabetic with complications
individuals) and T (t) (Diabetic with complications receiving a cure individuals) are presented. These solutions are
compared using the analytical solution (green solid line), the standard finite difference scheme (FDS, blue dashed line) and
NSFDS, red dashed line with arrows. The NSFDSmethod consistently follows the analytical solution more closely across
all state variables, indicating better accuracy and stability, whereas the FDS exhibits larger differences, particularly as
time progresses, indicating less accurate approximation. This demonstrates the better performance of the NSFDS method
in approximating the analytical solution of the fractional diabetic model. The heat maps compare the errors between
the analytical solution and two numerical methods: the standard finite difference FDS and the NSFDS. Each heat map
illustrates the error magnitude over time for the state variables. Across all state variables, the NSFDS demonstrates
consistently lower error magnitudes compared to the standard FDS. This suggests that the NSFDS offers a more accurate
and reliable approximation of the analytical solution over the given time period. The heat maps effectively visualize
these differences, with the NSFDS providing better performance in reducing errors for the fractional diabetic model. The
convergence rate analysis discussed here, is based on the step sizes and the magnitude of the error for all the state variables.
The convergence rate plots display the error magnitudes using both the FDS and NSFDS for step sizes h = 10−3, 10−2,
and 10−1.
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